共查询到20条相似文献,搜索用时 15 毫秒
1.
Cheng J Wan DF Gu JR Gong Y Yang SL Hao DC Yang L 《Protein expression and purification》2006,47(2):467-476
Cytochrome P450s (CYPs) hold a balance in studying pharmacokinetics, toxico-kinetics, drug metabolism, and drug-drug interactions, which require association with cytochrome P450 reductase (CPR) to achieve optimal activity. A novel system of Saccharomyces cerevisiae useful for expression studies of mammalian microsomal CYPs was established. Human CPR (hCPR) was co-expressed with human CYP3A4 (hCYP3A4) in this system, and two expression plasmids pTpLC and pYeplac195-3A4 containing the cDNA of hCPR and hCYP3A4 were constructed, respectively. The two plasmids were applied first and controlled by phosphoglycerate kinase (PGK) promoter. S. cerevisiae BWG1-7alpha transformed with the expression plasmids produced the respective proteins in the expected molecular sizes reactive with both anti-hCYP3A4 immunoglobulin (Ig) and anti-hCPR Ig. The activity of hCPR in yeast BWG-CPR was 443.2 nmol reduced cytochrome c/min/mg, which was about three times the CPR activity of the microsome prepared from the parental yeast. The protein amount of hCYP3A4 in BWG-CPR/3A4 was 35.53 pmol/mg, and the 6beta-hydroxylation testosterone formation activity of hCYP3A4 expressed was 7.5 nmol/min/nmol CYP, 30 times higher than the activity of hCYP3A4 expressed in the parental yeast, and almost two times the activity of hCYP3A4 from homologous human liver microsome. Meanwhile, BWG-CPR/3A4 retained 100 generations under nonselective culture conditions, indicating this yeast was a mitotically stable transformant. BWG-CPR was further tested daily by the PCR amplification of hCPR of yeast genome, Western blot analysis, and the activity assay of hCPR of yeast microsome. This special expression host for CYPs was validated to be stable and efficient for the expression of CYPs, applying as an effective selection model for the drug metabolism in vitro. 相似文献
2.
Yelena V. Grinkova 《Biochemical and biophysical research communications》2010,398(2):194-539
Traditional reconstitution of membrane cytochromes P450 monooxygenase system requires efficient solubilization of both P450 heme enzymes and redox partner NADPH dependent reductase, CPR, either in mixed micellar solution or by incorporation in liposomes. Here we describe a simple alternative approach to assembly of soluble complexes of monomeric human hepatic cytochrome P450 CYP3A4 with CPR by co-incorporation into nanoscale POPC bilayer Nanodiscs. Stable and fully functional complexes with different CPR:CYP3A4 stoichiometric ratios are formed within several minutes after addition of the full-length CPR to the solution of CYP3A4 preassembled into POPC Nanodiscs at 37 °C. We find that the steady state rates of NADPH oxidation and testosterone hydroxylation strongly depend on CPR:CYP3A4 ratio and reach maximum at tenfold molar access of CPR. The binding of CPR to CYP3A4 in Nanodiscs is tight, such that complexes with different stoichiometry can be separated by size-exclusion chromatography. Reconstitution systems based on the co-incorporation of CPR into preformed Nanodiscs with different human cytochromes P450 are suitable for high-throughput screening of substrates and inhibitors and for drug-drug interaction studies. 相似文献
3.
Bedia Palabiyik Semian Karaer Nazli Arda Sidika Erturk Toker Guler Temizkan Steven Kelly Aysegul Topal Sarikaya 《Biologia》2008,63(3):450-454
Heterologous expression systems can be utilized to great advantage in the study of cytochrome P450 enzymes. P450 3A4 is one
of the major forms of cytochrome P450 found in liver. It is also involved in the metabolism of numerous widely used drugs
and xenobiotics. In the present study human liver cytochrome P450 3A4 gene was transferred into the fission yeast Schizosaccharomyces pombe via two different S. pombe expression vectors carrying thiamine repressible promoter — nmt1 (pREP42) and constitutive promoter — adh1 (pART1). Heterologously expressed cytochrome P450 3A4 was detected in the cells grown in minimal (EMM) or rich medium (YEL)
containing 0.5% (w/v) glucose. A typical cytochrome P450 peak for 3A4 was observed at 448 nm in microsomal fraction. The presence
of heterologous expression of 3A4 form was also determined by SDS-PAGE and it molecular mass was identified as 52 kDa. The
enzyme activity was confirmed by HPLC analysis, using testosterone as substrate. 相似文献
4.
