首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaflet movements in the legume Samanea saman are dependent upon massive redistribution of potassium (K), chloride (Cl), and other solutes between opposing (extensor and flexor) halves of the motor organ (pulvinus). Solutes are known to diffuse through the apoplast during redistribution. To test the possibility that solute diffusion might be restricted by apoplastic barriers, we analyzed elements in the apoplast in freeze-dried cryosections of pulvini using scanning electron microscopy/x-ray microanalysis. Large discontinuities in apoplastic K and Cl at the extensor-flexor interface provide evidence for a barrier to solute diffusion. The barrier extends from the epidermis on upper and lower sides of the pulvinus to cambial cells in the central vascular core. It is completed by hydrophobic regions between phloem and cambium, and between xylem rays and surrounding vascular tissue, as deduced by discontinuities in apoplastic solutes and by staining of fresh sections with lipid-soluble Sudan dyes. Thus, symplastic pathways are necessary for ion redistribution in the Samanea pulvinus during leaflet movement. In pulvini from leaflets in the closed state, all cells on the flexor side of the barrier have high internal as well as external K and Cl, whereas cells on the extensor side have barely detectable internal or external K or Cl. Approximately 60% of these ions are known to migrate to the extensor during opening; all return to the flexor during subsequent closure. We propose that solutes lost from shrinking cells in the outer cortex diffuse through the apoplast to plasmodesmata-rich cells of the inner cortex, collenchyma, and phloem; and that solutes cross the barrier by moving through plasmodesmata.  相似文献   

2.
Many plant species open their leaves during the daytime and close them at night as if sleeping. This leaf movement is known as nyctinasty, a unique and intriguing phenomenon that been of great interest to scientists for centuries. Nyctinastic leaf movement occurs widely in leguminous plants, and is generated by a specialized motor organ, the pulvinus. Although a key determinant of pulvinus development, PETIOLULE-LIKE PULVINUS (PLP), has been identified, the molecular genetic basis for pulvinus function is largely unknown. Here, through an analysis of knockout mutants in barrelclover (Medicago truncatula), we showed that neither altering brassinosteroid (BR) content nor blocking BR signal perception affected pulvinus determination. However, BR homeostasis did influence nyctinastic leaf movement. BR activity in the pulvinus is regulated by a BR-inactivating gene PHYB ACTIVATION TAGGED SUPPRESSOR1 (BAS1), which is directly activated by PLP. A comparative analysis between M. truncatula and the non-pulvinus forming species Arabidopsis and tomato (Solanum lycopersicum) revealed that PLP may act as a factor that associates with unknown regulators in pulvinus determination in M. truncatula. Apart from exposing the involvement of BR in the functionality of the pulvinus, these results have provided insights into whether gene functions among species are general or specialized.

Nyctinasty is triggered by the pulvinus, a motor organ located at the base of the leaf and brassinosteroids is involved in functionality of pulvinus for leaf movement.  相似文献   

3.
Summary Using energy-dispersive X-ray microanalysis, the concentrations of ions, especially potassium and chlorine, were determined in different tissues of primary and tertiary pulvini of Mimosa pudica. It was shown that stimulating the leaf was followed by ion displacements which were most striking in the outer extensor cells, resulting in turgor loss. Since Ca concentration remains relatively constant in cell walls of collapsed cells, the changes of K concentration are best described by the K:Ca ratio. After stimulation the K:Ca ratio dropped in the outer extensor of the primary pulvinus from 775.3 to 2.37 in the cytoplasm, and from 542.2 to 9.25 in the cell wall. Changes in chlorine content were less striking in the primary pulvinus. The KCl ratios in some cases were lower than 1.0, which indicates that Cl content can increase, while K content is diminished. In the non-stimulated tertiary pulvini the outer extensor cells show high concentrations of Cl, but much lower Cl concentrations were found after stimulation. In contrast to the primary pulvinus the K content of the tertiary pulvini is very low. In the vascular tissues of both primary and tertiary pulvini stimulation is followed by a release of K and Cl out of the sieve element cytoplasm into the apoplast. K then appears accumulated in the cell walls of the collenchymatous tissue. These displacements lead to the assumption that the collenchymatous apoplast temporarily functions as a reservoir for K and to a lesser extent for Cl. With regard to the mechanism of leaf movement after stimulation, the accumulation of ions in the apoplast seems to be initiated by the decrease of water potential triggered by an apoplastic accumulation of unloaded sucrose (Fromm and Eschrich 1988a). The resulting turgor release in the outer extensor is accompanied by an efflux of ions.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

