首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2-Aminopurine (2AP), a base analog, causes both transition and frameshift mutations in Escherichia coli. The analog is thought to cause mutations by two mechanisms: directly, by mispairing with cytosine, and indirectly, by saturation of mismatch repair (MMR). The goal of this work was to measure the relative contribution of these two mechanisms to the occurrence of transition mutations. Our data suggest that, in contrast to 2-aminopurine-stimulated frameshift mutations, the majority of transition mutations are a direct effect of base mispairing.  相似文献   

2.
The mutagenic potentials of DNAs containing site- and stereospecific intrastrand DNA crosslinks were evaluated in Escherichia coli cells that contained a full complement of DNA polymerases or were deficient in either polymerases II, IV, or V. Crosslinks were made between adjacent N(6)-N(6) adenines and consisted of R,R- and S,S-butadiene crosslinks and unfunctionalized 2-, 3-, and 4-carbon tethers. Although replication of single-stranded DNAs containing the unfunctionalized 3- and 4-carbon tethers were non-mutagenic in all strains tested, replication past all the other intrastrand crosslinks was mutagenic in all E. coli strains, except the one deficient in polymerase II in which no mutations were ever detected. However, when mutagenesis was analyzed in cells induced for SOS, mutations were not detected, suggesting a possible change in the overall fidelity of polymerase II under SOS conditions. These data suggest that DNA polymerase II is responsible for the in vivo mutagenic bypass of these lesions in wild-type E. coli.  相似文献   

3.
Vibriolysin, an extracellular protease of Vibrio proteolyticus, is synthesized as a preproenzyme. The N-terminal propeptide functions as an intramolecular chaperone and an inhibitor of the mature enzyme. Extracellular production of recombinant vibriolysin has been achieved in Bacillus subtilis, but not in Escherichia coli, which is widely used as a host for the production of recombinant proteins. Vibriolysin is expressed as an inactive form in E. coli possibly due to the inhibitory effect of the N-terminal propeptide. In this study, we isolated the novel vibriolysin engineered by in vivo random mutagenesis, which is expressed as active mature vibriolysin in E. coli. The Western blot analysis showed that the N-terminal propeptide of the engineered enzyme was processed and degraded, confirming that the propeptide inhibits the mature enzyme. Two mutations located within the engineered vibriolysin resulted in the substitution of stop codon for Trp at position 11 in the signal peptide and of Val for Ala at position 183 in the N-terminal propeptide (where position 1 is defined as the first methionine). It was found that the individual mutations are related to the enzyme activity. The novel vibriolysin was extracellularly overproduced in BL21(DE3) and purified from the culture supernatant by ion-exchange chromatography followed by hydrophobic-interaction chromatography, resulting in an overall yield of 2.2 mg/L of purified protein. This suggests that the novel engineered vibriolysin is useful for overproduction in an E. coli expression system.  相似文献   

4.
Summary Overexpression of DnaA protein from a multicopy plasmid accompanied by a shift to 42°C causes initiation of one extra round of replication in a dnaA + strain grown in glycerol minimal medium. This extra round of replication does not lead to an extra cell division, such that cells contain twice the normal number of chromosomes.  相似文献   

5.
Growth of Escherichia coli strain B SPAO on a medium containing glucose, NH4Cl and methionine resulted in production of ethylene into the culture headspace. When methionine was excluded from the medium there was little formation of ethylene. Ethylene formation in methionine-containing medium occurred for a brief period at the end of exponential growth. Ethylene formation was stimulated by increasing the medium concentration of Fe3+ when it was chelated to EDTA. Lowering the medium phosphate concentration also appeared to stimulate ethylene formation. Ethylene formation was inhibited in cultures where NH4Cl remained in the stationary phase. Synthesis of the ethylene-forming enzyme system was determined by harvesting bacteria at various stages of growth and assaying the capacity of the bacteria to form ethylene from methionine. Ethylene forming capacity was greatest in cultures harvested immediately before and during the period of optimal ethylene formation. It is concluded that ethylene production by E. coli exhibits the typical properties of secondary metabolism.Abbreviations HMBA 2-Hydroxy-4-methylthiobutyric acid (methionine hydroxy analogue) - KMBA 2-keto-4-methylthiobutyric acid - MOPS 3-[N-morpholino] propanesulphonic acid  相似文献   