A multiconformational study of substrates of cytochrome P450 3A4 has been carried out within the BiS/MC algorithm. The method allowed one to create a pseudoatomic model of the cytochrome and to find the substrate conformers responsible for the interaction with the cytochrome. It has been found that, in most cases, the geometry of the acting conformer is much different from the geometry of the global minimum conformer. It has been shown that the mirror conformational antipodes ("enantioconformers") are characterized as a rule by different Michaelis constants. A quantitative relationship between the Michaelis constants and the parameters of interactions in "model 3A4 isoform-substrate" complexes has been determined. The relationship describes the experimental value of Michaelis constant with the squared cross-validation correlation coefficient of 0.88. 相似文献
5.
Yu. D. Ivanov A. V. Ivanov A. L. Kaysheva V. G. Zgoda S. A. Usanov G. Hui-Bon-Hoa A. I. Archakov 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2009,3(2):183-197
The equilibrium dissociation constants KD, the complex association / dissociation rate constants (k on /k off) and lifetimes of the complexes of redox partners were measured for three cytochrome P450-containing monooxygenase systems (P450cam, P450scc, and P450 2B4) under hydroxylation conditions. The Q parameter representing the ratio of protein-protein complex lifetime (τ lT ) to time required for a single hydroxylation cycle (τturnover) was introduced for estimation of productivity of complexes formed within the systems studied. The Q parameter was insignificantly changed upon transition from the oxidation to hydroxylation conditions. Lifetimes (τ lT ) for the binary complexes formed within the P450cam and the P450scc systems obligatory requiring an intermediate electron transfer protein between the reductase and cytochrome P450 could not realize hydroxylation reactions for substrates with known τturnover and so they were non-productive while the binary complexes formed within the P450 2B4 system, not requiring such intermediate electron-transfer protein, appeared to be productive. Formation of ternary complexes was demonstrated under hydroxylation conditions in all three systems. Analysis of Q values led to the conclusion that the ternary complexes formed within the P450cam and the P450scc systems were productive. In the case of the P450 2B4 system, more than half (about 60%) ternary complexes were also found to be productive. 相似文献
6.
Daniel J. Frank 《Archives of biochemistry and biophysics》2009,488(2):146-65
Heterotropic cooperative phenomena have been documented in studies with cytochrome P450 3A4, with few attempts to quantify this behavior other than to show the apparent stimulatory effect of certain CYP3A4 substrates on the enzyme’s catalytic activity for others. Here CYP3A4 solubilized in Nanodiscs is studied for its ability to interact with two substrates, α-naphthoflavone and testosterone, which produce transitions in the heme spin state with apparent spectral affinities (corrected for membrane partitioning) of 7 and 38 μM, respectively. Simultaneous addition of both substrates at fixed molar ratios allows for the separation of specific heterotropic cooperative interactions from the simple additive affinities for the given substrate ratios. The absence of any changes in the normalized spectral dissociation constant due to changes in substrate ratio reveals that the observed stimulatory effect is largely due to differences in the relative substrate affinities and the presence of additional substrate in the system, rather than any specific positive heterotropic interactions between the two substrates. 相似文献
7.