4.
Leaf movements in Mimosa pudica, are in response to thermal stress, touch, and light or darkness, appear to be regulated by electrical, hydrodynamical, and chemical signal transduction. The pulvinus of the M. pudica shows elastic properties. We have found that the movements of the petiole, or pinnules, are accompanied by a change of the pulvinus morphing structures. After brief flaming of a pinna, the volume of the lower part of the pulvinus decreases and the volume of the upper part increases due to the redistribution of electrolytes between these parts of the pulvinus; as a result of these changes the petiole falls. During the relaxation of the petiole, the process goes in the opposite direction. Ion and water channel blockers, uncouplers as well as anesthetic agents diethyl ether or chloroform decrease the speed of alert wave propagation along the plant. Brief flaming of a pinna induces bidirectional propagation of electrical signal in pulvini. Transduction of electrical signals along a pulvinus induces generation of an action potential in perpendicular direction between extensor and flexor sides of a pulvinus. Inhibition of signal transduction and mechanical responses in M. pudica by volatile anesthetic agents chloroform or by blockers of voltage gated ion channels shows that the generation and propagation of electrical signals is a primary effect responsible for turgor change and propagation of an excitation. There is an electrical coupling in a pulvinus similar to the electrical synapse in the animal nerves.  相似文献   

5.
Thigmonastic or seismonastic movements in Mimosa pudica, such as the response to touch, appear to be regulated by electrical, hydrodynamical and chemical signal transduction. The pulvinus of Mimosa pudica shows elastic properties, and we found that electrically or mechanically induced movements of the petiole were accompanied by a change of the pulvinus shape. As the petiole falls, the volume of the lower part of the pulvinus decreases and the volume of the upper part increases due to the redistribution of water between the upper and lower parts of the pulvinus. This hydroelastic process is reversible. During the relaxation of the petiole, the volume of the lower part of the pulvinus increases and the volume of the upper part decreases. Redistribution of ions between the upper and lower parts of a pulvinus causes fast transport of water through aquaporins and causes a fast change in the volume of the motor cells. Here, the biologically closed electrochemical circuits in electrically and mechanically anisotropic pulvini of Mimosa pudica are analyzed using the charged capacitor method for electrostimulation at different voltages. Changing the polarity of electrodes leads to a strong rectification effect in a pulvinus and to different kinetics of a capacitor discharge if the applied initial voltage is 0.5 V or higher. The electrical properties of Mimosa pudica''s pulvini were investigated and the equivalent electrical circuit within the pulvinus was proposed to explain the experimental data. The detailed mechanism of seismonastic movements in Mimosa pudica is discussed.Key words: electrophysiology, plant electrostimulation, pulvinus, Mimosa pudica, charged capacitor method, electrical circuits, ion channels  相似文献   

6.
M Iino  C Long  X Wang 《Plant & cell physiology》2001,42(11):1219-1227
Protoplasts isolated from the laminar pulvinus of Phaseolus vulgaris and bathed in a medium containing KCl as the major salt were found to swell in response to IAA and to shrink in response to ABA. The protoplasts of flexor cells and those of extensor cells responded similarly. The results indicate that the cellular content of osmotic solutes is enhanced by IAA and reduced by ABA. The IAA-induced swelling was abolished when either the K(+) or the Cl(-) of the bathing medium was replaced by an impermeant ion or when the medium was adjusted to neutral pH (instead of pH 6). The response was inhibited by vanadate. It is concluded that the swelling is caused by enhanced influxes of K(+) and Cl(-), which probably occur through K(+) channels and Cl(-)/H(+) symporters, respectively. The ABA-induced shrinking was inhibited by 5-nitro-2-(3-phenylpropylamino)-benzoic acid, an anion-channel inhibitor, suggesting that it is caused by Cl(-) efflux through anion channels and charge-balancing K(+) efflux through outward-rectifying K(+) channels. It appears that the two plant hormones act on pulvinar motor cells to regulate their turgor pressure, as they do in stomatal guard cells. The findings are discussed in relation to the pulvinar movements induced by environmental stimuli.  相似文献   

