首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nakata M  Yada T 《Regulatory peptides》2008,145(1-3):49-53
Obesity is the main risk factor for the development of metabolic syndrome. Endogenous cannabinoids act on the cannabinoid type 1 (CB1) receptor, a GPCR, and stimulate appetite via central and peripheral actions, while blockade of CB1 receptor reduces body weight in humans. In this study, we aimed to explore a role of the peripheral endocannabinoid system in insulin secretion, which could be important in the metabolic effects of the cannabinoid-CB1 system. We found that mRNA for CB1 receptor, but not CB2 receptor, was expressed in mouse pancreatic islets using RT-PCR. Immunohistochemical study revealed that CB1 receptor was expressed in beta-cells. Furthermore, anandamide and a CB1 agonist, arachidonylcyclopropylamide (ACPA), inhibited glucose-induced insulin secretion from mouse pancreatic islets. Both anandamide and ACPA inhibited glucose-induced cytosolic Ca(2+) oscillation in mouse pancreatic beta-cells. These results demonstrate a novel peripheral action of cannabinoids to inhibit insulin secretion via CB1 receptors.  相似文献   

2.
The mechanisms by which synchronized embryonic development to the blastocyst stage, preparation of the uterus for the receptive state, and reciprocal embryo-uterine interactions for implantation are coordinated are still unclear. We show in this study that preimplantation embryo development became asynchronous in mice that are deficient in brain-type (CB1) and/or spleen-type (CB2) cannabinoid receptor genes. Furthermore, whereas the levels of uterine anandamide (endocannabinoid) and blastocyst CB1 are coordinately down-regulated with the onset of uterine receptivity and blastocyst activation prior to implantation, these levels remained high in the nonreceptive uterus and in dormant blastocysts during delayed implantation and in pregnant, leukemia inhibitory factor (LIF)-deficient mice with implantation failure. These results suggest that a tight regulation of endocannabinoid signaling is important for synchronizing embryo development with uterine receptivity for implantation. Indeed this is consistent with our finding that while an experimentally induced, sustained level of an exogenously administered, natural cannabinoid inhibited implantation in wild-type mice, it failed to do so in CB1(-/-)/CB2(-/-) double mutant mice. The present study is clinically important because of the widely debated medicinal use of cannabinoids and their reported adverse effects on pregnancy.  相似文献   

3.
The endocannabinoid 2-arachidonoylglycerol (2-Delta(4)Ach-Gro) activates human platelets in platelet-rich plasma at physiological concentrations. The activation was inhibited by selective antagonists of CB(1) and CB(2) cannabinoid receptors, but not by acetylsalicylic acid. Human platelets can metabolize 2-Delta(4)Ach-Gro by internalization through a high affinity transporter (K(m) = 300 +/- 30 nM, V(max) = 10 +/- 1 pmol.min(-1).mg protein(-1)), followed by hydrolysis by a fatty acid amide hydrolase (K(m) = 8 +/- 1 microM, V(max) = 400 +/- 50 pmol.min(-1).mg protein(-1)). The anandamide transport inhibitor AM404, and anandamide itself, were ineffective on 2-Delta(4)Ach-Gro uptake by platelets, whereas anandamide competitively inhibited 2-Delta(4)Ach-Gro hydrolysis (inhibition constant = 10 +/- 1 microM). Platelet activation by 2-Delta(4)Ach-Gro was paralleled by an increase of intracellular calcium and inositol-1,4,5-trisphosphate, and by a decrease of cyclic AMP. Moreover, treatment of preloaded platelet-rich plasma with 2-Delta(4)Ach-Gro induced an approximately threefold increase in [(3)H]2-Delta(4)Ach-Gro release, according to a CB receptor-dependent mechanism. On the other hand, ADP and collagen counteracted the activation of platelets by 2-Delta(4)Ach-Gro, whereas 5-hydroxytryptamine (serotonin) enhanced and extended its effects. Remarkably, ADP and collagen also reduced [(3)H]2-Delta(4)Ach-Gro release from 2-Delta(4)Ach-Gro-activated platelets, whereas 5-hydroxytryptamine further increased it. These findings suggest a so far unnoticed interplay between the peripheral endocannabinoid system and physiological platelet agonists.  相似文献   

