首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The PML tumor suppressor is the founding component of the multiprotein nuclear structures known as PML nuclear bodies (PML-NBs), which control several cellular functions including apoptosis and antiviral effects. The ubiquitin specific protease USP7 (also called HAUSP) is known to associate with PML-NBs and to be a tight binding partner of two herpesvirus proteins that disrupt PML NBs. Here we investigated whether USP7 itself regulates PML-NBs. Silencing of USP7 was found to increase the number of PML-NBs, to increase the levels of PML protein and to inhibit PML polyubiquitylation in nasopharyngeal carcinoma cells. This effect of USP7 was independent of p53 as PML loss was observed in p53-null cells. PML-NBs disruption was induced by USP7 overexpression independently of its catalytic activity and was induced by either of the protein interaction domains of USP7, each of which localized to PML-NBs. USP7 also disrupted NBs formed from some single PML isoforms, most notably isoforms I and IV. CK2α and RNF4, which are known regulators of PML, were dispensable for USP7-associated PML-NB disruption. The results are consistent with a novel model of PML regulation where a deubiquitylase disrupts PML-NBs through recruitment of another cellular protein(s) to PML NBs, independently of its catalytic activity.  相似文献   

2.
3.
4.
The natural metabolic byproduct of estradiol, 2-methoxyestradiol (2-MeOE2), induces apoptosis in human lung cancer cells by a p53-dependent mechanism. The expression of wild-type p53 isoforms was investigated in H1299 non-small cell lung carcinoma cells induced into apoptosis by 2-MeOE2. H1299 cells lack endogenous p53 and undergo predominantly a G1 arrest when infected with a recombinant wild-type p53 adenovirus. However, when H1299 cells transfected with p53 were treated with 2-MeOE2, they underwent rapid and extensive apoptosis. H1299 cells expressing mutant his273 p53 were unaffected by 2-MeOE2, indicating a dependence of 2-MeOE2-mediated apoptosis on the presence of a functional p53. Analysis of wild-type p53 phosphoisoforms in H1299 cells by two-dimensional gel electrophoresis revealed that 2-MeOE2 induced a unique group of acidic p53 isoforms. Although most of the wild-type p53 in untreated H1299 cells migrated as at least five diffuse species with isoelectric points from pH 5.5–6.3, as many as nine additional forms migrating toward the acidic region with pI values from 4.4–5.3 were detected in 2-MeOE2-treated apoptotic cells. Two other agents known to induce apoptosis, vinblastine and actinomycin D, induced a similar pattern of acidic p53 species as that observed for 2-MeOE2. The results indicated that the induction of apoptosis in H1299 cells by 2-MeOE2 is dependent on the upregulation of specific p53 isoforms. Identification of the specific p53 phosphoisoforms induced by MeOE2 will be an important step in understanding the regulation and function of p53 in apoptosis.  相似文献   

5.
6.
PML与基因组稳定性   总被引:3,自引:0,他引:3  
基因组稳定性同肿瘤的发生、发展密切相关,维护基因组稳定性对于细胞行使正常的生理功能是至关重要的.早幼粒细胞白血病蛋白PML(promyelocytic leukemia)主要借助分子中RBCC结构,同近50种有重要功能的蛋白相互作用而形成PML-NBs(PML nuclear bodies).PML-NBs是与核基质结合的、动态的、亚核多蛋白复合物,它作为区室化核结构(compartmentalized nuclear architecture)——染色质间区室(interchromatin compartment)的功能单位,满足了真核基因高层次表达调控模式的时空要求.最新的研究证明:PML是基因组稳定性“守门人”——p53分子的搭档分子,同样在基因组稳定性调控中发挥着重要的功能作用.它协同p53参与了DNA损伤反应所诱发的细胞凋亡,还可组织多种DNA修复分子参与DNA损伤修复,在DNA损伤反应中具有重要作用;此外,PML还通过调控aurora A的活性参与中心体复制检查点调控,借助调控survivin的表达参与有丝分裂纺锤体组装检查点调控,在染色体复制和细胞分裂中均显示了重要的调控作用.而当PML表达缺失或不足时则与多种肿瘤的发生、发展相关联,因此PML分子在维护基因组稳定性中具有重要功能作用,本文仅就相关的最新研究进展予以概述  相似文献   