7.
There are reciprocal stimulations of Cl influx by K and Na,and of K and Na influx by Cl, in the light in Hydrodictyon africanum.The component of the K influx which stimulates, and is stimulatedby, Cl, is independent of the ouabainsensitive mechanism forK influx also found in H. africanum. The concentration dependenceof the cation effects on Cl influx and on the Cl-stimulatedportion of their own influxes are similar. The stimulation withK saturates at about 0.3 mM K; that with Na saturates at about2 mM Na. The Cl-dependent portions of the K and Na influxeshave similar responses to changes in photo-synthetic metabolism(far-red illumination, CDMU, and CCCP) as does the light-stimulatedCl influx. This suggests that Cl influx, and the Cl-stimulatedportions of K and Na influxes are both dependent on photosystem2 of photosynthesis, and are less sensitive to the uncouplerCCCP than is 14CO2 fixation or the K-Na pump. It would thusappear that the Cl-dependent portions of the K and Na influxesin the light are linked to the cation-stimulated portion ofthe Cl influx. There is no very great change in the electricalcomponent of the inwardly directed passive driving force oncations under conditions in which Cl is being pumped comparedwith those under which it is not. It is not clear whether suchincrease in this driving force as do occur could account quantitativelyfor the increase in the cation influxes associated with Cl transport,or whether chemical coupling must be invoked. In addition tothe Cl-stimulated portions of the cation influxes, there arealso light-stimulated portions of K and Na influx which areindependent of Cl, not associated with the cation regulatingmechanism, and which seem to have a similar linkage to photosynthesisas does the Cl-K-Na pump. Since the light-stimulated portionof the K efflux appears to be similar to this portion of theK influx, these Cl-independent light-stimulated portions ofK and Na influxes are tentatively related to light-induced changesin cation permeability.  相似文献   

8.
The contents of K, Cl and Ca were determined in various partsof Mimosa pudica plant, namely in young internode (YI), agedinternode (AI), upper half (UP1), and lower half (LP1) of theprimary pulvinus, secondary pulvinus (P2), petiole (Pt) andleaflet blade (B1). Potassium is found in the following distributionYI = LP1 > P2 > UP1 > Pt > AI > B1 and is thuslocalized in parts showing a great metabolic activity. Chloridefollows the distribution of K except for the petiole and toa lesser extent for the young internode. Calcium content islow in the parts showing a high plasticity (pulvini and younginternode). A relationship is thus suggested between the amountof Ca and the rate of the movements which can be performed.The capacity for spontaneous and fusicoccin-induced H+ excretionis greater in the plant parts exhibiting the higher K content.This suggests that larger H+ fluxes may be required in tissuesshowing a high metabolic activity. Mimosa pudica, ion content, H+ excretion  相似文献   

9.
Collings DA  Winter H  Wyatt SE  Allen NS 《Planta》1998,207(2):246-258
Characterization of gravitropic bending in the maize stem pulvinus, a tissue that functions specifically in gravity responses, demonstrates that the pulvinus is an ideal system for studying gravitropism. Gravistimulation during the second of three developmental phases of the pulvinus induces a gradient of cell elongation across the non-growing cells of the pulvinus, with the most elongation occurring on the lower side. This cell elongation is spatially and temporally separated from normal internodal cell elongation. The three characterized growth phases in the pulvinus correspond closely to a specialized developmental sequence in which structural features typical of cells not fully matured are retained while cell maturation occurs in surrounding internodal and nodal tissue. For example, the lignification of supporting tissue and rearrangement of transverse microtubules to oblique that occur in the internode when cell elongation ceases are delayed for up to 10 d in the adjacent cells of the pulvinus, and only occurs as a pulvinus loses its capacity to respond to gravistimulation. Gravistimulation does not modify this developmental sequence. Neither wall lignification nor rearrangement of transverse microtubules occurs in the rapidly elongating lower side or non-responsive upper side of the pulvinus until the pulvinus loses the capacity to bend further. Gravistimulation does, however, lead to the formation of putative pit fields within the expanding cells of the pulvinus. Received: 18 April 1998 / Accepted: 2 July 1998  相似文献   

