首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel lectin was isolated from leaves of the Japanese cycad, Cycas revoluta Thunb. (gymnosperm), and its characteristics including amino acid composition, molecular mass, carbohydrate binding specificity and partial amino acid sequences were examined. The inhibition analysis of hemagglutinating activity with various sugars showed that the lectin has a carbohydrate-binding specificity similar to those of mannose recognizing, jacalin-related lectins. Partial amino acid sequences of the lysylendopeptic peptides shows that the lectin might have a repeating structure and belong to the jacalin-related lectin family.  相似文献   

2.
Soluble lactose-binding vertebrate lectins: a growing family   总被引:8,自引:0,他引:8  
Extracts of rat intestine contain nine soluble lactose-binding lectins with subunit molecular weights ranging from 14,500 to 19,000 that were purified by affinity chromatography and ion-exchange chromatography. Two of them are either identical with or closely related to other known rat lectins. A third appears to be the isolated carbohydrate-binding C-terminal domain of a known lectin but lacks the N-terminal domain presumed to mediate a different function. The others have not been described previously. Among them, the major rat intestinal lectin, RI-H, and a related protein, RI-G, have N-terminal amino acid sequences with similarities to sequences found in other known rat lectins. Therefore, these results introduce new members of a growing family of these structurally homologous soluble lactose-binding proteins.  相似文献   

3.
A variety of animal tissues contain beta-galactoside-binding lectins with molecular masses in the range 13-17 kDa. There is evidence that these lectins may constitute a new protein family although their function in vivo is not yet clear. In this work the major part of the amino acid sequence of the 13 kDa lectin from bovine heart muscle has been determined. Comparison of this sequence with the cDNA-deduced sequence published for the chick embryo skin lectin showed 58% homology. Comparison of the bovine lectin sequence with partial sequences from two cDNA clones from a human hepatoma library and partial amino acid sequences of human lung lectin showed 70, 40 and 85% homology, respectively. The sequences of these vertebrate lectins are thus clearly related, supporting earlier results of immunological cross-reactivity within this group of proteins. Computer searching of protein sequence databases did not detect significant homologies between the bovine lectin sequence and other known proteins.  相似文献   

4.
A 16-kDa lactose-binding lectin comprises 5% or more of the soluble protein in Xenopus laevis skin. This lectin is mainly localized in the cytoplasm of granular gland cells. In response to stress, the lectin along with a variety of toxic and antibiotic peptides are released onto the skin surface by holocrine secretion. We have purified the lectin, sequenced tryptic peptides using tandem mass spectrometry and Edman degradation, and isolated full-length cDNA using a deduced oligonucleotide. Comparison of the cDNA and peptide sequences revealed expression of at least two isolectins, which differ in sequence at only two or three amino acids. Comparison of cDNA with complementary message by ribonuclease protection confirmed expression in approximately equal abundance of two nearly identical messages. The major soluble lactose-binding lectin expressed in Xenopus muscle is composed of these same isolectins, but at 100-fold lower levels. Similarities and distinctions in sequence and carbohydrate-binding specificity indicate that this lectin is a novel member of a family of soluble lactose-binding lectins expressed in a wide range of vertebrate tissues.  相似文献   

5.
A full-length cDNA for rat lung beta-galactoside lectin (subunit Mr approximately 14,000, lectin 14K) was cloned and the nucleotide sequence determined. The deduced amino acid sequence agrees with the amino acid composition and direct amino acid sequence analysis of purified rat lung lectin peptides. We found that the amino-terminal alanine is blocked with an acetyl group. Comparison of the amino acid sequence with other proteins shows a high degree of homology only with other vertebrate lectin sequences, supporting the suggestion that these lectins may constitute a unique class of vertebrate proteins. The amino acid composition and sequence of lectin peptides, the sequence of lectin cDNA, and isoelectric focusing of purified lectin indicate that rat lung lectin 14K is composed predominantly of a single protein. In addition, rat uterus lectin 14K was found to be the same protein as that present in lung. We characterized the secondary and tertiary structure of rat lung lectin 14K by circular dichroism, by analytical ultracentrifugation, and by computer analysis of its primary structure. Results of these experiments suggest that lectin 14K is primarily a hydrophilic protein with an asymmetric, elongated structure consisting of approximately equal amounts of alpha helix, beta sheet, beta turn, and random coil. We found that Cys-2 and Cys-130 react most rapidly with iodoacetamide; one or both of these residues may be primarily responsible for the thiol requirement of lectin activity.  相似文献   

