首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A low molecular weight (LMW) kininogen was isolated from pooled human serum by chromatography on DEAE-Sephadex A-50, CM-Sephadex C-50, Sephadex G-150, and Sephadex G-100. It was shown to be homogeneous by ultracentrifugation, polyacrylamide gel electrophoresis, and immunoelectrophoresis. The sedimentation coefficient, S020,W, of purified LMW kininogen was 3.85 s, and its molecular weight was determined to be 78,000 by Sephadex G-100 gel-filtration. The LMW kininogen contained 79.3% protein, 8.0% hexose, 3.9% hexosamine, and 4.9% sialic acid. In order to determine the immunochemical properties of LMW kininogen, specific antiserum was prepared in rabbits. The antigenic determinant of LMW kininogen was not related to the sialic acid and kinin moieties in the kininogen molecule, but could not be distinguished from that of high molecular weight (HMW) kininogen. In the quantitative single radial immunodiffusion test, a sialic acid-free LMW kininogen reacted to a greater extent with the antiserum than the native LMW kininogen. The kininogen level in human serum was estimated by single radial immunodiffusion. The antiserum cross-reacted with monkey serum, but not with sera from dogs, rats, and mice, horses, pigs, guinea pigs, oxen, and rabbits.  相似文献   

2.
We have investigated in detail the cleavage of human high molecular weight (HMW) kininogen by human plasma kallikrein and revealed the formation of a nicked kininogen and a novel kinin-free protein (KFP) as intermediate cleavage products. The cleavage of a single chain HMW kininogen (Mr=120,000) by plasma kallikrein was a three-step reaction. The first cleavage yielded a nicked kininogen composed of two disulfide-linked 62,000 and 56,000 daltons chains. The second cleavage yielded kinin and an intermediate kinin-free protein, KFP-I, which was apparently of equal size to the nicked kininogen. The third cleavage yielded a stable kinin-free protein, KFP-II, composed of two disulfide-linked 62,000 and 45,000 daltons chains. The liberation of an 8,000 daltons fragment was identified when the 56,000 daltons chain isolated by SP-Sephadex C-50 chromatography of reduced and alkylated KFP-I was cleaved by plasma kallikrein into the 45,000 daltons chain. Although the antiserum against HMW kininogen cross-reacted with low molecular weight (LMW) kininogen, the antiserum against the 45,000 daltons chain was specific for HMW kininogen. These results suggest that the antigenic determinant groups common to HMW and LMW kininogens are located in the 62,000 daltons heavy chain, while those specific for HMW kininogen are located in the 45,000 daltons light chain, which is known to retain blood coagulation activity.  相似文献   

3.
High-molecular-weight (high-Mr) kininogen was purified from horse plasma by chromatography on columns of DEAE-Sephadex A-50, CM-Sephadex C-50, p-chlorobenzylamine-Sepharose and Sephadex G-150. The yield was about 150 mg from 81 of fresh plasma. The purified material gave a single band on sodium dodecylsulfate/polyacrylamide gel electrophoresis and a single precipitin line on immunodiffusion and immunoelectrophoresis. The molecular weight of horse high-Mr kininogen was estimated to be 78000 by dodecylsulfate gel electrophoresis using the Ferguson plot. Its polypeptide content was determined to be 86% by amino acid analysis and there was a total of 581 amino acid residues/molecule of protein. The kininogen contained a total of 13.9% carbohydrates, consisting of hexoses (7.8%), glucosamine (1.9%), galactosamine (0.6%) and sialic acid (3.6%). On incubation of horse high-Mr kininogen with bovine and horse plasma kallikreins, several fragments which contained extremely high levels of histidine, were liberated, in addition to kinin. After the liberation of kinin and histidine-rich fragments, a protein free of kinin and its fragments was isolated. This protein consisted of two polypeptide chains, heavy chain and light chain, which are bridged by disulfide bonds. The molecular weight and amino acid composition of the heavy chain and the light chain from horse high-Mr kininogen were very similar to those of the heavy and light chains from bovine high-Mr kininogen, respectively. From these results, it was revealed that horse high-Mr kininogen is quite similar to bovine high-Mr kininogen in terms of their physicochemical and chemical properties, although they are immunologically distinguishable.  相似文献   