10.
11.
A fundamental event in abscission is the breakdown of cell wall material in a discrete zone of cells known as the separation layer. Three dimensional images produced by viewing tissue prints of abscission zones on nitrocellulose (NC) membranes with incident illumination showed changes in the tissue integrity taking place in the separation layer as the process of abscission proceeded. The cell softening which occurs due to the dissolution of the cell wall appeared in the tissue prints as a diffuse line at the anatomical transition between the pulvinus and petiole and was easily observed on NC tissue prints of either longitudinal or serial cross-sections through abscission zones. In bean leaf abscission the dissolution of cell walls has been correlated with the appearance of a form of cellulase with an isoelectric point of pH 9.5. Antibodies specific for this enzyme were used to study the localization of 9.5 cellulase in the distal abscission zone of Phaseolus vulgaris L., cv Red Kidney after tissue printing on NC. It was found that 9.5 cellulase was localized in the separation layer but also occurred in the vascular tissue of the adjacent pulvinus. No antibody binding was observed in nonabscising tissue or preimmune controls. These results confirm previous biochemical studies and demonstrate that immunostaining of nitrocellulose tissue prints is a fast and reliable method to localize proteins or enzymes in plant tissue.  相似文献   

12.
Identification of fossil leaf impressions as Cercis has been questioned based upon the presence or absence of a pulvinus at the base of the lamina (upper pulvinus). In the present study, leaves of Cercis canadensis were examined before and after abscission to explore the degradation processes that could occur prior to fossilization, and the North American record for fossil foliage of Cercis was revised accordingly. Results for C. canadensis indicate that: (1) the pulvinus consists largely of tissues with nonlignified cells (a wide cortex, a nonlignified fiber sheath, phloem, and pith) that degrade rapidly after leaf abscission, (2) the lignified xylem tissue that remains in the pulvinus after degradation is in brittle strands, (3) the pulvinus degrades at a faster rate than the lamina or the petiole, and (4) the degraded pulvinus cushion leaves a semicircular pattern on the lamina. From examination of fossils as well as extant species, we: (1) demonstrated that in fossils, the upper pulvinus can show a greater degree of degradation than the adjoining petiole or lamina tissue, suggesting the degradation of upper pulvinus tissue is similar in modern vs. fossil specimens, (2) defined numerous other laminar characters that can be used in conjunction with, or in the absence of, an upper pulvinus to confirm the presence of Cercis in the fossil record, and (3) showed from those criteria that the earliest known North American fossil leaf record for Cercis, from a specimen newly reported in the present study, is from the middle Miocene Succor Creek flora of Oregon.  相似文献   

13.
Low K (LK) sheep red blood cells (SRBCs) serve as a model to study K-Cl cotransport which plays an important role in cellular dehydration in human erythrocytes homozygous for hemoglobin S. Cinchona bark derivatives, such as quinine (Q) and quinidine (QD), are effectively used in the treatment of malaria. In the present study, we investigated in LK SRBCs, the effect of various concentrations of Q and QD on Cl-dependent K efflux and Rb influx (K(Rb)-Cl flux), activated by either swelling in hyposmotic media, thiol alkylation with N-ethylmaleimide (NEM), or by cellular Mg (Mg i ) removal through A23187 in the presence of external chelators. K efflux or Rb influx were determined in Cl and NO3 medium and K(Rb)-Cl flux was defined as the Cl-dependent (Cl minus NO3) component. K(Rb)-Cl flux stimulated by all three interventions was inhibited by both Q and QD in a dose-dependent manner. Maximum inhibition of K(Rb)-Cl flux occurred at Q and QD concentrations ?1 mm. The inhibitory effect of Q was manifested in Cl, but not in NO3, whereas QD reduced K and Rb fluxes both in Cl and NO3 media. The mean 50% inhibitory concentration (IC50) of Q and QD to inhibit K(Rb)-Cl flux varied between 0.23 and 2.24 mm. From determinations of the percentages of inhibition of the different components of K and Rb fluxes, we found that SRBCs possess a Cl-dependent QD-sensitive and a Cl-dependent QD-insensitive K efflux and Rb influx. These two components vary in magnitude depending on the manipulation and directional flux, but in average they are about 50% of the total Cl-dependent flux. This study raises the possibility that, in SRBCs, the Cl-dependent K(Rb) fluxes are heterogeneous. This work was supported by a grant from the National Institutes of Health (NIH DK5RO1 37,160).  相似文献   