6.
The carbohydrate-binding sequences of the lectin genes from spring vetchling Lathyrus vernus (L.) Bernh., marsh vetchling L. palustris (L.), and Gmelin's vetchling L. gmelinii (Fitsch) (Fabaceae) were determined. Computer-aided analysis revealed substantial differences between nucleotide and predicted amino acid sequences of the lectin gene regions examined in each of the three vetchling species tested. In the phylogenetic trees based on sequence similarity of carbohydrate-biding regions of legume lectins, the sequences examined formed a compact cluster with the lectin genes of the plants belonging to the tribe Fabeae. In each plant, L. vernus, L. palustris, and L. gmelinii, three different lectin-encoding genes were detected. Most of the substitutions were identified within the gene sequence responsible for coding the carbohydrate-binding protein regions. This finding may explain different affinity of these lectins to different carbohydrates, and as a consequence, can affect the plant host specificity upon development of symbiosis with rhizobium bacteria.  相似文献   

7.
A full-length cDNA clone for the 13-14 kDa soluble beta-galactoside-binding lectin was isolated from a bovine fibroblast cDNA library. The derived amino acid sequence shows eight differences from a preliminary partial amino acid sequence given previously for the bovine heart lectin. This observation led to a re-examination of the data and correction of the heart lectin protein sequence. Except for a possible polymorphism of the heart lectin at position 57, the fibroblast and heart lectin sequences are considered identical. The epitope recognized by two monoclonal anti-(bovine lectin) antibodies, 36/8 and 9/5, was identified as the tetrapeptide sequence W-G-A/S-E/D by the isolation of several different cDNA clones from a human intestine cDNA library. A similar tetrapeptide is present in all of the soluble beta-galactoside-binding animal lectins sequenced thus far. It is also found in myelin basic protein, which we show is antigenically cross-reactive with the lectin. In myelin basic protein the tetrapeptide is a part of the major domain previously shown to be responsible for the induction of experimental allergic encephalomyelitis.  相似文献   

8.
Beta-galactoside-binding lectins were isolated from various calf tissues and from chicken hearts by affinity chromatography on asialofetuin-Sepharose, and were compared with respect to biochemical characteristics, binding properties, antigenic cross-reactivity, and cellular localization. The lectins are all thiol group-requiring, divalent cation-independent dimers, of apparent monomer mol wt 12,000 (calf lectins) or 13,000 (chicken lectin), and acidic pI. The calf lectins appear essentially identical by dodecyl sulfate-polyacrylamide gel electrophoresis, isoelectric focusing, amino acid composition, and radioimmunoassay, while the chicken lectin is distinctly different by these criteria. However, all of the lectins competed for the same binding sites on rabbit erythrocytes, and could be inhibited by the same saccharide haptens (notably lactose and thiodigalactoside). Immuno-fluorescence studies on several cultured cell lines revealed that the bovine and chicken lectins had primarily an intracellular cytoplasmic localization. The beta-galactoside-binding lectins of vertebrates appear to be species-specific rather than tissue-specific.  相似文献   