4.
Studies have compared “total”, HMW kininogen and leukokininogen levels in human, rabbit and rat plasmas using trypsin, glass powder and cathepsin D as kininogenases or activators of kininogenases. Rat plasma was found to have about 10 fold more leukokininogen than the other plasmas assayed. When trypsin was used to estimate total kininogen, rat plasma liberated maximal amounts of kinin only in the presence of high concentrations of trypsin (1 mg/ml incubation mixture). In addition, it was found that trypsin in these concentrations liberated from rat plasma both bradykinin and a previously unidentified kinin which we have termed “T-kinin”. The results overall indicate that in the case of rat and rabbit plasma, currently used methods for estimations of total kininogen may not be accurate. T-kinin may represent a leukokininogen or a hitherto undescribed kininogen.  相似文献   

5.
Kinin release from kininogens by calpains   总被引:2,自引:0,他引:2  
During the investigation of inhibitory activity of kininogens toward calpains [EC 3.4.22.17], we found that lysyl-bradykinin was liberated from both high molecular weight (HMW) and low molecular weight (LMW) kininogens by the action of the calpains. The kinin liberation occurred in a limited range of calpain to kininogen molar ratios of 0.5:1 to 8:1, and in that condition calpains were simultaneously inhibited 20 to 80% by kininogens. The maximum level of kinin release from HMW and LMW kininogens by calpain I was about 25% and that by calpain II was 20%. These results suggest that in case of inflammation the kininogens play two physiologically distinct roles by interaction with calpains: to release lysyl-bradykinin and to inhibit proteinase activity of calpains derived from the damaged tissues.  相似文献   

6.
The amino acid sequence around kinin moiety in rat High-Molecular-Weight (HMW) kininogen was determined by isolating a peptide containing bradykinin after cyanogen bromide treatment of the purified kininogen as follows; NH2-Thr-Ser-Val-Ile-Arg-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-Ala-Pro-Arg- Val-Lys-Lys-. The data indicated that rat HMW kininogen contains the arginyl-bradykinin moiety, instead of lysyl-bradykinin. Kinins liberated from rat HMW kininogen by rat urinary and submaxillary kallikreins were identified to be bradykinin, not arginyl-bradykinin.  相似文献   

7.
From the homogenate of rat submaxillary gland, two kinds of serine proteinases, named tentatively proteinases A and B, were isolated and their chemical properties and activities toward rat kininogens were examined, in comparison with those of submaxillary kallikrein. Proteinase A with Mr of 28,200 rapidly cleaved high-molecular-weight (HMW) kininogen into a protein of 67 kDa, which retained thiol-proteinase inhibitory activity, but had lost the correcting activity of HMW kininogen on the prolonged clotting time of Fitzgerald trait plasma. It liberated bradykinin from HMW kininogen but did not liberate kinin from T-kininogen and did not degrade T-kininogen. On the other hand, proteinase B with Mr of 30,400 showed a very weak activity for the liberation of kinin from T-kininogen and the cleavage of T-kininogen at pH 8.0. However, the enzyme extensively degraded T-kininogen at pH 4.5. Proteinase B also degraded HMW kininogen at pH 4.5 and pH 8.0, but liberated bradykinin only at pH 8.0. Thiol-proteinase inhibitory activities of HMW kininogen and T-kininogen were inactivated after the incubation with proteinase B at pH 4.5 but not at pH 8.0, while the correcting activity of HMW kininogen on the Fitzgerald trait plasma was inactivated at pH 4.5 and 8.0. The NH2-terminal amino acid sequences of proteinases A and B were different from each other, and distinguishable with those of serine proteinases in rat submaxillary gland so far reported. These results provide evidence that in addition to the known kallikrein, there exist at least two kinds of serine proteinases in rat submaxillary gland, both of which liberate bradykinin from rat HMW kininogen at pH 8.0 and modulate the functional activities of HMW kininogen and T-kininogen, degrading these proteins at pH 8.0 or 4.5.  相似文献   