Amlodipine is a racemic mixture composed of S- and R-form and metabolized stereoselectively. Cytochrome P450 3A (CYP3A) including CYP3A5 are involved in the metabolism of amlodipine and it was reported that polymorphic CYP3A5 genotype modulates the plasma levels of amlodipine and thus affect its pharmacokinetics. This study was conducted to find whether stereoselective pharmacokinetics of amlodipine was affected by the polymorphic CYP3A5 genotype. Seventeen healthy subjects were genotyped for CYP3A5*3 variant. After a single dose of 10-mg amlodipine, enantiomers of amlodipine were analyzed using HPLC-MS/MS equipped with an AGP column. Amlodipine showed stereoselective pharmacokinetics. S-amlodipine exhibited higher plasma levels than R-amlodipine in both genotype groups. S-amlodipine showed 15% higher mean peak plasma concentrations (Cmax) in CYP3A5*1/*3 carriers (3.28 ng/ml) than CYP3A5*3/*3 carriers (2.85 ng/ml) (P = 0.194) and R-amlodipine also showed 21% higher Cmax in CYP3A5*1/*3 carriers (3.33 ng/ml) than CYP3A5*3/*3 carriers (2.75 ng/ml) (P = 0.114). CYP3A5*1/*3 carriers also have 23 and 12% higher mean area under the time versus concentration curve of R-amlodipine and S-amlodipine than CYP3A5*3/*3 carriers, respectively (for R-amlodipine, 147.1 ng*h/ml for CYP3A5*1/*3 carriers versus 121.8 ng*h/ml for CYP3A5*3/*3 carriers, P = 0.234; for S-amlodipine, 161.6 ng*h/ml for CYP3A5*1/*3 carriers vs. 144.2 ng*h/ml for CYP3A5*3/*3 carriers, P = 0.353). Other pharmacokinetic parameters also showed no significant difference between them. In conclusion, the present study showed that despite the evidence that amlodipine is stereoselectively metabolized, CYP3A5*3 genotype did not affect stereoselective disposition of amlodipine. It provides the evidence that CYP3A5*3genotype plays a minor role in the interindividual variability of stereoselective disposition of amlodipine in humans. 相似文献
8.
Wen B Lampe JN Roberts AG Atkins WM David Rodrigues A Nelson SD 《Archives of biochemistry and biophysics》2006,454(1):42-54
Previously human cytochrome P450 3A4 was efficiently and specifically photolabeled by the photoaffinity ligand lapachenole. One of the modification sites was identified as cysteine 98 in the B-C loop region of the protein [B. Wen, C.E. Doneanu, C.A. Gartner, A.G. Roberts, W.M. Atkins, S.D. Nelson, Biochemistry 44 (2005) 1833-1845]. Loss of CO binding capacity and subsequent decrease of catalytic activity were observed in the labeled CYP3A4, which suggested that aromatic substitution on residue 98 triggered a critical conformational change and subsequent loss of enzyme activity. To test this hypothesis, C98A, C98S, C98F, and C98W mutants were generated by site-directed mutagenesis and expressed functionally as oligohistidine-tagged proteins. Unlike the mono-adduction observed in the wild-type protein, simultaneous multiple adductions occurred when C98F and C98W were photolabeled under the same conditions as the wild-type enzyme, indicating a substantial conformational change in these two mutants compared with the wild-type protein. Kinetic analysis revealed that the C98W mutant had a drastic 16-fold decrease in catalytic efficiency (V(max)/K(m)) for 1'-OH midazolam formation, and about an 8-fold decrease in catalytic efficiency (V(max)/K(m)) for 4-OH midazolam formation, while the C98A and C98S mutants retained the same enzyme activity as the wild-type enzyme. Photolabeling of C98A and C98S with lapachenole resulted in monoadduction of only Cys-468, in contrast to the labeling of Cys-98 in wild-type CYP3A4, demonstrating the marked selectivity of this photoaffinity ligand for cysteine residues. The slight increases in the midazolam binding constants (K(s)) in these mutants suggested negligible perturbation of the heme environment. Further activity studies using different P450:reductase ratios suggested that the affinity of P450 to reductase was significantly decreased in the C98W mutant, but not in the C98A and C98S mutants. In addition, the C98W mutant exhibited a 41% decrease in the maximum electron flow rate between P450 and reductase as measured by reduced nicotinamide adenine dinucleotide phosphate consumption at a saturating reductase concentration. In conclusion, our data strongly suggest that cysteine 98 in the B-C loop region significantly contributes to conformational integrity and catalytic activity of CYP3A4, and that this residue or residues nearby might be involved in an interaction with P450 reductase. 相似文献
9.