4.
Ghrelin is an endogenous regulator of energy homeostasis synthesized by the stomach to stimulate appetite and positive energy balance. Similarly, the endocannabinoid system is part of our internal machinery controlling food intake and energy expenditure. Both peripheral and central mechanisms regulate CB1-mediated control of food intake and a functional relationship between hypothalamic ghrelin and cannabinoid CB1 receptor has been proposed. First of all, we investigated brain ghrelin actions on food intake in rats with different metabolic status (negative or equilibrate energy balance). Secondly, we tested a sub-anxiogenic ultra-low dose of the CB1 antagonist SR141716A (Rimonabant) and the peripheral-acting CB1 antagonist LH-21 on ghrelin orexigenic actions. We found that: 1) central administration of ghrelin promotes food intake in free feeding animals but not in 24 h food-deprived or chronically food-restricted animals; 2) an ultra-low dose of SR141716A (a subthreshold dose 75 folds lower than the EC50 for induction of anxiety) completely counteracts the orexigenic actions of central ghrelin in free feeding animals; 3) the peripheral-restricted CB1 antagonist LH-21 blocks ghrelin-induced hyperphagia in free feeding animals. Our study highlights the importance of the animaĺs metabolic status for the effectiveness of ghrelin in promoting feeding, and suggests that the peripheral endocannabinoid system may interact with ghrelińs signal in the control of food intake under equilibrate energy balance conditions.  相似文献   

5.
The hypothalamus plays an important role in the regulation of several visceral processes, including food intake, thermoregulation and control of anterior pituitary secretion.Endogenous cannabinoids and CB(1) cannabinoid receptors have been found in the hypothalamus. In the present review, we would like to clarify the role of the endocannabinoid system in the regulation of the above-mentioned visceral functions.There is historical support for the role of marihuana (i.e. exogenous cannabinoids) in the regulation of appetite. Endocannabinoids also stimulate food intake. Furthermore, the specific CB(1) receptor antagonist SR141716 reduces food intake. Leptin treatment decreases endocannabinoid levels in normal rats and ob/ob mice. These findings provide evidence for the role of the hypothalamic endocannabinoid system in food intake and appetite regulation.Cannabinoids can change body temperature in a dose-dependent manner. High doses cause hypothermia while low doses cause hyperthermia. Cannabinoid administration decreases heat production. It seems that the effects of can- nabinoids on thermoregulation is exerted by altering some neurochemical mediator effects at both the presynaptic and postsynaptic level.THC and endocannabinoids have mainly inhibitory effects on the regulation of reproduction. Administration of anandamide (AEA) decreases serum luteinizing hormone (LH) and prolactin (PRL) levels. AEA causes a prolongation of pregnancy in rats and temporarily inhibits the postnatal development of the hypothalamo-pituitary axis in offspring. The action of AEA on the reproductory parameters occurs at both the hypothalamic and pituitary level. CB(1) receptors have also been found in the anterior pituitary. Further, LH levels in CB(1) receptor-inactivated mice were decreased compared with wild-type mice.Taken together, all these observations suggest that the endocannabinoid system is playing an important part in the regulation of the mentioned visceral functions and it provides the bases for further applications of cannabinoid receptor agonists and/or antagonists in visceral diseases regulated by the hypothalamus.  相似文献   

6.
It has been suggested that disturbances in endocannabinoid signaling contribute to the development of depressive illness; however, at present there is insufficient evidence to allow for a full understanding of this role. To further this understanding, we performed an analysis of the endocannabinoid system in an animal model of depression. Male rats exposed to chronic, unpredictable stress (CUS) for 21 days exhibited a reduction in sexual motivation, consistent with the hypothesis that CUS in rats induces depression-like symptoms. We determined the effects of CUS, with or without concurrent treatment with the antidepressant imipramine (10 mg/kg), on CP55940 binding to the cannabinoid CB(1) receptor; whole tissue endocannabinoid content; and fatty acid amide hydrolase (FAAH) activity in the prefrontal cortex, hippocampus, hypothalamus, amygdala, midbrain and ventral striatum. Exposure to CUS resulted in a significant increase in CB(1) receptor binding site density in the prefrontal cortex and a decrease in CB(1) receptor binding site density in the hippocampus, hypothalamus and ventral striatum. Except in the hippocampus, these CUS-induced alterations in CB(1) receptor binding site density were attenuated by concurrent antidepressant treatment. CUS alone produced a significant reduction in N-arachidonylethanolamine (anandamide) content in every brain region examined, which was not reversed by antidepressant treatment. These data suggest that the endocannabinoid system in cortical and subcortical structures is differentially altered in an animal model of depression and that the effects of CUS on CB(1) receptor binding site density are attenuated by antidepressant treatment while those on endocannabinoid content are not.  相似文献   

