共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
在枯草芽孢杆菌HCUL-B115代谢网络和发酵特性研究的基础上,通过添加适量的氨基酸、有机酸和维生素对聚γ谷氨酸(γPGA)发酵进行合成代谢进行研究。结果发现,大部分添加物对聚γ谷氨酸的积累都有一定的影响,特别是L谷氨酸、L苯丙氨酸、L精氨酸、L天冬氨酸、L缬氨酸、延胡索酸、草酸、丙二酸、烟酸、维生素B6和抗坏血酸等添加物对菌株HCUL-B115合成聚γ谷氨酸有明显促进作用,添加后产率比不添加任何物质提高20%左右。从代谢层面上分析,这些添加物除了促进菌体自身生长之外,同时防止了菌体对各添加物的过量合成,强化了菌株HCUL-B115合成聚γ谷氨酸的代谢途径。 相似文献
4.
γ-聚谷氨酸产生菌BLN-2的分离鉴定及固体发酵条件初探 总被引:2,自引:0,他引:2
从豆制品中分离得到一株γ-聚谷氨酸(γ-PGA)产生茵BLN-2,通过对BLN-2的生理生化和16S rRNA系统发育特征进行分析鉴定,明确该菌株为枯草芽孢杆菌.以黄豆为基本培养物,对BLN-2的固体发酵条件进行了初步探索,结果表明,葡萄糖、果糖和NaNO3、KNO3分别为BLN-2的较适碳、氮源.正交试验结果表明,当向黄豆中添加的果糖终浓度为0.5%,葡萄糖、NaNO3及KNO3终浓度均为2.0%时,γ-PGA产量最高,为89.05 g/kg,比相同条件下基本对照黄豆培养物的产量(60 g/kg)高48.42%. 相似文献
5.
聚γ-谷氨酸高产菌的选育与培养基优化 总被引:1,自引:0,他引:1
利用合成培养基为筛选培养基,以枯草芽孢杆菌(Bacillus subtilis)B6-1为出发菌株,经过三轮紫外线诱变和一轮硫酸二乙酯诱变得到了聚γ-谷氨酸高产突变株枯草芽孢杆菌W003,摇瓶液体发酵的聚γ-谷氨酸产量由出发菌株的10.9 g/L提高到20.5 g/L.单因素实验结果表明,该菌产聚γ-谷氨酸的合适碳源为葡萄糖,氮源为硫酸铵.通过正交实验得到了优化的培养基配方,经36h液体发酵,聚γ-谷氨酸产量可达到45.3 g/L. 相似文献
6.
【背景】不同分子量的γ-聚谷氨酸在农业、化妆品和医药领域具有重要的应用价值,开发不同分子量γ-聚谷氨酸的生物合成工艺已成为研究热点。【目的】在γ-聚谷氨酸生产菌株枯草芽孢杆菌(Bacillus subtilis) KH2中实现不同分子量γ-聚谷氨酸的合成。【方法】分别克隆表达不同来源的水解酶,包括B.subtilis来源的γ-聚谷氨酸水解酶PgdS和YwtE,以及地衣芽孢杆菌来源的SGH。研究不同来源水解酶对B. subtilis KH2产γ-聚谷氨酸分子量的影响。通过改变水解酶处理条件获得不同分子量γ-聚谷氨酸的生物合成工艺。【结果】PgdS、YwtE和SGH均可降低γ-聚谷氨酸的分子量,其中PgdS水解效果最好,可以将γ-聚谷氨酸分子量由原来的1 600 kDa降低为180 kDa。通过优化PgdS的添加量与添加时间,在B. subtilis KH2中获得了分子量为210–600 kDa的γ-聚谷氨酸。【结论】利用水解酶处理,可以在B. subtilis KH2中实现不同分子量γ-聚谷氨酸的生物合成。该方法反应条件温和、分子量可控区间宽,具有良好的应用前景。 相似文献
7.
8.
一株γ-多聚谷氨酸生产菌的分离筛选与鉴定 总被引:1,自引:0,他引:1
从菜园土壤中取样,在含有谷氨酸的筛选培养基上采用梯度稀释涂布、平板划线的方法,以菌落/菌液黏稠度为指示,分离筛选生产γ-多聚谷氨酸的菌株。利用氨基酸分析仪测定提取纯化后的γ-多聚谷氨酸的产量,并通过形态学、生理生化特征以及16S rDNA基因序列分析鉴定该菌株,并对其合成γ-多聚谷氨酸的功能基因进行PCR扩增。结果表明:筛选到1株产γ-多聚谷氨酸的细菌C1,其液体摇瓶发酵产量为18.4 g/L,相对分子质量为1.8×106;该菌株为革兰氏阳性,菌落黏稠、菌体呈杆状、产芽胞、且形成荚膜;主要生理生化特点为能利用葡萄糖和蔗糖发酵,水解淀粉,H2O2酶阳性,产吲哚等;经16S rDNA鉴定与Bacillus amyloliquefaciens ATCC23350同源性为100%,故命名为Bacillus amyloliquefaciens C1,且拥有γ-多聚谷氨酸合成的相关基因pgsA、pgsB和pgsC。 相似文献
9.
