首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Guanylin (PNTCEICAYAACTGC) is a peptide recently isolated from the intestine, the actions of which appear to be mimicked by bacterial heat-stable enterotoxins (Currie, M. G., Fok, K. F., Kato, J., Moore, R. J., Hamra, F. K., Duffin, K. L., and Smith, C. E. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 947-951). A cDNA clone encoding the peptide was isolated from a rat intestinal cDNA library using a degenerate oligonucleotide probe. The mRNA (approximately 0.8-0.9 kilobase) encoding the peptide contained an open reading frame of 115 amino acids, including an amino-terminal signal peptide. The carboxyl-terminal region of the predicted polypeptide contained a sequence identical to guanylin, but the 15-amino acid peptide likely represents an artifact of previous acetic acid extraction methods, since an aspartate residue precedes the amino-terminal proline. A lysine-lysine dipeptide bond is one likely processing site of pro-guanylin and would generate a 60-amino acid mature peptide. Other potential cleavage sites exist at single lysine and arginine residues, which could result in peptides ranging from 22 to 56 amino acids. Transfection of COS-7 cells with the guanylin cDNA resulted in the expression of a secreted protein of M(r) 10,000. The expressed proguanylin failed to elevate cyclic GMP concentrations in human colonic T84 cells, but acetic acid treatment of pro-guanylin activated it and resulted in large elevations of cyclic GMP. Guanylin mRNA was prevalent in rat intestine but was also found in low abundance in adrenal gland, kidney, and uterus/oviduct. Guanylyl cyclase C, the apparent guanylin receptor, was found in abundant amounts in the intestine by Northern analysis, and by the polymerase chain reaction or cDNA cloning it was also found in adrenal gland, airway epithelial cells, brain, and olfactory and tracheal mucosa. Therefore, the ligand and apparent receptor (guanylyl cyclase C) both originate from mammalian genes, and are expressed in various mammalian tissues.  相似文献   

2.
The guanylin family of bioactive peptides consists of three endogenous peptides, including guanylin, uroguanylin and lymphoguanylin, and one exogenous peptide toxin produced by enteric bacteria. These small cysteine-rich peptides activate cell-surface receptors, which have intrinsic guanylate cyclase activity, thus modulating cellular function via the intracellular second messenger, cyclic GMP. Membrane guanylate cyclase-C is an intestinal receptor for guanylin and uroguanylin that is responsible for stimulation of Cl- and HCO3- secretion into the intestinal lumen. Guanylin and uroguanylin are produced within the intestinal mucosa to serve in a paracrine mechanism for regulation of intestinal fluid and electrolyte secretion. Enteric bacteria secrete peptide toxin mimics of uroguanylin and guanylin that activate the intestinal receptors in an uncontrolled fashion to produce secretory diarrhea. Opossum kidney guanylate cyclase is a key receptor in the kidney that may be responsible for the diuretic and natriuretic actions of uroguanylin in vivo. Uroguanylin serves in an endocrine axis linking the intestine and kidney where its natriuretic and diuretic actions contribute to the maintenance of Na+ balance following oral ingestion of NaCl. Lymphoguanylin is highly expressed in the kidney and myocardium where this unique peptide may act locally to regulate cyclic GMP levels in target cells. Lymphoguanylin is also produced in cells of the lymphoid-immune system where other physiological functions may be influenced by intracellular cyclic GMP. Observations of nature are providing insights into cellular mechanisms involving guanylin peptides in intestinal diseases such as colon cancer and diarrhea and in chronic renal diseases or cardiac disorders such as congestive heart failure where guanylin and/or uroguanylin levels in the circulation and/or urine are pathologically elevated. Guanylin peptides are clearly involved in the regulation of salt and water homeostasis, but new findings indicate that these novel peptides have diverse physiological roles in addition to those previously documented for control of intestinal and renal function.  相似文献   