7.
An enhancement of peripheral chemoreflex sensitivity contributes to sympathetic hyperactivity in chronic heart failure (CHF) rabbits. The enhanced chemoreflex function in CHF involves augmented carotid body (CB) chemoreceptor activity via upregulation of the angiotensin II (ANG II) type 1 (AT(1))-receptor pathway and downregulation of the neuronal nitric oxide synthase (nNOS)-nitric oxide (NO) pathway in the CB. Here we investigated whether exercise training (EXT) normalizes the enhanced peripheral chemoreflex function in CHF rabbits and possible mechanisms mediating this effect. EXT partially, but not fully, normalized the exaggerated baseline renal sympathetic nerve activity (RSNA) and the response of RSNA to hypoxia in CHF rabbits. EXT also decreased the baseline CB nerve single-fiber discharge (4.9 +/- 0.4 vs. 7.7 +/- 0.4 imp/s at Po(2) = 103 +/- 2.3 Torr) and the response to hypoxia (20.6 +/- 1.1 vs. 36.3 +/- 1.3 imp/s at Po(2) = 41 +/- 2.2 Torr) from CB chemoreceptors in CHF rabbits, which could be reversed by treatment of the CB with ANG II or a nNOS inhibitor. Our results also showed that NO concentration and protein expression of nNOS were increased in the CBs from EXT + CHF rabbits, compared with that in CHF rabbits. On the other hand, elevated ANG II concentration and AT(1)-receptor overexpression of the CBs in CHF state were blunted by EXT. These results indicate that EXT normalizes the CB chemoreflex in CHF by preventing an increase in afferent CB chemoreceptor activity. EXT reverses the alterations in the nNOS-NO and ANG II-AT(1)-receptor pathways in the CB responsible for chemoreceptor sensitization in CHF.  相似文献   

8.
Obesity-related leptin resistance manifests in loss of?leptin's ability to reduce appetite and increase energy expenditure. Obesity is also associated with increased activity of the endocannabinoid system, and CB(1) receptor (CB(1)R) inverse agonists reduce body weight and the associated metabolic complications, although adverse neuropsychiatric effects halted their therapeutic development. Here we show that in mice with diet-induced obesity (DIO), the peripherally restricted CB(1)R inverse agonist JD5037 is equieffective with its brain-penetrant parent compound in reducing appetite, body weight, hepatic steatosis, and insulin resistance, even though it does not occupy central CB(1)R or induce related behaviors. Appetite and weight reduction by JD5037 are mediated by resensitizing DIO mice to endogenous leptin through reversing the hyperleptinemia by decreasing leptin expression and secretion by adipocytes and increasing leptin clearance via the?kidney. Thus, inverse agonism at peripheral CB(1)R not only improves cardiometabolic risk in obesity but has antiobesity effects by reversing leptin resistance.  相似文献   

9.
We have earlier reported overexpression of the central and peripheral cannabinoid receptors CB1 and CB2 in mantle cell lymphoma (MCL), a B cell non-Hodgkin lymphoma. In this study, treatment with cannabinoid receptor ligands caused a decrease in viability of MCL cells, while control cells lacking CB1 were not affected. Interestingly, equipotent doses of the CB1 antagonist SR141716A and the CB1/CB2 agonist anandamide inflicted additive negative effects on viability. Moreover, treatment with the CB1/CB2 agonist Win-55,212-2 caused a decrease in long-term growth of MCL cells in culture. Induction of apoptosis, as measured by FACS/Annexin V-FITC, contributed to the growth suppressive effect of Win-55,212-2. Our data suggest that cannabinoid receptors may be considered as potential therapeutic targets in MCL.  相似文献   