6.
The hemolysin transport system was found to mediate the release of cyclodextrin glucanotransferase (CGTase) into the extracellular medium when it was fused to the C-terminal 61 amino acids of HlyA (HlyAs(61)). To produce an improved-secretion variant, the hly components (hlyAs, hlyB and hlyD) were engineered by directed evolution using error-prone PCR. Hly mutants were screened on solid LB-starch plate for halo zone larger than the parent strain. Through screening of about 1 × 10(4) Escherichia coli BL21(DE3) transformants, we succeeded in isolating five mutants that showed a 35-217% increase in the secretion level of CGTase-HlyAs(61) relative to the wild-type strain. The mutation sites of each mutant were located at HlyB, primarily along the transmembrane domain, implying that the corresponding region was important for the improved secretion of the target protein. In this study we describe the finding of novel site(s) of HlyB responsible for enhancing secretion of CGTase in E. coli.  相似文献   

7.
Dimeric, mixed-valence [(Ru(II), Ru(III)] compounds of ruthenium caused filament formation in growing cultures of Escherichia coli K12. Three compounds with the general formula Ru2(NH3)6X5 · H2O (where X is a halide) were tested; in order of decreasing effectiveness (and with the concentration giving maximum effect), these were the bromo (10-5 M), chloro (10-4 to 10-5 M), and iodo (10-3 to 10-4 M) analogues. Filamentation elicited by the bromo and chloro compounds was spontaneously reversible after 3–4 h, and tentatively attributed to oxidation of the active mixed-valence form to inactive Ru(III) complexes. Several compounds known to accelerate division of filaments formed under other conditions were ineffective in reversing the filamentation, but the presence of 0,43 M-dimethylsulphoxide totally inhibited filamentation caused by the bromo or chloro compounds and by cis-Pt(NH3)2Cl2 (cisplatin), an established filamenting and antitumour agent. The ruthenium complexes bound to mammalian DNA, but were without effect on the UV spectrum or cellular content of DNA in E. coli, despite showing marked mutagenic activity in reverse mutation tests with Salmonella typhimurium. Cells remained sensitive to inhibition of division by the ruthenium complexes until immediately prior to the division event. Possibilities for the (probably complex) mode of action and the potential of related compounds for therapeutic use are discussed.Non-standard abbreviation DMSO dimethylsulphoxide  相似文献   

8.
The DNA of growing cells of Escherichia coli occurs in one or a few lobular bodies known as nucleoids. Upon exposure to chloramphenicol, the nucleoids assume compact, rounded forms ("cm-nucleoids") that have been described as ring- or sphere-shaped. Multiple views of single cells or spheroplasts, however, support a different, curved toroid shape for cm-nucleoids. The multiple views were obtained either by DNA fluorescence imaging as the cells or spheroplasts reoriented in liquid medium or by optical sectioning using phase-contrast or fluorescence imaging of immobilized cells. The curved toroid shape is consistent with electron microscope images of thin sections of chloramphenicol-treated cells. The relationship of this structure to active and inactive nucleoids and to the smaller toroidal forms made by in vitro DNA condensation is discussed.  相似文献   

9.
The fluorescent glucose analog, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), was used to measure rates of glucose uptake by single Escherichia coli cells. When cell populations were exposed to the glucose analog, 2-NBDG was actively transported and accumulated in single cells to a steady-state level that depended upon its extracellular concentration, the glucose transport capacity of the cells, and the intracellular degradation rate. The dependence upon substrate concentration could be described according to Michaelis-Menten kinetics with apparent saturation constant KM = 1.75 microM, and maximum 2-NBDG uptake rate= 197 molecules/cell-second. Specificity of glucose transporters to the analog was confirmed by inhibition of uptake of 2-NBDG by D-glucose, 3-o-methyl glucose, and D-glucosamine, and lack of inhibition by L-glucose. Inhibition of 2-NBDG uptake by D-glucose was competitive in nature. The assay for 2-NBDG uptake is extremely sensitive such that the presence of even trace amounts of D-glucose in the culture medium (approximately 0.2 microM) is detectable. The rates of single-cell analog uptake were found to increase proportionally with cell size as measured by microscopy or single-cell light scattering intensity. The assay was used to identify and isolate mutant cells with altered glucose uptake characteristics. A mathematical model was developed to provide a theoretical basis for estimating single-cell glucose uptake rates from single-cell 2-NBDG uptake rates. The assay provides a novel means of estimating the instantaneous rates of nutrient depletion in the growth environment during a batch cultivation.  相似文献   