Glenn A. Marsch Benjamin T. Carlson 《Journal of biomolecular structure & dynamics》2018,36(4):841-860
Human cytochrome P450 (P450) 3A4 is involved in the metabolism of one-half of marketed drugs and shows cooperative interactions with some substrates and other ligands. The interaction between P450 3A4 and the known allosteric effector 7,8-benzoflavone (α-naphthoflavone, αNF) was characterized using steady-state fluorescence spectroscopy. The binding interaction of P450 3A4 and αNF effectively quenched the fluorescence of both the enzyme and ligand. The Hill Equation and Stern–Volmer fluorescence quenching models were used to evaluate binding of ligand to enzyme. P450 3A4 fluorescence was quenched by titration with αNF; at the relatively higher [αNF]/[P450 3A4] ratios in this experiment, two weaker quenching interactions were revealed (Kd 1.8–2.5 and 6.5 μM). A range is given for the stronger interaction since αNF quenching of P450 3A4 fluorescence changed the protein spectral profile: quenching of 315 nm emission was slightly more efficient (Kd 1.8 μM) than the quenching of protein fluorescence at 335 and 355 nm (Kd 2.5 and 2.1 μM, respectively). In the reverse titration, αNF fluorescence was quenched by P450 3A4; at the lower [αNF]/[P450 3A4] ratios here, two strong quenching interactions were revealed (Kd 0.048 and 1.0 μM). Thus, four binding interactions of αNF to P450 3A4 are suggested by this study, one of which may be newly recognized and which could affect studies of drug oxidations by this important enzyme. 相似文献
10.
Supratim Choudhuri Xu Jie Zhang Mark J. Waskiewicz Paul E. Thomas 《Journal of biochemical and molecular toxicology》1995,10(6):299-307
Induction of P450 3A1 and P450 3A2 was studied in adult rat liver following treatment with a single high dose of dexamethasone (DEX). The increase of both P450 3A1 and 3A2 occurred at the level of mRNA as well as protein. P450 3A isozymes thus induced were catalytically active. No constitutive expression of P450 3A1 mRNA or protein was observed in males or females. Constitutive expression of P450 3A2 mRNA and protein was observed in males but not in females. Additionally, in females, P450 3A2 was almost nondetectable compared to that in males, at any dose of DEX. A time course study following DEX treatment showed that P450 3A1 mRNA and protein were detectable in both sexes at 12 hours, increased until 48 hours, and then declined. The decline was more rapid in males. P450 3A2 mRNA and protein increased as early as 3 hours, increased further up to 48 hours, and slowly declined thereafter. A dose-response study indicated that P450 3A1 mRNA and protein progressively increased in both sexes from a dose of 30 mg/kg. In contrast, P450 3A2 mRNA and protein in males did not increase up to a dose of 30 mg/kg but increased at higher doses. Total P450 content and P450 3A catalytic activity were also found to increase with time and dose. © 1996 John Wiley & Sons, Inc. 相似文献
11.
