首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
The diphtheria toxin repressor (DtxR) is an Fe2+-activated protein with sequence-specific DNA-binding activity for the diphtheria toxin (tox) operator. Under high-iron conditions in Corynebacterium diphtheriae, DtxR represses toxin and siderophore biosynthesis as well as iron uptake. DtxR and a mutant repressor with His–47 substituted for Arg–47, designated DtxR-R47H, were purified and compared. Six different divalent cations (Cd2+, Co2+, Fe2+, Mn2+, Ni2+, and Zn2+) activated the sequence-specific DNA-binding activity of DtxR and enabled it to protect the fox operator from DNase I digestion, but Cu2+ failed to activate DtxR. Hydroxyl radical footprinting experiments indicated that DtxR binds symmetrically about the dyad axis of the tox operator. Methylation protection experiments demonstrated that DtxR binding alters the susceptibility to methylation of three G residues within the AT-rich tox operator. These findings suggest that two or more monomers of DtxR are involved in binding to the tox operator, with symmetrical DNA-protein interactions occurring at each end of the palindromic operator. In this regard, DtxR resembles several other well-characterized prokaryotic repressor proteins but differs dramatically from the Fe2+-activated ferric uptake repressor protein (Fur) of Escherichia coli. The concentration of Co2+ required to activate DtxR-R47H was at least 10-foid greater than that needed to activate DtxR, but the sequence-specific DNA binding of activated DtxR-R47H was indistinguishable from that of wild-type DtxR. The markedly deficient repressor activity of DtxR-R47H is consistent with a significant decrease in its binding activity for divalent cations.  相似文献   

13.
A thermophilic bacterial strain, Streptomyces thermonitrificans, produced high levels of extracellular deoxyribonuclease (DNase) when grown on NBG medium (containing 1% peptone, 0.3% beef extract, 1% glucose and 0.5% NaCl). Maximum DNase activity (140 U ml−1) was obtained, in 24 h, when the culture was grown on modified NBG medium (containing 1.3% beef extract, 1% glucose, 0.5% NaCl and 50 μM Mn2+ at 45°C. The crude enzyme showed higher activity on native DNA than on sonicated and heat denatured DNA. Moreover, addition of Mn2+ in the assay mixture resulted in a significant stimulation (10–15 fold) of the enzyme activity. Received 24 November 1998/ Accepted in revised form 25 April 1999  相似文献   

14.
15.
16.
17.
18.
19.
20.
Using all currently predicted coding regions in the honeybee genome, a novel form of synonymous codon bias is presented that affects the usage of particular codons dependent on the surrounding nucleotides in the coding region. Nucleotides at the third codon site are correlated, dependent on their weak (adenine [A] or thyamine [T]) versus strong (guanine [G] or cytosine [C]) status, to nucleotides on the first codon site which are dependent on their purine (A/G) versus pyrimidine (C/T) status. In particular, for adjacent third and first site nucleotides, weak–pyrimidine and strong–purine nucleotide combinations occur much more frequently than the underabundant weak–purine and strong–pyrimidine nucleotide combinations. Since a similar effect is also found in the noncoding regions, but is present for all adjacent nucleotides, this coding effect is most likely due to a genome-wide context-dependent mutation error correcting mechanism in combination with selective constraints on adjacent first and second nucleotide pairs within codons. The position-dependent relationship of synonymous codon usage is evidence for a novel form of codon position bias which utilizes the redundancy in the genetic code to minimize the effect of nucleotide mutations within coding regions. [Reviewing Editor: Dr. Brian Morton]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号