10.
Hepcidin is a low-molecular-weight, highly disulfide bonded peptide relevant to small intestine iron absorption and body iron homeostasis. In this work, hepcidin was expressed in Escherichia coli as a 10.5 kDa fusion protein (His-hepcidin) with a N-terminal hexahistidine tag. The expressed His-hepcidin existed in the form of inclusion bodies and was purified by IMAC under denaturation condition. Since the fusion partner for hepcidin did not contain other cysteine residues, the formation of disulfide bonds was performed before the His-tag was removed. Then, the oxidized His-hepcidin monomer was separated from protein multimers through gel filtration. Following monomer refolding, hepcidin was cleaved from fusion protein by enterokinase and purified with reverse-phase chromatography. The recombinant hepcidin exhibited obvious antibacterial activity against Bacillus subtilis.  相似文献   

11.
Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria, and is the causative agent of endotoxin shock. LPS induces signal transduction in immune cells when it is recognized by the cell surface complex of toll-like receptor 4 (TLR4) and MD-2. The complex recognizes the lipid A structure in LPS, which is buried in the membrane of the outer envelope. To present the Lipid A structure to the TLR4/MD-2, processing of LPS by LPS-binding protein (LBP) and CD14 is required. In previous studies, we expressed recombinant proteins of human MD-2 and CD14 as fusion proteins with thioredoxin in Escherichia coli, and demonstrated their specific binding abilities to LPS. In this study, we prepared a recombinant fusion protein containing 212 amino terminal residues of human LBP (HLB212) by using the same expression system. The recombinant protein expressed in E. coli was purified as a complex form with host LPS. The binding was not affected by high concentrations of salt, but was prevented by low concentrations of various detergents. Both rough-type LPS lacking the O antigen and smooth-type LPS with the antigen bound to HLBP212. Therefore, oligosaccharide repeats appeared to be unnecessary for the binding. A nonpathogenic penta-acylated LPS also bound to HLBP212, but the binding was weaker than that of the wild type. The hydrophobic interaction between the LBP and acyl chains of lipid A appears to be important for the binding. The recombinant proteins of LPS-binding molecules would be useful for analyzing the defense mechanism against infections.  相似文献   

12.
Multidrug resistance is a major cause of clinical failure in treating bacterial infections. Increasing evidence suggests that bacteria can resist multiple antibiotics through intrinsic mechanisms that rely on gene products such as efflux pumps that expel antibiotics and special membrane proteins that block the penetration of drug molecules. In this study, Escherichia coli was used as a model system to explore the genetic basis of intrinsic multidrug resistance. A random mutant library was constructed in E. coli EC100 using transposon mutagenesis. The library was screened by growth measurement to identify the mutants with enhanced or reduced resistance to chloramphenicol (Cm). Out of the 4,000 mutants screened, six mutants were found to be more sensitive to Cm and seven were more resistant compared to the wild-type EC100. Mutations in 12 out of the 13 mutants were identified by inverse polymerase chain reaction. Mutants of the genes rob, garP, bipA, insK, and yhhX were more sensitive to Cm compared to the wild-type EC100, while the mutation of rhaB, yejM, dsdX, nagA, yccE, atpF, or htrB led to higher resistance. Overexpression of rob was found to increase the resistance of E. coli biofilms to tobramycin (Tob) by 2.7-fold, while overexpression of nagA, rhaB, and yccE significantly enhanced the susceptibility of biofilms by 2.2-, 2.5-, and 2.1-fold respectively.  相似文献   