Wiercinska P Lou Y Squires EJ 《Animal : an international journal of animal bioscience》2012,6(5):834-845
Boar taint is the unfavourable odour and taste from pork fat, which results in part from the accumulation of skatole (3-methylindole, 3MI). The key enzymes in skatole metabolism are thought to be cytochrome P450 2E1 (CYP2E1) and cytochrome 2A (CYP2A); however, the cytochrome P450 (CYP450) isoform responsible for the production of the metabolite 6-hydroxy-3-methylindole (6-OH-3MI, 6-hydroxyskatole), which is thought to be involved in the clearance of skatole, has not been established conclusively. The aim of this study was to characterize the role of porcine CYP450s in skatole metabolism by expressing them individually in the human embryonic kidney HEK293-FT cell line. This system eliminates the problems of the lack of specificity of antibodies, inhibitors and substrates for CYP450 isoforms in the pig, and contributions of any other CYP450s that would be present. The results show that pig CYP1A1, CYP2A19, CYP2C33v4, CYP2C49, CYP2E1 and CYP3A and human CYP2E1 (hCYP2E1) are all capable of producing the major skatole metabolite 3-methyloxyindole (3MOI), as well as indole-3-carbinol (I3C), 5-hydroxy-3-methylindole (5-OH-3MI), 6-OH-3MI, 2-aminoacetophenone (2AAP) and 3-hydroxy-3-methyloxindole. CYP2A19 produced the highest amount of the physiologically important metabolite 6-OH-3MI, followed by porcine CYP2E1 and CYP2C49; CYP2A19 also produced more 6-OH-3MI than hCYP2E1. Co-transfection with CYB5A increased the production of skatole metabolites by some of the CYP450s, suggesting that CYB5A plays an important role in the metabolism of skatole. We also show the utility of this expression system to check the specificity of selected substrates and antibodies for porcine CYP450s. Further information regarding the abundance of different CYP450 isoforms is required to fully understand their contribution to skatole metabolism in vivo in the pig. 相似文献
12.
Brian Gemzik Denise Greenway Cheryl Nevins Andrew Parkinson 《Journal of biochemical and molecular toxicology》1992,7(1):43-52
We recently reported that antibody against purified P450 3A1 (P450p) recognizes two electrophoretically distinct proteins (50 and 51 kDa) in liver microsomes from male and female rats, as determined by Western immunoblotting. Depending on the source of the liver microsomes, the 51-kDa protein corresponded to 3A1 and/or 3A2 which could not be resolved by sodium dodecyl sulfate (SDS)polyacrylamide gel electrophoresis. The other protein (50 kDa) appears to be another member of the P450 IIIA gene family. Both proteins were markedly intensified in liver microsomes from male or female rats treated with pregnenolone-16α-carbonitrile, dexamethasone, troleandomycin, or chlordane. In contrast, treatment of male or female rats with phenobarbital intensified only the 51-kDa protein. Treatment of male rats with Aroclor 1254 induced the 51-kDa protein, but suppressed the 50-kDa form. In addition to their changes in response to inducers, the 50- and 51-kDa proteins also differed in their developmental expression. For example, the 50-kDa protein was not expressed until weaning (3 weeks), whereas the 51-kDa protein was expressed even in 1-week-old rats. At puberty (between weeks 5 and 6), the levels of the 50-kDa and 51-kDa proteins markedly declined in female but not in male rats, which introduced a large sex difference (male > female) in the levels of both proteins. Changes in the level of the 51-kDa protein were paralleled by changes in the rate of testosterone 2β, 6β-, and 15β-hydroxylation. In male rats, the marked increase in the levels of the 50-kDa protein between weeks 2 and 3 coincided with a three- to four fold increase in the rate of testosterone 2β-, 6β-, and 15β-hydroxylation, which suggests that the 50-kDa protein catalyzes the same pathways of testosterone oxidation as the 51-kDa protein. However, this developmental increase in testosterone oxidation may have resulted from an activation of the 51-kDa 3A protein. These results indicate that the two electrophoretically distinct proteins recognized by antibody against P450 3A1 are regulated in a similar but not identical manner, and suggest that the 51-kDa 3A protein is the major microsomal enzyme responsible for catalyzing the 2β-, 6β-, and 15β-hydroxylation of testosterone. 相似文献
13.
Olga Scharkoi Roland Becker Susanne Esslinger Marcus Weber Irene Nehls 《Molecular simulation》2015,41(7):538-546
This article describes a simple and quick in silico method for the prediction of cytochrome P450 (CYP)-mediated hydroxylation of drug-like compounds. Testosterone and progesterone, two known substrates of CYP3A4, are used to test the method. Further, we apply the procedure to predict sites of hydroxylation of isomers of the flame retardant hexabromocyclododecane by CYP3A4. Within the method, the compound is rotated in the binding pocket of the cytochrome, so that each hydrogen under consideration is placed near the active centre. Afterwards, short molecular dynamics simulations are provided for each step of the rotation. All steps of the simulation are compared concerning the distances between the hydrogens and the active centre and the corresponding energies. The computational results correlate well with experimental results. 相似文献
14.