7.
8.
p53, one of the most well studied tumor suppressor factor, is responsible to a variety of damage owing to the induction of apoptosis and cell cycle arrest in the tumor cells. More than 50% of human tumors contain mutation or deletion of p53. Gonadotrophin-releasing hormone (GnRH), as the ligand of Gonadotrophin-releasing hormone receptor (GnRH-R), was used to deliver p53 into tumor cells. The p53 fusion proteins GnRH-p53 and GnRH iii-p53 were expressed and their targeted anti-tumor effects were determined. GnRH mediates its fusion proteins transformation into cancer cells. The intracellular delivery of p53 fusion proteins exerted the inhibition of the growth of H1299 cells in vitro and the reduction of tumor volume in vivo. Their anti-tumor effect was functioned by the apoptosis and cell cycle arrest induced by p53. Hence, the fusion protein could be a novel protein drug for anti-tumor therapy.  相似文献   

9.
10.
Human 8-oxoguanine DNA glycosylase (hOGG1) is the main defense enzyme against mutagenic effects of cellular 7,8-dihydro-8-oxoguanine. In this study, we investigated the biological role of hOGG1 in DNA damage-related apoptosis induced by hydrogen peroxide (H(2)O(2))-derived oxidative stress. The down-regulated expression of hOGG1 by its small interfering RNA prominently triggers the H(2)O(2)-induced apoptosis in human fibroblasts GM00637 and human lung carcinoma H1299 cells via the p53-mediated apoptotic pathway. However, the apoptotic responses were specifically inhibited by hOGG1 overexpression. The p53-small interfering RNA transfection into the hOGG1-deficient GM00637 markedly inhibited the H(2)O(2)-induced activation of p53-downstream target proteins such as p21, Noxa, and caspase-3/7, which eventually resulted in the increased cell viability. Although the cell viability of hOGG1-knockdown H1299 p53 null cells was similar to that of the hOGG1 wild-type H1299, after the overexpression of p53 the hOGG1-knockdown H1299 showed the significantly decreased cell viability compared with that of the hOGG1 wild-type H1299 at the same experimental condition. Moreover, the array comparative genome hybridization analyses revealed that the hOGG1-deficient GM00637 showed more significant changes in the copy number of large regions of their chromosomes in response to H(2)O(2) treatment. Therefore, we suggest that although p53 is a major modulator of apoptosis, hOGG1 also plays a pivotal role in protecting cells against the H(2)O(2)-induced apoptosis at the upstream of the p53-dependent pathway to confer a survival advantage to human fibroblasts and human lung carcinomas through maintaining their genomic stability.  相似文献   

11.
Bcl-2 protects tumor cells from the apoptotic effects of various antineoplastic agents. Increased expression of Bcl-2 has been associated with poor response to chemotherapy in various malignancies, including leukemia. Therefore, bypassing the resistance conferred by anti-apoptotic factors such as Bcl-2 represents an attractive therapeutic strategy against cancer cells, including leukemic cells. We undertook this study to examine whether SAHA (suberoylanilide hydroxamic acid) overcomes the resistance by Bcl-2 in human leukemic cells, with a specific focus on the involvement of PML-NBs. Experiments were conducted with Bcl-2-overexpressing human leukemic U937 cells. Since we previously demonstrated that overexpression of Bcl-2 attenuates resveratrol-induced apoptosis in human leukemic U937 cells, resveratrol-treated U937 cells were used as a negative control. The present study indicates that SAHA at 1-7 μM, the dose range known to induce apoptosis in various cancer cells, overcomes the anti-apoptotic effects of Bcl-2 in Bcl-2-overexpressing human leukemic U937 cells. Notably, we observed that SAHA-induced formation of mature promyelocytic leukemia (PML) nuclear bodies (NBs) correlates with overcoming the anti-apoptotic effects of Bcl-2 in human leukemic U937 cells. Thus, PML protein and the formation of mature PML-NBs could be considered as therapeutic targets that could help bypass the resistance to apoptosis conferred by Bcl-2. Elucidating exactly how PML regulates Bcl-2 will require further work.  相似文献   