13.
A recombinant Escherichia coli strain (E. coli NO3) containing genomic DNA fragments from azo-reducing wild-type Pseudomonas luteola strain decolorized a reactive azo dye (C.I. Reactive Red 22) at approx. 17 mg dye h–1 g cell. The ability to decolorize the azo dye probably did not originate from the plasmid DNA. Acclimation in azo-dye-containing media gave a nearly 10% increase in the decolorization rate of E. coli NO3. Growth with 1.25 g glucose l–1 completely stopped the decolorization activity. When the decolorization metabolites from E. coli NO3 were analyzed by HPLC and MS, the results suggested that decolorization of the azo dye may be due to cleavage of the azo bond.  相似文献   

14.
Summary A Co2+-dependent dipeptidase from E. coli strain AJ005, a peptidase-deficient mutant, was purified with streptomycin sulfate, ammonium sulfate and DEAE-cellulose. The purified dipeptidase increased by about 106-fold in specific activity, with dilysine as a substrate. The dipeptidase cleaved dilysine to two lysines among the lysine homopolymers, the possibility remaining that it is active toward peptides other than dilysine, since it was investigated in the present study only for activity toward lysine homopolymers. Activity was inhibited 54% by 10–3 M KCN and completely by 10–3 M PCMB, EDTA and benzethonium chloride, but not at all by soybean trypsin inhibitors. 78% and 95% of its activity was lost with 30 minutes' treatment at 45°C and 50°C, respectively. The apparent Km value was 6.7 × 10–4 M for dilysine. It is probable that the dipeptidase differs from dipeptidase DP.Abbreviations EDTA Ethylenediaminetetraacetate - PCMB pchloromercuribenzoate  相似文献   

15.
16.
The Escherichia coli Ffh protein is homologous to the SRP54 subunit of the eukaryotic signal recognition particle (SRP) that is involved in targeting and translocation of membrane proteins. The functions of Ffh in E. coli were investigated using the mutant with the Ffh deficiency. The mutant showed lower growth rate at 30°C and rapidly lost viability at the non-permissive temperature of 42°C. In addition, the amount of the total membrane proteins decreased sharply in the mutant. The mutant cells cultured at either 30 or 42°C appeared to have an elongated shape as compared to the wild type cells. Transmission electron microscopy revealed that the membrane layer of the mutant cells was thinner than that of the wild type cells. The article is published in the original.  相似文献   

17.
The genes for ferredoxin from heterocysts (fdx H) and vegetative cells (pet F) of Anabaena sp. strain 7120 were subcloned into plasmid pUC 18/19. Both genes were expressed in Escherichia coli at high levels (10% of total protein). Pet F could be expressed from its own promoter. The ferredoxins were correctly assembled to the holoprotein. Heterocyst ferredoxin was purified from E. coli extracts on a large scale. Its biochemical and biophysical properties were identical to those of the authentic ferredoxin, isolated from Anabaena heterocysts.This paper is dedicated to Prof. A. Trebst on the occasion of his 60th birthday.  相似文献   

18.
Using the Escherichia coli OmpC protein as an anchoring motif, four different poly-His units (1, 2, 3 and 6 copies of 6-His) were displayed on the seventh loop of the OmpC. Recombinant E. coli strains displaying 1, 3 or 6 copies of poly-His became much more sensitive to SDS (0.1%, w/v) and EDTA (2 mM) compared with control strains. However, recombinant E. coli cells displaying 2 copies of poly-His were resistant to SDS and EDTA; greater than 70% and 90% of cells maintained cell integrity after 60 min treatment with SDS and EDTA, respectively, suggesting its usefulness as a whole cell biosorbent.  相似文献   

19.
Summary Temperature-sensitive mutants that filamented at the non-permissive temperature were isolated by specific mutagenesis of the terminus region of the Escherichia coli chromosome. Two of them, mapping at about 35 min, failed to divide due to inhibition of DNA replication. Further characterization indicated that these mutants are temperature-sensitive for DNA chain elongation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号