10.
11.
It is known that marijuana use decreases saliva secretion. Therefore, we hypothesized that cannabinoid receptors (CBs) are located in salivary glands to mediate that effect. In these experiments, we used the submandibular gland (SMG) of male rats, which is one of the major salivary glands. Mammalian tissues contain at least two types of CBs, CB1 and CB2, mainly located in the nervous system and peripheral tissues, respectively. Both receptors are coupled to Gi protein and respond by inhibiting the activity of adenylyl cyclase. We demonstrated that both CB1 and CB2 are present in the SMG, each showing specific localizations. The best-known endocannabinoid is anandamide (AEA), which binds with high affinity to CB1 and CB2. We showed that AEA markedly reduced forskolin-induced increase of cAMP content in vitro. This effect was blocked by AM251 and AM630 (CB1 and CB2 antagonists, respectively), indicating that both receptors are implicated in SMG physiology. In addition, we showed that AEA injected intraglandularly to anesthetized rats inhibited norepinephrine (NE)- and methacholine (MC)-stimulated saliva secretion in vivo and that both AM251 or AM630 prevented the inhibitory action of AEA. Also, the intraglandular injection of AM251 increased saliva secretion induced by lower doses of NE or MC. This increase was synergized after coinjection with AM630. Therefore, we concluded that AEA decreases saliva secretion in the SMG acting through CB1 and CB2 receptors.  相似文献   

12.
It is widely held that the development of the circadian system during embryogenesis is important for future survival of an organism. Work in teleosts has been, to date, limited to zebrafish, which provides little insight into the diversity of this system within such a large vertebrate class. In this study, the authors analyzed the diel expression of per1, clock, and aanat2 in unfertilized rainbow trout oocytes and embryos maintained under either a 12:12-h light:dark (LD) cycle or continuous illumination (LL) from fertilization. 24-h profiles in expression were measured at fertilization as well as 8, 21 42, and 57 days postfertilization (dpf). Both per1 and clock were expressed in unfertilized oocytes and all embryonic stages, whereas aanat2 expression was only measureable from 8 dpf. A reduction in both per1 and clock mean expression levels between unfertilized oocytes/0-1 dpf embryos and 8-9 dpf embryos was suggestive of a transition from maternal RNA to endogenous mRNA expression. Although aanat2 expression was not clearly associated with photic conditions, photoperiod treatment did alter the expression of per1 and clock expression/rhythmicity from as early as 8 dpf (per1), which could suggest the presence and functionality of an as yet unidentified "photoreceptor." As a whole, this work demonstrates that clock systems are present and functional during embryonic development in rainbow trout. Further studies of their expression and regulation will help understand how the environment interacts with embryonic development in the species.  相似文献   

13.
Cannabinoid receptors and their ligands   总被引:12,自引:0,他引:12  
There are at least two types of cannabinoid receptors, CB(1) and CB(2), both coupled to G proteins. CB(1) receptors exist primarily on central and peripheral neurons, one of their functions being to modulate neurotransmitter release. CB(2) receptors are present mainly on immune cells. Their roles are proving more difficult to establish but seem to include the modulation of cytokine release. Endogenous agonists for cannabinoid receptors (endocannabinoids) have also been discovered, the most important being arachidonoyl ethanolamide (anandamide), 2-arachidonoyl glycerol and 2-arachidonyl glyceryl ether. Other endocannabinoids and cannabinoid receptor types may also exist. Although anandamide can act through CB(1) and CB(2) receptors, it is also a vanilloid receptor agonist and some of its metabolites may possess yet other important modes of action. The discovery of the system of cannabinoid receptors and endocannabinoids that constitutes the "endocannabinoid system" has prompted the development of CB(1)- and CB(2)-selective agonists and antagonists/inverse agonists. CB(1)/CB(2) agonists are already used clinically, as anti-emetics or to stimulate appetite. Potential therapeutic uses of cannabinoid receptor agonists include the management of multiple sclerosis/spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, vasodilation that accompanies advanced cirrhosis, and cancer. Following their release onto cannabinoid receptors, endocannabinoids are removed from the extracellular space by membrane transport and then degraded by intracellular enzymic hydrolysis. Inhibitors of both these processes have been developed. Such inhibitors have therapeutic potential as animal data suggest that released endocannabinoids mediate reductions both in inflammatory pain and in the spasticity and tremor of multiple sclerosis. So too have CB(1) receptor antagonists, for example for the suppression of appetite and the management of cognitive dysfunction or schizophrenia.  相似文献   