9.
Two novel lectins were isolated from roots and leaves of garlic. Characterization of the purified proteins indicated that the leaf lectin ASAL is a dimer of two identical subunits of 12 kDa, which closely resembles the leaf lectins from onion, leek and shallot with respect to its molecular structure and agglutination activity. In contrast, the root lectin ASARI, which is a dimer of subunits of 15 kDa, strongly differs from the leaf lectin with respect to its agglutination activity. cDNA cloning of the leaf and root lectins revealed that the deduced amino acid sequences of ASAL and ASARI are virtually identical. Since both lectins have identical N-terminal sequences the larger Mr of the ASARI subunits implies that the root lectin has an extra sequence at its C-terminus. These results not only demonstrate that virtually identical precursor polypeptides are differently processed at their C-terminus in roots and leaves but also indicate that differential processing yields mature lectins with strongly different biological activities. Further screening of the cDNA library for garlic roots also yielded a cDNA clone encoding a protein composed of two tandemly arrayed lectin domains. Since the presumed two-domain root lectin has not been isolated yet, its possible relationship to the previously described two-domain bulb lectin could not be studied at the protein level.  相似文献   

10.
The amino-acid sequence of a lectin isolated from the coelomic fluid of the acorn barnacle Megabalanus rosa has been determined. The lectin (Mr 140,000) is a multimeric protein whose subunit consists of 173 amino acids and one carbohydrate chain attached to Asn-39. The amino-acid sequence was determined by the manual sequencing of peptides derived from the protein by digestion with Staphylococcus aureus V8 proteinase, lysine endopeptidase and chymotrypsin, as well as fragments produced by cleavage with cyanogen bromide. The amino-acid sequence of the lectin was compared with the sequence of one (Mr 64,000) of the multiple lectins of M. rosa. They are distinct molecules in spite of a significant homology in their amino-acid sequences. The amino-acid sequence includes some regions homologous to those in other invertebrate lectins, such as sea urchin and flesh fly lectins, and vertebrate lectins. This is the first report to show the amino-acid sequence of multiple lectins isolated from an invertebrate.  相似文献   

11.
  • 1.1. Protein-carbohydrate interactions are involved in a large number of biologically important recognition processes.
  • 2.2. Among the participating classes of proteins lectins are defined as carbohydrate-binding proteins other than an antibody or an enzyme.
  • 3.3. In addition to the essential carbohydrate-binding domain other functionally and/or structurally important sites, defined by sequence comparison or by experimental demonstration of protein-protein interactions, can be present within the lectin molecule and may be relevant for its physiological significance.
  • 4.4. Sequence motifs of lectins for protein-protein interactions include amino acid structures designed for cell adhesion, growth regulatory biosignalling, intracellular routing and enzymatic activity.
  • 5.5. Elucidation of the complete functional role(s) of a lectin requires accurate delineation of its carbohydrate and, if present, of its protein ligands.
  • 6.6. Presence of more than one carbohydrate-binding domain in a single lectin, potential ligand properties of the glycopart of a lectin, regulatory interplay between different sites and possible interaction of complementarily shaped peptide sequences to the sugar-recognizing site should all be assessed in the quest to comprehensively explain the physiological role(s) of a lectin.
  相似文献   

12.
A lectin was purified from rhizomes of the fern Phlebodium aureum by affinity chromatography on mannose-Sepharose. The lectin, designated P. aureum lectin (PAL), is composed of two identical subunits of approximately 15 kDa associated by noncovalent bonds. From a cDNA library and synthetic oligonucleotide probes based on a partial amino acid sequence, 5'- and 3'-rapid amplification of cDNA ends allowed the generation of two similar full-length cDNAs, termed PALa and PALb, each of which had an open reading frame of 438 bp encoding 146 amino acid residues. The two proteins share 88% sequence identity and showed structural similarity to jacalin-related lectins. PALa contained peptide sequences exactly matching those found in the isolated lectin. PALa and PALb were expressed in Escherichia coli using pET-22b(+) vector and purified by one-step affinity chromatography. Native and recombinant forms of PAL agglutinated rabbit erythrocytes and precipitated with yeast mannan, dextran, and the high mannose-containing glycoprotein invertase. The detailed carbohydrate-binding properties of the native and recombinant lectins were elucidated by agglutination inhibition assay, and native lectin was also studied by isothermal titration calorimetry. Based on the results of these assays, we conclude that this primitive vascular plant, like many higher plants, contains significant quantities of a mannose/glucose-binding protein in its storage tissue, whose binding specificity differs in detail from either legume mannose/glucose-binding lectins or monocot mannose-specific lectins. The identification of a jacalin-related lectin in a true fern reveals for the first time the widespread distribution and molecular evolution of this lectin family in the plant kingdom.  相似文献   