Hirokazu Hara 《Free radical research》2013,47(3):279-285
Cytochrome P450 (CYP)-dependent drug metabolism decreases in vivo and in cultured hepatocytes under various immunostimulatory conditions. Nitric oxide (NO) released during inflammation is presumed to be involved in this phenomenon. CYP3A4, which is abundant in the liver and small intestine and participates in the metabolism of various drugs, is known to be induced by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in the colon carcinoma cell line Caco-2. In this study we examined whether NO affected CYP3A4 gene expression induced by 1,25(OH)2D3 in Caco-2 cells. Induction of CYP3A4 mRNA by 1,25(OH)2D3 was suppressed in a dose-dependent manner by treatment with the NO donors NOR-4 (15–500 μM) or S-nitroso-N-acetyl-penicillamine (30 μM-1 mM), which spontaneously release NO. These results indicated that NO has an inhibitory effect on the induction of CYP3A4 mRNA by 1,25(OH)2D3 in Caco-2 cells. Treatment with the guanylate cyclase inhibitor ODQ failed to prevent the inhibition of induction of CYP3A4 mRNA by 1,25(OH)2D3. 8-Bromo cGMP had no effect on 1,25-(OH)2D3-induced CYP3A4 gene expression. Therefore, the suppression of CYP3A4 mRNA by NO might be mediated through a guanylate cyclase-independent pathway. 相似文献
15.
Coexpression in yeast of Taxus cytochrome P450 reductase with cytochrome P450 oxygenases involved in Taxol biosynthesis 总被引:3,自引:0,他引:3
Jennewein S Park H DeJong JM Long RM Bollon AP Croteau RB 《Biotechnology and bioengineering》2005,89(5):588-598
To maximize redox coupling efficiency with recombinant cytochrome P450 hydroxylases from yew (Taxus) species installed in yeast for the production of the anticancer drug Taxol, a cDNA encoding NADPH:cytochrome P450 reductase from T. cuspidata was isolated. This single-copy gene (2,154 bp encoding a protein of 717 amino acids) resembles more closely other reductases from gymnosperms (approximately 90% similarity) than those from angiosperms (<80% similarity). The recombinant reductase was characterized and compared to other reductases by heterologous expression in insect cells and was shown to support reconstituted taxoid 10beta-hydroxylase activity with an efficiency comparable to that of other plant-derived reductases. Coexpression in yeast of the reductase along with T. cuspidata taxoid 10beta-hydroxylase, which catalyzes an early step of taxoid biosynthesis, demonstrated significant enhancement of hydroxylase activity compared to that supported by the endogenous yeast reductase alone. Functional transgenic coupling of the Taxus reductase with a homologous cytochrome P450 taxoid hydroxylase represents an important initial step in reconstructing Taxol biosynthesis in a microbial host. 相似文献
16.
昆虫细胞色素P450研究的一些新进展 总被引:5,自引:0,他引:5
报道了有关细胞色素P45 0研究的一些新发现。果蝇和冈比亚按蚊基因组测序的完成 ,使人类对昆虫P45 0的多样性有一完整的概念 ,已查明果蝇和冈比亚按蚊基因组中分别含有 90种和 1 1 1种P45 0基因。P45 0介导的果蝇对DDT的抗性被证明是Cyp6g1基因超量表达的结果。昆虫可以窃听植物分子信号 (水杨酸、茉莉酮酸 ) ,通过P45 0的诱导机制增强自身对植物防御物质的反防御能力。从分子水平上鉴定了 2个参与蜕皮素合成的线粒体P45 0基因。细胞色素P45 0在昆虫信息素降解中的作用得到鉴定。 相似文献
17.