14.
X-ray spectrometry by electron probe excitation was used to analyze the content of Na, Cl, K, Ca, Mg, S, and P in picoliter samples of blastocoele fluid obtained from single rabbit blastocysts. There are significant changes in the concentrations of these elements between stages of development of blastocysts in vivo. The concentration of K increases approx 40% between 110–135 hr postcoitum (p.c.) and does not increase further by 159 hr. The concentrations of Cl at 110 and 135 hr p.c. are significantly lower than the Cl level at 159 hr p.c. The concentrations of magnesium are very low (less than 0.4 mM) at each stage of development. Ca and S concentrations do not change during development, whereas P decreases from 110–135 hr p.c.The rates of accumulation of the solutes in the rabbit blastocoele in vivo have been estimated from the measured concentrations and from previously published rates of fluid accumulation. These analyses indicate that each trophoblast cell transports an ever increasing quantity of certain solutes which is closely correlated with the inward movement of water.Rabbit blastocysts raised in vitro from 128–140 hr p.c. can accumulate fluid in the presence of increasing concentrations of sucrose (40, 80, 120 mM). Electron probe microanalysis of the blastocoele fluid under these conditions shows that the blastocoele concentrations of both Na and Cl (but not K, Ca, Mg, S, and P) increase 1 mM in response to every 2 mM of sucrose gradient across the trophectoderm. These results directly indicate that the accumulation of fluid in the blastocoele is secondary to the active transport of NaCl.  相似文献   

15.
Phaseolus moves its leaves upward and downward with circadianperiod. This movement of the leaf results from the differentialchange in the turgor on opposite sides of the pulvinus. Concentrations of K+, Na+, Mg++, and Ca++ in the upper and lowerhalves of the pulvinus and the water content of cells on bothsides of it were analyzed in relation to the deformation ofthe pulvinus. The results showed that (1) the pulvinus was deformedby expansion and contraction of the cells on its opposite sides;(2) among the four cations, the K+ concentration was markedlyhigh in both halves of the pulvinus; (3) the osmotic pressureof the upper and lower halves were nearly equal during the rhythmicdeformation of the pulvinus; (4) the expansion and contractionof the cells on the opposite sides of the pulvinus have a positivecorrelation only with a change in the K+ concentration expressedin terms of µmoles per mg protein; (5) the concentrationsof other cations such as Na+, Mg++, Ca++, expressed in termsof µmoles per mg protein, did not change during the circadiandeformation of the pulvinus. Thus, the rhythmic K+ movementseems to be the basis for pulvinar turgor movements. With respectto the mechanism of K+ movement, three possibilities are discussed. (Received November 7, 1975; )  相似文献   

16.
Concentrations of K, Cl, P, S, and Ca in extensor and flexor protoplasts from open pulvini of the nyctinastic tree Samanea saman were estimated using x-ray microanalysis. This technique is particularly suitable when absolute numbers of protoplasts are low, because less than 100 protoplasts are required to obtain statistically significant data. Flexor protoplasts contain similar concentrations of P and S but almost twice as much K and Cl as extensor protoplasts. Low levels of total measurable osmoticum suggest that extensive leakage has occurred during protoplast isolation. Both extensor and flexor protoplasts appear to contain some unidentified osmoticum not detectable by x-ray analysis. Extensor protoplasts must have more unidentified osmoticum to compensate for their lower levels of K and Cl.  相似文献   

17.
cAMP induces both active Cl(-) and active K(+) secretion in mammalian colon. It is generally assumed that a mechanism for K(+) exit is essential to maintain cells in the hyperpolarized state, thus favoring a sustained Cl(-) secretion. Both Kcnn4c and Kcnma1 channels are located in colon, and this study addressed the questions of whether Kcnn4c and/or Kcnma1 channels mediate cAMP-induced K(+) secretion and whether cAMP-induced K(+) secretion provides the driving force for Cl(-) secretion. Forskolin (FSK)-enhanced short-circuit current (indicator of net electrogenic ion transport) and K(+) fluxes were measured simultaneously in colonic mucosa under voltage-clamp conditions. Mucosal Na(+) orthovanadate (P-type ATPase inhibitor) inhibited active K(+) absorption normally present in rat distal colon. In the presence of mucosal Na(+) orthovanadate, serosal FSK induced both K(+) and Cl(-) secretion. FSK-induced K(+) secretion was 1) not inhibited by either mucosal or serosal 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34; a Kcnn4 channel blocker), 2) inhibited (92%) by mucosal iberiotoxin (Kcnma1 channel blocker), and 3) not affected by mucosal cystic fibrosis transmembrane conductance regulator inhibitor (CFTR(inh)-172). By contrast, FSK-induced Cl(-) secretion was 1) completely inhibited by serosal TRAM-34, 2) not inhibited by either mucosal or serosal iberiotoxin, and 3) completely inhibited by mucosal CFTR(inh)-172. These results indicate that cAMP-induced colonic K(+) secretion is mediated via Kcnma1 channels located in the apical membrane and most likely contributes to stool K(+) losses in secretory diarrhea. On the other hand, cAMP-induced colonic Cl(-) secretion requires the activity of Kcnn4b channels located in the basolateral membrane and is not dependent on the concurrent activation of apical Kcnma1 channels.  相似文献   