3.
4.
Guanylin is a recently discovered endogenous activator of intestinal guanylate cyclase that was purified from intestinal tissue. Clones have been isolated which demonstrate that the guanylin peptide is contained within a 115 amino acid apparent preprohormone encoded by a 600 base messenger RNA in rat jejunum. The messenger RNA is found predominantly in intestinal tissues, showing a striking gradient of expression ranging from undetectable in esophagus and stomach to abundant in colon. Guanylin may serve a paracrine function to regulate intestinal guanylate cyclase activity, cyclic GMP levels, and thereby, fluid and electrolyte absorption. We hypothesize that the heat stable enterotoxins mimic the endogenously produced guanylin to cause diarrhea.  相似文献   

5.
The effect of butyrate on the response to guanylin and Escherichia coli heat-stable enterotoxin, STa, was assessed in T84 cells and Caco-2 cells, cultured colon cell lines possessing the guanylyl cyclase C which is the receptor for these peptides. Butyrate treatment of these cells resulted in an apparent increase in cyclic GMP (cGMP) accumulation when the cGMP content of cells and the supernatant medium was measured. Butyrate treatment did not change the guanylyl cyclase activity or (125)I-STa binding parameters in T84 cells, but the butyrate effect was completely blocked by cycloheximide. Butyrate did not have any effect on STa-stimulated cGMP accumulation in COS cells transfected with the human or porcine GC-C. Further experiments showed that butyrate treatment caused a large increase in the cGMP released into the culture medium, and in cells grown in polarized fashion in Transwell inserts, cGMP efflux was predominantly from the basolateral surface of the cell; intracellular cGMP was actually lowered by butyrate treatment. Exposure of T84 cells to butyrate had no effect on the disposition of cyclic AMP generated in response to forskolin. The effects of butyrate on cGMP were reversible within 24 h of butyrate withdrawal. In colon cells, butyrate treatment induced a previously undescribed, cGMP-specific efflux mechanism which lowered intracellular cGMP and elevated extracellular cGMP in response to peptide agonists such as guanylin and STa.  相似文献   

6.
Guanylin and related peptides.   总被引:4,自引:0,他引:4  
Guanylin and uroguanylin are short peptides homologous to heat-stable enterotoxins of Escherichia coli and other enteric bacteria. Guanylin and uroguanylin are synthetized from the respective prepropeptides mainly in gastrointestinal mucosa and are secreted both into intestinal lumen and into the blood. Luminally secreted peptides stimulate chloride and bicarbonate secretion in the intestine through the mechanism involving guanylate cyclase C receptor, cyclic GMP, protein kinase G and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Bacterial enterotoxins, which have greater potency than endogenous peptides, induce excessive fluid secretion into intestinal lumen leading to secretory diarhea. Uroguanylin is expressed mainly in enterochromaffin cells of duodenum and proximal small intestine whereas guanylin is abundant in goblet cells of colonic epithelium. Uroguanylin and guanylin increase urinary sodium and potassium excretion both as circulating hormones and as paracrine mediators produced within the kidney. Uroguanylin functions as "intestinal natriuretic hormone" which is secreted in response to oral sodium loading and maintains sodium balance during postprandial period. Plasma and urinary concentrations of guanylin and uroguanylin increase in renal failure and heart failure. Guanylin peptides possess antiproliferative activity in intestinal cells culture and their expression decreases in colonic carcinoma indicating that their deficiency may contribute to the pathogenesis of this disease.  相似文献   

7.
Some enteric strains of Escherichia coli release a heat-stable enterotoxin which, in contrast to cholera and heat-labile E. coli enterotoxins, stimulates guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2). We have examined the tissue spcificity of its action and the relation of its action to those of the 8-bromo analogues of cyclic GMP and cyclic AMP. Heat-stable enterotoxin stimulated guanylate cyclase activity and increased cyclic GMP concentration throughout the small and large intestine. It increased transepithelial electric potential difference and short-circuit current in the jejunum, ileum and caecum but not in the duodenum or distal colon. This pattern of electrical responses was mimicked by 8-bromo-cyclic GMP. However, 8-bromo-cyclic AMP produced an electrical response in all intestinal segments. The enterotoxin failed to stimulate guanylate cyclase inliver, lung, pancreas or gastric antral mucosa. In the intestines, it stimulated only the particulate and not the soluble form of the enzyme. Preincubation of the toxin with intestinal membranes did not render it capable of stimulating pancreatic guanylate cyclase. Cytosol factors did not enhance the toxin's stimulation of intestinal guanylate cyclase. This study supports the role of cyclic GMP as intracellular mediator for heat-stable enterotoxin and suggests that the toxin affects a membrane-mediated mechanism for guanylate cyclase activation that is unique to the intestines.  相似文献   