10.
一株非谷氨酸依赖型聚γ-谷氨酸高产菌株的鉴定与诱变育种 总被引:2,自引:0,他引:2
从发酵制品中分离到一株不依赖谷氨酸作为发酵底物的高产菌株PGA-N, 通过形态、生理生化试验和遗传学研究, 确定PGA-N为地衣芽胞杆菌(Bacillus licheniformis)。根据该菌株的产生环境, 设计了无L-谷氨酸发酵基础培养基, 并对该培养基进行了碳氮源优化和菌种诱变筛选。PGA-N经过亚硝基胍和紫外线诱变筛选后得一突变株——PGA-N-C10, 其γ-PGA的产量提高到8.82 g/L。实验还考察了搅拌转速与细胞生物量、γ-PGA产量以及γ-PGA分子量之间的关系, 在搅拌速度为400 r/min时, γ-PGA产率可高达11.00 g/L。 相似文献
11.
12.
【背景】γ-聚谷氨酸(poly-γ-glutamic acid,γ-PGA)产生菌多为枯草芽孢杆菌(Bacillus subtilis)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)、地衣芽孢杆菌(Bacillus licheniformis)等,而暹罗芽孢杆菌(Bacillus siamensis)相关研究较少。【目的】研究暹罗芽孢杆菌产γ-PGA的液体发酵条件。【方法】以自行分离的暹罗芽孢杆菌CAU83为出发菌株进行液体发酵,通过单因素试验和正交试验法研究了碳氮源、前体物质、发酵温度及pH对菌株生产γ-PGA的影响。【结果】经摇瓶优化,γ-PGA的最适碳源、氮源和前体物质分别为乳糖30g/L、酵母提取物5g/L和L-谷氨酸钠60 g/L,最适培养条件为发酵温度37℃和pH 7.0,γ-PGA产量由8.4 g/L提升至30.1 g/L,比优化前提高了260%。经分批补料发酵,60 h时γ-PGA产量最高为59.5 g/L,比摇瓶提高了98%,产率为0.99 g/(L·h)。所产γ-PGA分子量为3.8×106 Da,聚合度较高。【结论】... 相似文献
13.
枯草杆菌 SBS液体发酵联产血栓溶解酶和γ-聚谷氨酸 总被引:1,自引:0,他引:1
【目的】利用枯草芽胞杆菌(Bacillus subtilis SBS)进行联产血栓溶解酶和γ-聚谷氨酸研究【方法】本研究以实验室自行分离的Bacillus subtilis SBS为出发菌株,进行了液体发酵,通过正交实验研究了碳、氮源对血栓溶解酶和γ-聚谷氨酸联产的影响,并运用多种检测方法对产物进行了鉴定。【结果】在未添加谷氨酸的培养基中合成了γ-聚谷氨酸,表明该菌是非谷氨酸依赖型菌。合成血栓溶解酶的合适碳、氮源分别是可溶性淀粉和大豆蛋白胨,合成γ-聚谷氨酸的合适碳、氮源分别是蔗糖和NH4Cl。【结论】以蔗糖和大豆蛋白胨、NH4Cl分别作为碳源和氮源进行血栓溶解酶和γ-聚谷氨酸的联产。在蔗糖 10 g/L、大豆蛋白胨 20 g/L、NH4Cl 8 g/L时,血栓溶解酶酶活为 265±25 IU/mL,γ-聚谷氨酸产量为1.183±0.015 g/L,均接近了单独合成时的水平。 相似文献
14.
15.
微胶囊制剂能够利用壁材将囊芯物质包裹起来,减少外界环境的不良因素对其造成的影响,但存在产品残效期和速效性的矛盾、成本过高等问题。聚γ-谷氨酸具有成膜性,可生物降解。本文通过自制的枯草芽胞杆菌聚γ-谷氨酸,对开发聚γ-谷氨酸微胶囊的工艺展开研究。对壁材浓度、搅拌转速、反应温度、聚γ-谷氨酸∶明胶质量比、菌悬液体积和甲醛的用量进行优化,建立了聚γ-谷氨酸微胶囊制备工艺,微胶囊对枯草芽胞杆菌的包埋率达到94.2%。同时考察了微胶囊制剂对热、紫外线和极端pH的抗逆性,结果表明聚γ-谷氨酸-明胶微胶囊能赋予微生物细胞更强的抗紫外能力和耐热性。在极端pH条件下热处理,聚γ-谷氨酸-明胶微胶囊剂中枯草芽胞杆菌的存活率也显著提高。 相似文献
16.