12.
MAGE-A genes are a subfamily of the melanoma antigen genes (MAGEs), whose expression is restricted to tumor cells of different origin and normal tissues of the human germline. Although the specific function of individual MAGE-A proteins is being currently explored, compelling evidence suggest their involvement in the regulation of different pathways during tumor progression. We have previously reported that MageA2 binds histone deacetylase (HDAC)3 and represses p53-dependent apoptosis in response to chemotherapeutic drugs. The promyelocytic leukemia (PML) tumor suppressor is a regulator of p53 acetylation and function in cellular senescence. Here, we demonstrate that MageA2 interferes with p53 acetylation at PML-nuclear bodies (NBs) and with PMLIV-dependent activation of p53. Moreover, a fraction of MageA2 colocalizes with PML-NBs through direct association with PML, and decreases PMLIV sumoylation through an HDAC-dependent mechanism. This reduction in PML post-translational modification promotes defects in PML-NBs formation. Remarkably, we show that in human fibroblasts expressing RasV12 oncogene, MageA2 expression decreases cellular senescence and increases proliferation. These results correlate with a reduction in NBs number and an impaired p53 response. All these data suggest that MageA2, in addition to its anti-apoptotic effect, could have a novel role in the early progression to malignancy by interfering with PML/p53 function, thereby blocking the senescence program, a critical barrier against cell transformation.  相似文献   

13.
14.
15.
p53 凋亡刺激蛋白2(apoptosis stimulating protein 2 of p53, ASPP2)能够与p53 蛋白结合特异性地增强其促细胞凋亡功能,进而发挥肿瘤抑制作用.我们发现的1个比ASPP2少300多个N端氨基酸的异构体ΔASPP2.目前,ΔASPP2对p53起何种作用尚不清楚.在本研究中,我们构建了rAd-ASPP2、rAd-ΔASPP2腺病毒,利用rAd-p53、rAd-ASPP2、rAd-ΔASPP2 感染p53缺失的细胞系H1299,在MMS的作用下研究ASPP2 和 ΔASPP2 对p53介导的细胞凋亡的影响.结果发现,p53自身过表达能明显促进肿瘤细胞的凋亡;ASPP2可显著增强p53介导的MMS引起的H1299细胞凋亡的作用;然而,ΔASPP2对p53介导的细胞凋亡没有明显影响但却显著抑制rAd-ASPP2 增强的rAd-p53的促细胞凋亡作用.p53-ASPP2 复合体可能改变p53 蛋白的构象,促进p53 和增强子Bax的结合活性.p53 转录调控基因的表达研究显示,ΔASPP2的存在可显著抑制ASPP2增强p53 介导的bax基因转录活性, 提示ΔASPP2可能与ASPP2结合后来抑制p53的凋亡基因转录活性.  相似文献   

16.
The bulk of DNA damage caused by ionizing radiation (IR) is generally repaired within hours, yet a subset of DNA lesions may persist even for long periods of time. Such persisting IR-induced foci (pIRIF) co-associate with PML nuclear bodies (PML-NBs) and are among the characteristics of cellular senescence. Here we addressed some fundamental questions concerning the nature and determinants of this co-association, the role of PML-NBs at such sites, and the reason for the persistence of DNA damage in human primary cells. We show that the persistent DNA lesions are devoid of homologous recombination (HR) proteins BRCA1 and Rad51. Our super-resolution microscopy-based analysis showed that PML-NBs are juxtaposed to and partially overlap with the pIRIFs. Notably, depletion of 53BP1 resulted in decreased intersection between PML-NBs and pIRIFs implicating the RNF168-53BP1 pathway in their interaction. To test whether the formation and persistence of IRIFs is PML-dependent and to investigate the role of PML in the context of DNA repair and senescence, we genetically deleted PML in human hTERT-RPE-1 cells. Unexpectedly, upon high-dose IR treatment, cells displayed similar DNA damage signalling, repair dynamics and kinetics of cellular senescence regardless of the presence or absence of PML. In contrast, the PML knock-out cells showed increased sensitivity to low doses of IR and DNA-damaging agents mitomycin C, cisplatin and camptothecin that all cause DNA lesions requiring repair by HR. These results, along with enhanced sensitivity of the PML knock-out cells to DNA-PK and PARP inhibitors implicate PML as a factor contributing to HR-mediated DNA repair.  相似文献   