8.
Some enteric strains of Escherichia coli release a heat-stable enterotoxin which, in contrast to cholera and heat-labile E. coli enterotoxins, stimulates guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2). We have exmined the tissue specificity of its action and the relation of its action to those of the 8-bromo analogues of cyclic GMP and cyclic AMP. Heat-stable enterotoxin stimulated guanylate cyclase activity and increased cyclic GMP oncentration throughout the small and large intestine. It increased transepithelial electric potential difference and short-circuit current in the jejunum, ileum and caecum but not in the duodenum or distal colon. This pattern of electrical responses was mimicked by 8-bromo-cyclic GMP. However, 8-bromo-cyclic AMP produced an electrical response in all intestinal segments. The enterotoxin failed to stimulate guanylate cyclase in liver, lung, pancreas or gastric antral mucosa. In the intestines, it stimulated only the particulate and not the soluble form of the enzyme. Preincubation of the toxin with intestinal membranes did not render it capable of stimulating pancreatic guanylate cyclase. Cytosol factors did not enhance the toxin's stimulation of intestinal guanylate cyclase. This study supports the role of cyclic GMP as intracellular mediator for heat-stable enterotoxin and suggests that the toxin affects a membrane-mediated mechanism for guanylate cyclase activation that is unique to the intestines.  相似文献   

9.
10.
We determined the effect of heat-stable enterotoxin produced by Yersinia enterocolitica (Y. enterocolitica ST) on cyclic nucleotide levels in the intestines of 6-day-old mice and in cultured cell line cells. The concentration of cyclic guanosine 3',5'-monophosphate (cyclic GMP) in homogenates of the intestines increased four- to fivefold by 3 min after intragastric administration of 10 units of purified Y. enterocolitica ST. This increase continued for 60 min, and then the concentration of cyclic GMP fell toward the levels of the controls. On the other hand, fluid accumulation in the intestines was not evident until 60 min after administration of the toxin. Thus, the increase in intestinal cyclic GMP concentration preceded measurable fluid accumulation. The effect on both cyclic GMP levels and fluid accumulation was abolished by treatment of the ST with either alkali solution (pH 10.7) or 2-mercaptoethanol. Likewise, cyclic GMP levels in cultured cells (CCL-6, HeLa, L, and Mm-1 cells) increased dose-dependently by 10 min after incubation of the cells with the ST. Cyclic adenosine 3',5'-monophosphate levels in both intestines and cultured cells were not affected by the toxin.  相似文献   

11.
Guanylate cyclase C (GC-C), a member of the membrane-bound GC family, consists of an extracellular domain (ECD) and an intracellular domain, which are connected by a single-transmembrane region. GC-C is a receptor protein, i.e. specifically stimulated by the endogenous peptides guanylin, uroguanylin, lymphoguanylin, and the exogenous peptide heat-stable enterotoxin (ST(a)), secreted by pathogenic Escherichia coli and acting on the intestinal brush border membranes. The binding of these peptide ligands to the ECD of GC-C results in the synthesis of cyclic GMP in cells, which, in turn, regulates a variety of intracellular physiologic processes. As the cloning of GC-C, its physiologic functions of each domain have been vigorously investigated. The structural characterization of the ligand-binding domain of the receptor promises to provide important clues for better understanding of the mechanisms of receptor recognition and activation. Recently, structural data for each domain of membrane-bound GCs and related proteins has become available. Coupling information obtained from such work and validation of structure-function relationships of GC-C and its ligands should allow for three-dimensional mapping of their interaction site in detail. Our approach to this issue involved designing photoaffinity-labeling ST(a) analogs, capable of binding covalently to the ligand-binding region of the ECD of GC-C. The photoaffinity-labeling ligand was used to covalently label a soluble form of the recombinant ECD protein. Mass spectrometric analyses of an endoproteinase digest of the ECD revealed that the ligand specifically bound to a narrow region contained in the membrane-proximal subdomain of the ECD of GC-C. These results will enable us to identify the possible binding motifs within the ligand-binding domain by computer modeling. In this review, we summarize the available data on the recognition mechanism between ST(a) and GC-C at the molecular level.  相似文献   