8.
The ratio of kininogen that is substrate of plasma kallikrein to kininogen, which is not substrate of plasma kallikrein in canine plasma, was about 1:3.6 by differential assay of kininogens. When the plasma was gel-filtered through a column of Sephacryl S-300 superfine, two fractions, which released kinin by trypsin, were obtained. These results indicate that two kininogens with different molecular weights are present in the plasma and they show different susceptibility to plasma kallikrein. One kininogen was purified by ion-exchange and zinc-chelating affinity chromatographies. Purified kininogen showed a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing condition and its molecular weight was 125 kDa. Released kinin from the kininogen by trypsin was bradykinin. The kininogen inhibited papain and ficin but did not inhibit bromelain at the concentration used. The kininogen bound to carboxymethylated-papain and this binding was dissociated by 3M NaSCN. Canine plasma shortened the abnormal clotting time of human high molecular weight kininogen-deficint plasma. The kininogen also shortened the abnormal clotting time of the plasma. From these results, the purified kininogen was high molecular weight kininogen and it was multi-functional protein.  相似文献   

9.
Submandibular gland kallikrein [EC 3.4.21.8] of male Sprague-Dawley rats was purified by chromatography on soybean trypsin inhibitor (SBTI)-CH-Sepharose 4B, DEAE-Sephadex A-50, aprotinin-CH-Sepharose 4B and Sephadex G-100 columns and preparative isoelectrofocusing. The molecular weight of the kallikrein was estimated to be 30,000 by Sephadex G-100 gel filtration and 29,000 by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Isoelectric points ranged from pH 3.55 to 4.30. The kinin formed at pH 8 by this kallikrein from bovine low molecular weight (LMW) kininogen showed the same behavior as lysyl-bradykinin on HPLC in a solution of ammonium biphosphate containing acetonitrile. At physiological pH, this kallikrein also generated angiotensin II, a potent vasopressor, from human plasma protein. Rat submandibular gland kallikrein differs from tonin in the isoelectric point, the optimal pH for angiotensin II formation and the type of kinin formed. The tissue kallikrein might play a role in the regulation of local blood flow in view of its ability to form both vasoconstrictive and vasodilatory peptides.  相似文献   

10.
A relatively simple procedure for isolation and purification of human blood plasma kallikrein (HPK) by QAE-Sephadex A-50 SP-Sephadex C-50 and affinity chromatography on Sepharose 4B with immobilized soybean trypsin inhibitor with the activity yield of about 40% has been developed. The method allows for simultaneous isolation of low (LMW) and high molecular weight (HMW) kininogens from the same HPK sample. HPK preparations are homogeneous upon 7.5% polyacrylamide gel electrophoresis in the presence of 0.1% SDS; its Mr is 90,000. After treatment with beta-mercaptoethanol, HPK dissociates into two fragments with Mr of 43,000 and 37,000. HPK preparations have high specific activities of esterase (31 microM/min), amidase (78 microM/min), and kininogenase (420 micrograms equiv. bradikinin/min). The high degree of protein purification was demonstrated by titration of active centers with 4-methylumbelliferylguanidine benzoate. The values of equilibrium dissociation constants for the HPK complex with aprotinin (Ki) equal to 1 X 10(-8) M (ethyl ester of N-alpha-benzoyl-L-arginine) and 1,5 X 10(-9) M (HMW) were determined. The kinetics of HPK-induced liberation of bradikinin from purified preparations of HMW and LMW was studied. The kinetic parameters (Km, kcat and kcat/Km) of this reaction suggest a high affinity of HPK for HMW, but not for LMW. LMW does not compete with HMW for the enzyme active center. It is assumed that LMW is not a physiological substrate for HPK.  相似文献   

11.
A tissue kallikrein from human seminal plasma was isolated by immunoaffinity chromatography and characterized. Its molecular mass was determined by gel filtration to be approximately 40000 Da. The enzyme preparation liberates kinin from human HMW kininogen (specific activity: 0.594 HMW kininogen-U/mg), lowers the blood pressure of dogs after intravenous injection (specific activity: 1740 biol. kallikrein unit/mg) and is strongly inhibited by aprotinin but not by soybean trypsin inhibitor. N alpha-Acetyl-L-phenylalanyl-L-arginine ethyl ester, D-valyl-L-leucyl-L-agrine ethyl ester and N-benzyloxycarbonyl-L-tyrosine p-nitrophenyl ester are cleaved with identical rates by the enzyme from human seminal plasma and human urinary kallikrein.  相似文献   