13.
The complete amino acid sequence of 2-acetamido-2-deoxy-D-galactose-binding Cytisus scoparius seed lectin II (CSII) was determined using a protein sequencer. After digestion of CSII with endoproteinase Lys-C or Asp-N, the resulting peptides were purified by reversed-phase high performance liquid chromatography (HPLC) and then subjected to sequence analysis. Comparison of the complete amino acid sequence of CSII with the sequences of other leguminous seed lectins revealed regions of extensive homology. The amino acid residues of concanavalin A (Con A) involved in the metal binding site are highly conserved among those of CSII. A carbohydrate-binding peptide of CSII was obtained from the endoproteinase Asp-N digest of CSII by affinity chromatography on a column of GalNAc-Gel. This peptide was retained on the GalNAc-Gel column and was presumed to have affinity for the column. The amino acid sequence of the retarded peptide was determined using a protein sequencer. The retarded peptide was found to correspond to the putative metal-binding region of Con A. These results strongly suggest that this peptide represents the carbohydrate-binding and metal ion-binding sites of CSII.  相似文献   

14.

Background

Lectins are mainly described as simple carbohydrate-binding proteins. Previous studies have tried to identify other binding sites, which possible recognize plant hormones, secondary metabolites, and isolated amino acid residues. We report the crystal structure of a lectin isolated from Canavalia gladiata seeds (CGL), describing a new binding pocket, which may be related to pathogen resistance activity in ConA-like lectins; a site where a non-protein amino-acid, α-aminobutyric acid (Abu), is bound.

Results

The overall structure of native CGL and complexed with α-methyl-mannoside and Abu have been refined at 2.3 Å and 2.31 Å resolution, respectively. Analysis of the electron density maps of the CGL structure shows clearly the presence of Abu, which was confirmed by mass spectrometry.

Conclusion

The presence of Abu in a plant lectin structure strongly indicates the ability of lectins on carrying secondary metabolites. Comparison of the amino acids composing the site with other legume lectins revealed that this site is conserved, providing an evidence of the biological relevance of this site. This new action of lectins strengthens their role in defense mechanisms in plants.  相似文献   

15.
Bauhinia purpurea lectin (BPA) is one of the beta-galactose-binding leguminous lectins. Leguminous lectins contain a long metal-binding loop, part of which determines their carbohydrate-binding specificities. Random mutations were introduced into a portion of the cDNA coding BPA that corresponds to the carbohydrate-binding loop of the lectin. An library of the mutant lectin expressed on the surface of lambda foo phages was screened by the panning method. Several phage clones with an affinity for mannose or N-acetylglucosamine were isolated. These results indicate the possibility of making artificial lectins (so-called "cyborg lectins") with distinct and desired carbohydrate-binding specificities.  相似文献   

16.
The legume lectins from the subtribe Diocleinae, often referred to as concanavalin A-like lectins, are a typical example of highly similar proteins that show distinct biological activities. The pH-dependent oligomerization that some of these lectins undergo and the relative position of amino acids within the carbohydrate-binding site are factors that have been reported to contribute to these differences in the activities of Diocleinae lectins. In the present work, we determined the amino acid sequence and the crystal structure of the lectin of Dioclea rostrata seeds (DRL), with the aim of investigating the structural bases of the different behavior displayed by this lectin in comparison to other Diocleinae lectins and determining the reason for the distinct pH-dependent dimer-tetramer equilibrium. In addition, we discovered a novel multimeric arrangement for this lectin.  相似文献   