12.
Extracts of intestinal epithelia from the European eel (Anguilla anguilla) stimulated cGMP production in the T84 human colon carcinoma cell line which suggested the presence of a guanylin-like peptide in this teleost fish. Degenerate oligonucleotide primers were subsequently used in RT-PCR resulting in the amplification, cloning, and sequencing of two cDNAs which represent possible 5' spliceoforms of an eel homologue of the mammalian peptide, guanylin. Northern blotting indicated that the main site of expression of the eel peptide is in the intestine with much lower signals also detected in the kidney. Intestinal expression of guanylin mRNA is up-regulated in both nonmigratory "yellow" and the more sexually mature, migratory "silver" eels following acclimation to the seawater environment. These results suggest that this peptide signalling system may play a role in osmoregulation in euryhaline teleost fish during migration between the marine and freshwater environments.  相似文献   

13.
Abnormal proliferation of vascular smooth muscle cells (VSMCs) is known to be a key event in the development of atherosclerosis and restenosis. The present study examined the effect of a novel synthetic natriuretic peptide, vasonatrin peptide (VNP), on norepinephrine (NE)-induced proliferation of VSMCs from coronary bypass vessels. Human VSMCs were isolated from an internal mammary artery (IMA) and saphenous vein (SV) by explant culture and stimulated with NE. MTT assay and [3H] thymidine-incorporation were undertaken to analyze cell proliferation and radioimmunoassay was used to determine the level of intracellular cyclic 3',5'-guanosine monophosphate (cyclic GMP). NE (10(-8) - 10(-7) mol/l) had a mitogenic effect in human VSMCs from both SV and IMA. However, NE-stimulated proliferation of VSMCs from SV was greater than that from IMA. Furthermore, low concentration of NE (10(-10) mol/l) promoted cell growth in SV-derived cells but not in IMA-derived cells. VNP (10(-8) - 10(-6) mol/l) reduced NE-induced cell proliferation and increased intracellular cyclic GMP, which were abrogated by HS-142-1. In addition, the growth inhibition of VNP was mimicked by 8-bromo-cGMP. These results indicate that VNP has a significant inhibitory effect on NE-stimulated proliferation of human VSMCs from both IMA and SV, which is mediated by guanylate cyclase-linked receptors by increasing cyclic GMP.  相似文献   

14.
1. A novel type of sperm-activating peptide named sperm-activating peptide type-V (SAP-V) was isolated from the egg-conditioned media (egg jelly) of the heart urchin Brissus agassizii and the primary structure of the peptide was determined by fast atom bombardment mass spectrometry as follows: Gly-Cys-Glu-Gly-Leu-Phe-His-Gly-Met-Gly-Asn-Cys. 2. SAP-V and [Met(O)9]SAP-V stimulated the respiration of B. agassizii spermatozoa with half-maximal concentrations of 0.5 and 0.3 nM, respectively. However, half-maximal stimulation of the sperm respiration required 40 nM of S-carboxymethylated SAP-V. 3. SAP-V induced significant increases in the cyclic AMP and cyclic GMP levels in B. agassizii spermatozoa in a concentration-dependent manner. 4. The addition of SAP-V to B. agassizii spermatozoa resulted in a mobility shift of a major sperm protein (mol. wt from 133,000 to 129,000) on sodium dodecyl sulfate-polyacrylamide gels.  相似文献   