12.
A preparation of high-molecular weight kininogen (HMWK) was isolated from rabbit citrate blood plasma and purified using chromatography on DEAE-Sephadex A-50 and CM-Sephadex C-50. From 1 mg HMWK, trypsin or kallikreine of human blood plasma release 10 mkg bradykinine. The HMWK preparation is homogeneous during electrophoresis in 7.5% polyacrylamide gel in tris-glycine buffer, pH 8.3; its electrophoretic mobility corresponds to that of alpha2-globulins. The molecular weight of HMWK estimated using the collumn with Sephadex G-200, is 130.000--150.000; the sedimentation constant S20w is 7.6. Rabbit HMWK is neither a dimer, nor a trimer of low molecular weight kininogen (LMWK), since it does not degrade into subunits after treatment by 2.5% solution of sodium dodecyl sulfate, containing 8 M urea. 0.05 M 2-mercaptoethanol and 8 M urea induce HMWK splitting into 2 fragments with respective molecular weights of 80.000 and 30.000, the kinine-containing group being localized in the low-molecular weight fragment. Estimation of rates of kinine formation by different kininogenasses from highly purified HMWK and LMWK preparations showed that those kininogens are functionally different substrates, since blood plasma kallikreines release kinines from HMWK at a greater rates, whereas tissue kallikreines, e. g. human saliva kallikreine release kinines from LMWK. The specificity of kallikreines as kininogenase, to trypsin, was determined. Tripsin removes bradykinine from both kininogens at the same rates, which are an order of magnitude less than those found for kallikreines.  相似文献   

13.
Thirty-four monoclonal antibodies directed against human high molecular weight (HMW) and low molecular weight (LMW) kininogens and their derivatives were obtained, and the specificities of the antibodies were assayed by enzyme-linked immunosorbent assay (ELISA). By use of HMW kininogen, kinin-free HMW kininogen, kinin-free and fragment 1.2 (fr 1.2) free HMW kininogen, fr 1.2-light chain of HMW kininogen, LMW kininogen, kinin-free LMW kininogen, heavy chain of LMW kininogen, and light chain of LMW kininogen, the monoclonal antibodies were characterized and classified into four groups: (A) 20 monoclonal antibodies reacting with only the heavy chain, a common region of HMW and LMW kininogens; each of these monoclonal antibodies possessed the specificity to domain 1 (2 monoclonal antibodies), domain 2 (2 monoclonal antibodies), domain 3 (7 monoclonal antibodies), and both domains 2 and 3 (7 monoclonal antibodies) of the heavy chain; (B) 7 monoclonal antibodies reacting with fr 1.2, a unique histidine-rich region; (C) 5 monoclonal antibodies reacting with the light chain of HMW kininogen; (D) 2 monoclonal antibodies reacting with the light chain of LMW kininogen. Two monoclonal antibodies in the first group (group A), designated HKG H7 and H12, effectively suppressed the thiol proteinase inhibitor activity of HMW kininogen to papain and calpains and of LMW kininogen to papain, but the others did not affect it. Further, all the monoclonal antibodies which recognized the fr 1.2 or light chain of HMW kininogen (groups B and C) suppressed the clotting activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The two types of the rat kininogen genes show different modes of mRNA production. The K gene encodes two distinct mRNAs for high molecular weight (HMW) and low molecular weight (LMW) kininogens. These two mRNAs are generated by differential usage of the 3'-terminal exon (LMW exon) and the one next to this exon (HMW exon) through alternative polyadenylation and splicing. In contrast, the two T genes selectively generate the LMW form of the mRNA, although the T genes are extremely homologous to the K gene, including the sequence (psi HMW region) corresponding to the HMW exon of the K gene. In this study, we constructed a series of chimeric kininogen genes by exchanging equivalent restriction fragments of the K and T genes and examined the sequences and the mechanisms governing the different expression patterns of the kininogen genes by introducing the chimeric genes into heterologous COS cells. The results indicate that the formation of the two forms of the mRNA is controlled by two separate 3' sequences of the kininogen genes. One is located within the internal sequence of the HMW/psi HMW region, whereas the other is within the LMW exon and its preceding region. Our data also suggest that the different expression patterns of the kininogen genes are primarily governed by differing splicing efficiency.  相似文献   