17.
The carbohydrate-binding sequences of the lectin genes from spring vetchling Lathyrus vernus (L.) Bernh., marsh vetchling L. palustris (L.), and Gmelin’s vetchling L. gmelinii (Fitsch) (Fabaceae) were determined. Computer-aided analysis revealed substantial differences between nucleotide and predicted amino acid sequences of the lectin gene regions examined in each of the three vetchling species tested. In the phylogenetic trees based on sequence similarity of carbohydrate-biding regions of legume lectins, the sequences examined formed a compact cluster with the lectin genes of the plants belonging to the tribe Fabeae. In each plant, L. vernus, L. palustris, and L. gmelinii, three different lectin-encoding genes were detected. Most of the substitutions were identified within the gene sequence responsible for coding the carbohydrate-binding protein regions. This finding may explain different affinity of these lectins to different carbohydrates, and as a consequence, can affect the plant host specificity upon development of symbiosis with rhizobium bacteria.  相似文献   

18.
A full-length cDNA for a 14K-type human lung beta-galactoside-binding lectin was cloned. The cDNA includes a 405 bp open reading frame coding 135 amino acids including the initiator methionine, and having a single internal EcoRI site and a polyadenylation signal. The deduced amino-acid sequence agreed completely with the sequence of a human placenta lectin determined by direct amino-acid sequence analysis (Hirabayashi, J. and Kasai, K. (1988) J. Biochem. 104, 1-4). It showed extensive sequence similarity with other vertebrate 14K-type lectins and a 35K-type lectin (carbohydrate-binding protein 35) of mouse 3T3 cell. Search of a Genbank sequence data base revealed significant sequence similarity between the beta-galactoside-binding lectins and the carboxyl-terminal half of an IgE-binding protein, the cDNA of which has been cloned from rat basophilic leukemia cells. Thus, 14K-type lectin, 35K-type lectin and IgE-binding protein appeared to form a superfamily of proteins. Almost all invariant residues are located in the central region of the 14K-type lectins, so this region may constitute an essential part of the lectins, such as the sugar-binding domain.  相似文献   

19.
The carbohydrate-binding sequences (CBS) in the lectin genes of Trijilium repens, T. pratense, and T. tri-chocephalum were sequenced. The gene regions encoding lectin CBS of T. pratense and T. repens displayed a considerable similarity; however, the CBS of these species differed essentially. Moreover, T. repens formed a compact cluster with Melilotus albus and M. officinalis in the phylogenetic trees constructed according to the nucleotide sequences and the corresponding CBS of legume lectins. T. trichocephalum does not fall into the group of the tribe Trifolieae members according to both the amino acid sequence of lectin carbohydrate-binding region and the nucleotide sequence of lectin gene.  相似文献   

20.
The marine sponge Geodia cydonium contains several lectins.The main component, called lectin-1, is composed of three tofour identical subunits. The subunits of the lectins were clonedfrom a cDNA library; two clones were obtained. From the deducedaa sequence of one clone, LECT-1, a mol. wt of 15 313 Da iscalculated; this value is in good agreement with mass spectrometricanalysis of 15 453 25 Da. The sequence of another clone, LECT-2,was analysed and the aa sequence was deduced (15 433 Da). Thetwo subunits have a framework sequence of 38 conserved aa whichare characteristic for the carbohydrate-binding site of vertebrateS-type lectins. Clustering of lectin sequences of various speciesfollowing their pairwise comparison establishes a dendrogram,which reveals that the sponge lectin could be considered asthe ancestor for vertebrate S-type lectins. Geodia cydonium lectin sponges S-type lectin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号