14.
15.
The endocannabinoid system is highly implicated in the development of insulin resistance associated with obesity. It has been shown that antagonism of the CB(1) receptor improves insulin sensitivity (S(I)). However, it is unknown whether this improvement is due to the direct effect of CB(1) blockade on peripheral tissues or secondary to decreased fat mass. Here, we examine in the canine dog model the longitudinal changes in S(I) and fat deposition when obesity was induced with a high-fat diet (HFD) and animals were treated with the CB(1) antagonist rimonabant. S(I) was assessed (n = 20) in animals fed a HFD for 6 wk to establish obesity. Thereafter, while HFD was continued for 16 additional weeks, animals were divided into two groups: rimonabant (1.25 mg·kg(-1)·day(-1) RIM; n = 11) and placebo (n = 9). Euglycemic hyperinsulinemic clamps were performed to evaluate changes in insulin resistance and glucose turnover before HFD (week -6) after HFD but before treatment (week 0) and at weeks 2, 6, 12, and 16 of treatment (or placebo) + HFD. Magnetic resonance imaging was performed to determine adiposity- related changes in S(I). Animals developed significant insulin resistance and increased visceral and subcutaneous adiposity after 6 wk of HFD. Treatment with RIM resulted in a modest decrease in total trunk fat with relatively little change in peripheral glucose uptake. However, there was significant improvement in hepatic insulin resistance after only 2 wk of RIM treatment with a concomitant increase in plasma adiponectin levels; both were maintained for the duration of the RIM treatment. CB(1) receptor antagonism appears to have a direct effect on hepatic insulin sensitivity that may be mediated by adiponectin and independent of pronounced reductions in body fat. However, the relatively modest effect on peripheral insulin sensitivity suggests that significant improvements may be secondary to reduced fat mass.  相似文献   

16.
Endocannabinoid signaling plays key roles in multiple female reproductive events. Previous studies have shown an interesting phenomenon, that mice with either silenced or elevated endocannabinoid signaling via Cnr1 encoding CB(1) show similar defects in several pregnancy events, including preimplantation embryo development. To unravel the downstream signaling of this phenomenon, microarray studies were performed using RNAs collected from WT, Cnr1(-/-), and Faah(-/-) mouse blastocysts on day 4 of pregnancy. The results indicate that about 100 genes show unidirectional changes under either silenced or elevated anandamide signaling via CB(1). Functional enrichment analysis of the microarray data predicted that multiple biological functions and pathways are affected under aberrant endocannabinoid signaling. Among them, genes enriched in cell migration are suppressed in Cnr1(-/-) or Faah(-/-) blastocysts. Cell migration assays validated the prediction of functional enrichment analysis that cell mobility and spreading of either Cnr1(-/-) or Faah(-/-) trophoblast stem cells are compromised. Either silenced or elevated endocannabinoid signaling via CB(1) causes similar changes in downstream targets in preimplantation embryos and trophoblast stem cells. This study provides evidence that a tightly regulated endocannabinoid signaling is critical to normal preimplantation embryo development and migration of trophoblast stem cells.  相似文献   

17.
Safo PK  Regehr WG 《Neuron》2005,48(4):647-659
The long-term depression (LTD) of parallel fiber (PF) synapses onto Purkinje cells plays a central role in motor learning. Endocannabinoid release and LTD induction both depend upon activation of the metabotropic glutamate receptor mGluR1, require postsynaptic calcium increases, are synapse specific, and have a similar dependence on the associative activation of PF and climbing fiber synapses. These similarities suggest that endocannabinoid release could account for many features of cerebellar LTD. Here we show that LTD induction is blocked by a cannabinoid receptor (CB1R) antagonist, by inhibiting the synthesis of the endocannabinoid 2-arachidonyl glycerol (2-AG), and is absent in mice lacking the CB1R. Although CB1Rs are prominently expressed presynaptically at PF synapses, LTD is expressed postsynaptically. In contrast, a previously described transient form of inhibition mediated by endocannabinoids is expressed presynaptically. This indicates that Purkinje cells release 2-AG that activates CB1Rs to both transiently inhibit release and induce a postsynaptic form of LTD.  相似文献   