17.
18.
Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells. However, the regulation of survivin and p53 on the quercetin-induced cell growth inhibition and apoptosis in cancer cells remains unclear. In this study, we investigated the roles of survivin and p53 in the quercetin-treated human lung carcinoma cells. Quercetin (20-80 mum for 24 h) induced the cytotoxicity and apoptosis in both A549 and H1299 lung carcinoma cells in a concentration-dependent manner. Additionally, quercetin inhibited the cell growth, increased the fractions of G(2)/M phase, and raised the levels of cyclin B1 and phospho-cdc2 (threonine 161) proteins. Moreover, quercetin induced abnormal chromosome segregation in H1299 cells. The survivin proteins were highly expressed in mitotic phase and were located on the midbody of cytokinesis; however, the survivin proteins were increased and concentrated on the nuclei following quercetin treatment in the lung carcinoma cells. Transfection of a survivin antisense oligodeoxynucleotide enhanced the quercetin-induced cell growth inhibition and cytotoxicity. Subsequently, quercetin increased the levels of total p53 (DO-1), phospho-p53 (serine 15), and p21 proteins, which were translocated to the nuclei in A549 cells. Treatment with a specific p53 inhibitor, pifithrin-alpha, or transfection of a p53 antisense oligodeoxynucleotide enhanced the cytotoxicity of the quercetin-treated cells. Furthermore, transfection of a small interfering RNA of p21 enhanced the quercetin-induced cell death in A549 cells. Together, our results suggest that survivin can reduce the cell growth inhibition and apoptosis, and p53 elevates the p21 level, which may attenuate the cell death in the quercetin-treated human lung carcinoma cells.  相似文献   

19.
Trichloroethylene (TCE) and perchloroethylene (PERC) are volatile organic compounds (VOCs) that are primarily inhaled through the respiratory system. The aim of this study was to elucidate the role of glutathione (GSH) and p53 in TCE- and PERC-induced lung toxicity. Human lung adenocarcinoma cells NCI-H460 (p53-wild-type) have constitutively lower levels of GSH than NCI-H1299 (p53-null) cells. The results showed that exposure to vapor TCE and PERC produced a dose-dependent and more pronounced accumulation of H(2)O(2) in p53-WT H460 than p53-null H1299 cells. The accumulation of H(2)O(2) was accompanied by severe cellular damage, as indicated by the significant increase of lipid peroxidation and apoptosis in p53-WT H460 cells, but not p53-null H1299 cells. Cotreatment of p53-WT H460 cells with free radical scavengers, such as D-mannitol, uric acid, and sodium selenite, significantly attenuated the TCE- or PERC-induced lipid peroxidation. In contrast, depletion of GSH in p53-null H1299 cells enhanced TCE- or PERC-induced lipid peroxidation. The levels of p53 and Bax proteins were elevated, while Bcl-2 protein was downregulated in TCE- or PERC-treated p53-WT H460 cells. Activity of caspase 3, the apoptotic executioner, was also significantly enhanced in TCE- or PERC-treated cells. These data suggest that, in human lung cancer cells, GSH plays a vital role in the protection of TCE- and PERC-induced oxidative stress and apoptosis, which may be mediated through a p53-dependent pathway.  相似文献   

20.
Overexpression of wild-type p53 in ECV-304 tumor cells induced extensive apoptosis and the eventual death of nearly all of the cells. We generated ECV-304 cells resistant to p53-induced apoptosis as a strategy to identify novel genes that might be relevant to p53-mediated apoptosis. ECV-304 cells resistant to p53 were isolated by repeated infections with a recombinant p53 adenovirus and were designated as DECV. The expression of 5,730 genes in p53-resistant (DECV) and p53-sensitive ECV-304 cells were profiled by DNA microarray analysis. We report here the expression of 80 genes that differed by 2-fold or more between sensitive and resistant cells upregulated for p53. Many of these differentially expressed genes are regulated by p53 in ECV-304 and H1299 p53-null cells. Our analysis identifies many new potential targets for p53 that play roles in cell cycle regulation, DNA repair, redox control, cell adhesion, apoptosis, and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号