S. Greschner 《European biophysics journal : EBJ》1982,9(1):29-34
Absorption spectra of highly purified liver microsomal cytochrome P-450 in non-equilibrium states were obtained at 77 K by reduction with trapped electrons, formed by gamma-irradiation of the water-glycerol matrix. In contrast to the equilibrium form of ferrous cytochrome P-450 with the heme iron in the high-spin state the non-equilibrium ferrous state has a low-spin heme iron. The absorption spectrum of the non-equilibrium ferrous cytochrome P-450 is characterized by two bands at 564 (-band) and 530 nm (-band). When the temperature is increased to about 278 K this non-equilibrium form of the reduced enzyme is relaxed to the corresponding equilibrium form with a single absorption band at 548 nm in the visible region characteristic for a high-spin heme iron. 相似文献
18.
Proteoliposomes, containing cytochrome P450 1A2, were obtained by the cholate-dialysis technique. The effect of bifunctional cross-linking reagents on the purified hexameric cytochrome P450 1A2 in an aqueous medium and on the proteoliposomal P450 1A2 have been compared. Electrophoretic analysis of the modified proteins demonstrated the same oligomeric (hexameric) organization of the hemoprotein in each case. 相似文献
19.
Davydov DR Halpert JR Renaud JP Hui Bon Hoa G 《Biochemical and biophysical research communications》2003,312(1):121-130
We applied hydrostatic pressure perturbation to study substrate-induced transitions in human cytochrome P450 3A4 (CYP3A4) with bromocriptine (BCT) as a substrate. The barotropic behavior of the purified enzyme in solution was compared with that observed in recombinant microsomes of Saccharomyces cerevisiae coexpressing CYP3A4, cytochrome b(5), (b(5)) and NADPH-cytochrome P450 reductase (CPR). Important barotropic heterogeneity of CYP3A4 was detected in both cases. Only about 70% of CYP3A4 in solution and about 50% of the microsomal enzyme were susceptible to a pressure-induced P450-->P420 transition. The results suggest that both in solution and in the membrane CYP3A4 is represented by two conformers with different positions of spin equilibrium and different barotropic properties. No interconversion between these conformers was observed within the time frame of the experiment. Importantly, a pressure-induced spin shift, which is characteristic of all cytochromes P450 studied to date, was detected in CYP3A4 in solution only; the P450-->P420 transition was the sole pressure-induced process detected in microsomes. This fact suggests unusual stabilization of the high-spin state of CYP3A4, which is assumed to reflect decreased water accessibility of the heme moiety due to specific interactions of the hemoprotein with the protein partners (b(5) and CPR) and/or membrane lipids. 相似文献
20.
We studied the kinetics of NADPH-dependent reduction of human CYP3A4 incorporated into Nanodiscs (CYP3A4-ND) and proteoliposomes in order to probe the effect of P450 oligomerization on its reduction. The flavin domain of cytochrome P450-BM3 (BMR) was used as a model electron donor partner. Unlike CYP3A4 oligomers, where only 50% of the enzyme was shown to be reducible by BMR, CYP3A4-ND could be reduced almost completely. High reducibility was also observed in proteoliposomes with a high lipid-to-protein ratio (L/P = 910), where the oligomerization equilibrium is displaced towards monomers. In contrast, the reducibililty in proteoliposomes with L/P = 76 did not exceed 55 ± 6%. The effect of the surface density of CYP3A4 in proteoliposomes on the oligomerization equilibrium was confirmed with a FRET-based assay employing a cysteine-depleted mutant labeled on Cys-468 with BODIPY iodoacetamide. These results confirm a pivotal role of CYP3A4 oligomerization in its functional heterogeneity. Furthermore, the investigation of the initial phase of the kinetics of CYP3A4 reduction showed that the addition of NADPH causes a rapid low-to-high-spin transition in the CYP3A4-BMR complex, which is followed by a partial slower reversal. This observation reveals a mechanism whereby the CYP3A4 spin equilibrium is modulated by the redox state of the bound flavoprotein. 相似文献