18.
1. A mechanism exists in Valonia which prevents certain substances (Na, Mg, Ca, SO4) from reaching as high a concentration inside the cell as in the sea water which surrounds it. 2. A trapping mechanism also exists which causes K to accumulate in the cell in a concentration far in excess of that found in sea water. Practically all the K in the cell exists in the form of KCl. 3. The concentration of Cl does not differ greatly within and without. 4. These facts are not in harmony with present theories regarding the accumulation of K in living cells.  相似文献   

19.
Precise regulation of the intracellular concentration of chloride [Cl?]i is necessary for proper cell volume regulation, transepithelial transport, and GABA neurotransmission. The Na–K–2Cl (NKCCs) and K–Cl (KCCs) cotransporters, related SLC12A transporters mediating cellular chloride influx and efflux, respectively, are key determinants of [Cl?]i in numerous cell types, including red blood cells, epithelial cells, and neurons. A common “chloride/volume-sensitive kinase”, or related system of kinases, has long been hypothesized to mediate the reciprocal but coordinated phosphoregulation of the NKCCs and the KCCs, but the identity of these kinase(s) has remained unknown. Recent evidence suggests that the WNK (with no lysine = K) serine–threonine kinases directly or indirectly via the downstream Ste20-type kinases SPAK/OSR1, are critical components of this signaling pathway. Hypertonic stress (cell shrinkage), and possibly decreased [Cl?]i, triggers the phosphorylation and activation of specific WNKs, promoting NKCC activation and KCC inhibition via net transporter phosphorylation. Silencing WNK kinase activity can promote NKCC inhibition and KCC activation via net transporter dephosphorylation, revealing a dynamic ability of the WNKs to modulate [Cl?]. This pathway is essential for the defense of cell volume during osmotic perturbation, coordination of epithelial transport, and gating of sensory information in the peripheral system. Commiserate with their importance in serving these critical roles in humans, mutations in WNKs underlie two different Mendelian diseases, pseudohypoaldosteronism type II (an inherited form of salt-sensitive hypertension), and hereditary sensory and autonomic neuropathy type 2. WNKs also regulate ion transport in lower multicellular organisms, including Caenorhabditis elegans, suggesting that their functions are evolutionarily-conserved. An increased understanding of how the WNKs regulate the Na–K–2Cl and K–Cl cotransporters may provide novel opportunities for the selective modulation of these transporters, with ramifications for common human diseases like hypertension, sickle cell disease, neuropathic pain, and epilepsy.  相似文献   

20.
Volume and conformational changes of the contractile tannin vacuoles of the abaxial motor cells of the primary pulvinus of Mimosa pudica L. parallel the seismonastic leaf movement. Since such changes in cells and organelles of animal systems are often regulated by calcium, we studied Ca2+ movement in the motor cells and tissue. By fixation with Lillie's neutral buffered formalin, followed by staining with alizarin red sulfate (ARS), calcium was localized in the tannin vacuoles of the motor cells of the primary pulvinus. After treatment with ethylenediaminetetraacetate, 8-hydroxyquinoline, and several other calcium-complexing or extracting agents, the color reaction due to alizarin red sulfonate was no longer present. By using an analytical method, it was shown that the effluent from stimulated pulvini has significantly more Ca2+ than that from unstimulated controls. Ten millimolar LaCl3 inhibits recovery of the tannin vacuole in vivo in 10 mm CaCl2 or in distilled water. Quantitative data obtained by microspectrophotometry demonstrated calcium migration during the bending movement of the primary pulvinus. In the adaxial motor cells a small amount of calcium migrates from the tannin vacuole, and calcium on the cell wall moves to the central vacuole. In the abaxial half, a large amount of calcium from the tannin vacuole moves to the central vacuole of the motor cell. It is probable that the calcium binds to the microfibrillar contents of the central vacuole. These observations support the contention that Ca2+ migrates between the surface of the tannin vacuole and the inside of the central vacuole. The recovery and maintenance of the tannin vacuole in the spherical form may play a role in maintaining turgor in the motor cells of the abaxial half of the primary pulvinus of Mimosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号