18.
Endogenous cannabinoids (endocannabinoids) and their cannabinoid CB1 and CB2 receptors, are present from the early stages of gestation and play a number of vital roles for the developing organism. Although most of these data are collected from animal studies, a role for cannabinoid receptors in the developing human brain has been suggested, based on the detection of "atypically" distributed CB1 receptors in several neural pathways of the fetal brain. In addition, a role for the endocannabinoid system for the human infant is likely, since the endocannabinoid 2-arachidonoyl glycerol has been detected in human milk. Animal research indicates that the Endocannabinoid-CB1 Receptor ('ECBR') system fulfills a number of roles in the developing organism: 1. embryonal implantation (requires a temporary and localized reduction in anandamide); 2. in neural development (by the transient presence of CB1 receptors in white matter areas of the nervous system); 3. as a neuroprotectant (anandamide protects the developing brain from trauma-induced neuronal loss); 4. in the initiation of suckling in the newborn (where activation of the CB1 receptors in the neonatal brain is critical for survival). 5. In addition, subtle but definite deficiencies have been described in memory, motor and addictive behaviors and in higher cognitive ('executive') function in the human offspring as result of prenatal exposure to marihuana. Therefore, the endocanabinoid-CB1 receptor system may play a role in the development of structures which control these functions, including the nigrostriatal pathway and the prefrontal cortex. From the multitude of roles of the endocannabinoids and their receptors in the developing organism, there are two distinct stages of development, during which proper functioning of the endocannabinoid system seems to be critical for survival: embryonal implantation and neonatal milk sucking. We propose that a dysfunctional Endocannabinoid-CB1 Receptor system in infants with growth failure resulting from an inability to ingest food, may resolve the enigma of "non-organic failure-to-thrive" (NOFTT). Developmental observations suggest further that CB1 receptors develop only gradually during the postnatal period, which correlates with an insensitivity to the psychoactive effects of cannabinoid treatment in the young organism. Therefore, it is suggested that children may respond positively to medicinal applications of cannabinoids without undesirable central effects. Excellent clinical results have previously been reported in pediatric oncology and in case studies of children with severe neurological disease or brain trauma. We suggest cannabinoid treatment for children or young adults with cystic fibrosis in order to achieve an improvement of their health condition including improved food intake and reduced inflammatory exacerbations.  相似文献   

19.
Hepatic fibrosis is the response of the liver to chronic injury and is associated with portal hypertension, progression to hepatic cirrhosis, liver failure, and high incidence of hepatocellular carcinoma. On a molecular level, a large number of signaling pathways have been shown to contribute to the activation of fibrogenic cell types and the subsequent accumulation of extracellular matrix in the liver. Recent evidence suggests that the endocannabinoid system is an important part of this complex signaling network. In the injured liver, the endocannabinoid system is upregulated both at the level of endocannabinoids and at the endocannabinoid receptors CB1 and CB2. The hepatic endocannabinoid system mediates both pro- and antifibrogenic effects by activating distinct signaling pathways that differentially affect proliferation and death of fibrogenic cell types. Here we will summarize current findings on the role of the hepatic endocannabinoid system in liver fibrosis and discuss emerging options for its therapeutic exploitation.  相似文献   

20.
Previous studies indicate that the endocannabinoid system is a potential target for the treatment of depression. To further examine this question we assessed the effects of electroconvulsive shock (ECS) treatment, both a single session and 10 daily sessions, on endocannabinoid content, CB(1) receptor binding parameters and CB(1) receptor-mediated [(35)S]GTPgammaS binding in the prefrontal cortex, hippocampus, hypothalamus and amygdala. A single ECS session resulted in a general reduction in the binding affinity of the CB(1) receptor in all brain regions examined, as well as reductions in N-arachidonylethanolamine (anandamide) content in the prefrontal cortex and the hippocampus, reduced hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) in the prefrontal cortex and an increase in the binding site density of the CB(1) receptor in the amygdala. Following 10 ECS sessions, all these effects subsided except for the reductions in anandamide content in the prefrontal cortex, which increased in magnitude, as well as the reductions in FAAH activity in the prefrontal cortex. Additionally, repeated ECS treatment resulted in a significant reduction in the binding site density of the CB(1) receptor in the prefrontal cortex, but did not alter CB(1) receptor-mediated [(35)S]GTPgammaS binding. Repeated ECS treatment also significantly enhanced the sensitivity of CB(1) receptor-mediated [(35)S]GTPgammaS binding in the amygdala. Collectively, these data demonstrate that ECS treatment results in a down-regulation of cortical and an up-regulation of subcortical endocannabinoid activity, illustrating the possibility that the role of the endocannabinoid system in affective illness may be both complex and regionally specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号