15.
Protein kinase activity of lymphocytes isolated from human subjects was assayed using histone as substrate. The activity was stimulated about twofold by cyclic AMP and total enzyme activity, determined in the presence of cyclic AMP, was inhibited by 65% by the specific heat-stable inhibitor of cyclic AMP-dependent protein kinase. Histone phosphorylation was not stimulated by cyclic GMP in the presence of the inhibitor. Cyclic AMP-dependent protein kinase could be activated in vitro by incubating intact cells with isoproterenol or with forskolin and was reflected by a significant (P less than 0.05) increase in the protein kinase activity ratio. In contrast to these well-characterized adenylate cyclase activators, incubating cells for up to 2 hr in vitro in the presence of the specific beta-blocker propranolol had no significant effect on the amount of cyclic AMP-dependent protein kinase that was in the activated state. When compared in subjects between the ages of 21 and 74 years, lymphocyte protein kinase activity was unaltered by age or gender. These results indicate that cyclic nucleotide-dependent protein kinase is of the cyclic AMP-dependent variety in the human lymphocyte. A low amount of the cyclic AMP-dependent activity (about 15%) is in the already activated state in freshly isolated cells, and this is not further reduced by incubation in vitro or by beta-blockade. In contrast to previously reported changes in the capacity to synthesize cyclic AMP, lymphocyte protein kinase is unaltered by gender or age in human subjects.  相似文献   

16.
Guanylyl cyclase is a heat-stable enterotoxin receptor.   总被引:50,自引:0,他引:50  
S Schulz  C K Green  P S Yuen  D L Garbers 《Cell》1990,63(5):941-948
Plasma membrane forms of guanylyl cyclase have been shown to function as natriuretic peptide receptors. We describe a new clone (GC-C) encoding a guanylyl cyclase receptor for heat-stable enterotoxin. GC-C encodes a protein containing an extracellular amino acid sequence divergent from that of previously cloned guanylyl cyclases; however, the protein retains the intracellular protein kinase-like and cyclase catalytic domains. Expression of GC-C in COS-7 cells results in high guanylyl cyclase activity. In addition, heat-stable enterotoxin from E. coli, but not natriuretic peptides, causes marked elevations of cyclic GMP and is specifically bound by cells transfected with GC-C. The enterotoxin fails to elevate cyclic GMP in nontransfected cells or in cells transfected with the natriuretic peptide/guanylyl cyclase receptors. These results show that a heat-stable enterotoxin receptor responsible for acute diarrhea is a plasma membrane form of guanylyl cyclase.  相似文献   

17.
Heat stable enterotoxins (STs) are low molecular-weight peptides secreted by enterotoxigenic bacteria. One type of these enterotoxins (STa) induces intestinal secretion leading to acute diarrhea by binding to a membrane form of guanylate cyclase. We have isolated a cDNA from a human colonic cell line, T84, encoding for a guanylate cyclase-coupled enterotoxin receptor (STaR). The predicted amino acid sequence of the human STa receptor is 81% identical with the previously cloned enterotoxin receptor (GC-C) from rat intestine. COS-7 cells transiently transfected with the cloned cDNA expressed specific concentration-dependent response to STa as measured by cyclic GMP accumulation and is about 20 times more sensitive to the stimulation by STa than has been shown for GC-C.  相似文献   

18.
Bacteria that produce heat-stable enterotoxins (STs), a leading cause of secretory diarrhea, are a major cause of morbidity and mortality worldwide. ST stimulates guanylyl cyclase C (GCC) and accumulation of intracellular cyclic GMP ([cGMP]i), which opens the cystic fibrosis transmembrane conductance regulator (CFTR)-related chloride channel, triggering intestinal secretion. Although the signaling cascade mediating ST-induced diarrhea is well characterized, antisecretory therapy targeting this pathway has not been developed. 2-ChloroATP (2ClATP) and its cell-permeant precursor, 2-chloroadenosine (2ClAdo), disrupt ST-dependent signaling in intestinal cells. However, whether the ability to disrupt guanylyl cyclase signaling translates into effective antisecretory therapy remains untested. In this study, the efficacy of 2ClAdo to prevent ST-induced water secretion by human intestinal cells was examined. In Caco-2 human intestinal cells, ST increased [cGMP]i, induced a chloride current, and stimulated net basolateral-to-apical water secretion. This effect on chloride current and water secretion was mimicked by the cell-permeant analog of cGMP, 8-bromo-cGMP. Treatment of Caco-2 cells with 2ClAdo prevented ST-induced increases in [cGMP]i, chloride current and water secretion. Inhibition of the downstream consequences of ST-GCC interaction reflects proximal disruption of cGMP production because 8-bromo-cGMP stimulated chloride current and water secretion in 2ClAdo-treated cells. Thus, this study demonstrates that disruption of guanylyl cyclase signaling is an effective strategy for antisecretory therapy and provides the basis for developing mechanism-based treatments for enterotoxigenic diarrhea.  相似文献   