γ-聚谷氨酸高产菌株筛选及发酵条件优化 总被引:9,自引:0,他引:9
γ聚谷氨酸是一种生物可降解的高分子材料,可应用于多种领域,因此受到普遍重视。报道了以11株枯草芽孢杆菌菌株为培养菌株,用3种谷氨酸钠含量不同的培养基进行筛选获得1株γ聚谷氨酸高产菌株;再以该菌株为研究对象进行碳源、氮源、谷氨酸钠浓度、初始pH、接种量、通气量等发酵条件的优化实验,结果表明最佳发酵条件为:250ml三角烧瓶装液40ml,接种体积分数5%,麦芽糖50g/L,酵母膏10g/L,谷氨酸钠30g/L,NaCl10g/L,KH2PO45g/L,MgSO4·7H2O0.5g/L,初始pH6.0,发酵60h,此时γ聚谷氨酸产量最高,达到30.26g/L,比国外报道的20g/L的产量有显著提高。纯化后产物经红外光谱及核磁共振检测,鉴定为γ聚谷氨酸。 相似文献
17.
生物絮凝剂γ-聚谷氨酸絮凝性能研究 总被引:9,自引:1,他引:9
研究了枯草芽孢杆菌NX-2制备的生物絮凝剂γ-聚谷氨酸(γ-PGA)的絮凝活性。γ-PGA对高岭土、活性炭等悬浮液具有较高的絮凝活性,絮凝活性稳定,热稳定性好,用量高于10mg/L时适用pH范围宽,最适投加浓度为20mg/L,加入Ca^2 、Mg^2 、Fe^3 、Al^3 、Fe^2 、Na^ 等金属离子能不同程度增强γ-PGA的絮凝活性,其中Ca^2 助凝效果最高。使用Ca^2 作助凝离子可降低γ-PGA用量,但Ca^2 浓度过高会明显降低γ-PGA的絮凝活性。还研究了γ-PGA对电镀废水的处理效果,实验证明γ-PGA能有效降低电镀废水中Cr^ 3、Ni^ 2等离子的浓度。 相似文献
18.
γ-聚谷氨酸发酵培养基的Plackett-Burman法优化 总被引:1,自引:0,他引:1
以一株γ-聚谷氨酸高产菌——地衣芽孢杆菌GIM-P10为试验菌株,采用逐因子实验法确定γ-聚谷氨酸合成考察因素的参考范围,再采用Plackett-Burman设计法进行培养基的优化,10个实验因子中筛选到四个显著影响因子:柠檬酸、谷氨酸、K2HPO4和MgSO4·7H2O。另外,综合评价实验结果,表明γ-聚谷氨酸的产量与多糖含量呈负向关系,与细胞干重呈正向关系。利用Plackett-Burman设计法发酵产γ-聚谷氨酸可高达21.27g/L,为基础培养基的2倍以上。 相似文献
19.
研究了无机与有机氮源对聚γ-谷氨酸合成与分泌的影响。分别在基础培养基及进入生物合成期的发酵液中添加氯化铵、硝酸钠和各种氨基酸,基础培养基中添加氯化铵质量浓度为1 g.L-1时,合成量提高了22.7%,同时,氯化铵对聚γ-谷氨酸组分也有一定影响。在培养至24 h添加8 g.L-1硝酸钠,合成量提高54.6%,而在基础培养基中分泌率提高了32.7%。在生物合成期添加8 g.L-1谷氨酸,合成量提高了64.2%。同时在静息细胞培养基中进行了验证实验。 相似文献
20.
玉米原料高产γ-聚谷氨酸优良菌株的选育及发酵条件优化 总被引:1,自引:0,他引:1
以实验室筛选到的一株枯草芽孢杆菌(Bacillus subtilis)B-1为出发菌株,采用紫外诱变技术对出发菌株进行反复诱变,得到一株能够利用玉米原料生产γ-聚谷氨酸的优良高产菌株B-115,摇瓶发酵γ-聚谷氨酸的产量由原菌株的12.5g/L提高到19.5g/L。再以该菌株为研究对象利用响应面法进行碳源、氮源、谷氨酸钠、金属离子等发酵条件的优化实验,经48h摇瓶发酵,γ-聚谷氨酸产量达到40.98g/ L。 相似文献