19.
Receptor-mediated phosphorylation of spermatozoan proteins   总被引:2,自引:0,他引:2  
These studies are the first to report egg peptide-mediated stimulation of protein phosphorylation in spermatozoa. Speract (Gly-Phe-Asp-Leu-Asn-Gly-Gly-Gly-Val-Gly) or resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Gly-Arg-Leu-NH2) stimulated the incorporation of 32P into various proteins of isolated spermatozoan membranes in the presence, but not absence, of GTP. The Mr of three of the phosphorylated proteins were 52,000, 75,000, and 100,000. GTP gamma S (guanosine 5'-O-(3-thiotriphosphate] but not GDP beta S (guanosine 5'-O-(2-thiodiphosphate] or GMP-PNP (guanylyl imidodiphosphate) also supported the peptide-mediated stimulation of protein phosphorylation. The peptides markedly stimulated guanylate cyclase activity, and GTP gamma S or GTP but not GMP-PNP served as effective substrates for the enzyme. The accumulation of cyclic AMP was not stimulated by the peptides. Subsequently, it was shown that added cyclic GMP or cyclic AMP increased 32P incorporation into the same membrane proteins as those observed in the presence of peptide and GTP. The amount of cyclic GMP (up to 3 microM) formed by membranes in the presence of peptide and 100 microM GTP equated with the amount of added cyclic GMP required to increase the 32P content of a Mr 75,000 protein selected for further study. 32P-Peptide maps of the Mr 75,000 protein indicated that the same domains were phosphorylated in response to cyclic nucleotides or to egg peptide and GTP. Intact cells were subsequently incubated with 32P to determine if the radiolabeled proteins observed in isolated membranes also would be obtained in intact cells. The 32P contents of proteins of Mr 52,000, 75,000, and 100,000 were significantly increased by the addition of resact. Peptide maps confirmed that the increased 32P incorporation obtained in a Mr 75,000 protein of isolated membranes occurred on the same protein domains as the 32P found on the Mr 75,000 protein of intact cells. These results suggest that a GTP or GTP gamma S requirement for peptide-mediated protein phosphorylation in spermatozoan membranes is mainly due to the enhanced formation of cyclic GMP, and it therefore is likely that peptide-induced elevations of cyclic nucleotide concentrations in spermatozoa are responsible for the specific increases in 32P associated with at least three sperm proteins, all apparently localized on the plasma membrane.  相似文献   

20.
Membrane guanylate cyclase C (GC-C) is the receptor for guanylin, uroguanylin, and heat-stable enterotoxin (STa) in the intestine. GC-C-deficient mice show resistance to STa in intestine but saluretic and diuretic effects of uroguanylin and STa are not disturbed. Here we describe the cellular effects of these peptides using immortalized human kidney epithelial (IHKE-1) cells with properties of the proximal tubule, analyzed with the slow-whole-cell patch clamp technique. Uroguanylin (10 or 100 nm) either hyperpolarized or depolarized membrane voltages (V(m)). Guanylin and STa (both 10 or 100 nm), as well as 8-Br-cGMP (100 microm), depolarized V(m). All peptide effects were absent in the presence of 1 mm Ba(2+). Uroguanylin and guanylin changed V(m) pH dependently. Pertussis toxin (1 microg/ml, 24 h) inhibited hyperpolarizations caused by uroguanylin. Depolarizations caused by guanylin and uroguanylin were blocked by the tyrosine kinase inhibitor, genistein (10 microm). All three peptides increased cellular cGMP. mRNA for GC-C was detected in IHKE-1 cells and in isolated human proximal tubules. In IHKE-1 cells GC-C was also detected by immunostaining. These findings suggest that GC-C is probably the receptor for guanylin and STa. For uroguanylin two distinct signaling pathways exist in IHKE-1 cells, one involves GC-C and cGMP as second messenger, the other is cGMP-independent and connected to a pertussis toxin-sensitive G protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号