15.
High molecular weight (HMW) kininogen was purified from fresh human plasma by two successive column chromatographies on DEAE-Sephadex A-50 and Zn-chelate Sepharose 4B. The purified HMW kininogen appeared to be a single band on sodium dodecyl sulfate (SDS)-polyacrylamide disc gel electrophoresis in both the presence and absence of beta-mercaptoethanol. However, it gave two bands on nonreduced SDS-polyacrylamide slab gel electrophoresis, a major band of dimeric form (Mr 200 000, ca. 95%) and a minor band of monomeric form (Mr 105 000, ca. 5%). Under reduced conditions, the dimeric form was converted stoichiometrically to a monomeric form (Mr 110 000), and the monomeric form observed under nonreduced conditions (Mr 105 000) was converted to a heavy chain (Mr 60 000) and a light chain (Mr 50 000). The formation of a dimer of HMW kininogen was also confirmed by an immunoblotting experiment. This unique property of intact HMW kininogen to form a dimer was further utilized in studies on the kininogens and their derivatives as thiol proteinase inhibitors. The purified HMW kininogen strongly inhibited the caseinolytic activities of calpain I, calpain II, and papain but not those of trypsin, chymotrypsin, and thermolysin, indicating that it was a group-specific inhibitor for thiol proteinases. When HMW kininogen was reduced with 0.14 or 1.4 M beta-mercaptoethanol, its inhibitory activity was partially or mostly inactivated, but on subsequent air oxidation its activity was almost completely recovered. In addition, kinin-free and fragment 1,2 free HMW kininogen showed higher inhibitory activity than the intact HMW kininogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Previous studies from our laboratories (Sugo et al. (1980) Biochemistry 19, 3215-3220) have shown that bovine high-molecular-weight (HMW) kininogen remarkably accelerates the kaolin-mediated activation of Factor XII in the presence of prekallikrein, and that both fragment 1.2 and the light chain regions located in the COOH terminal half of the kininogen molecule are essential for the activation. In the present study, we demonstrate that the accelerating effect of HMW kininogen is mediated through its adsorption on the kaolin surface through the fragment 1.2 region and its complex formation with prekallikrein through the light chain region. The evidence is as follows: 1. HMW kininogen radio-labeled with 125I was adsorbed on kaolin and the adsorption was inhibited by the prior treatment of kaolin with fragment 1.2, fragment 1.2-light chain, kinin-free protein or HMW kininogen, but not with kinin- and fragment 1.2-free protein, light chain or low molecular-weight (LMW) kininogen. 2. The complex formation of HMW kininogen with prekallikrein in bovine plasma or in the purified system was examined by gel-filtration on a column of Sephacryl S-200 In bovine plasma, prekallikrein was eluted in the same fraction as HMW kininogen, showing an apparent molecular weight of 250,000, whereas purified prekallikrein was eluted in the fraction corresponding to an apparent molecular weight of 100,000. When purified prekallikrein was mixed with purified HMW kininogen in a mol ratio of 1 to 2, all prekallikrein was found to be associated with HMW kininogen. Furthermore, purified prekallikrein mixed with kininogen derivatives, such as kinin- and fragment 1.2-free protein, fragment 1.2-light chain or light chain, was eluted in the higher molecular weight fraction. HMW kininogen did not form a complex with prekallikrein. Using the same technique, it was shown that kinin- and fragment 1.2-free protein forms a complex not only with prekallikrein but also with kallikrein.  相似文献   

17.
Monoclonal antibody to rat plasma kininogen, obtained after immunization of mice with the kininogen prepared by conventional methods, was purified from ascites fluid and coupled to CNBr-activated Sepharose-4B. Monoclonal-antibody affinity adsorbant thus prepared provided a rapid single-step method of purifying to homogeneity plasma kininogen. Purified rat plasma kininogen showed identical molecular weight and immunological cross-reactivity to rat plasma low molecular weight (LMW) kininogen purified by conventional procedures. Rat plasma kininogen differed from LMW kininogen from other species by virtue of its resistance to cleavage by either plasma or glandular kallikreins.  相似文献   

18.
Ovulation has been noted for some time to bear a remarkable similarity to an inflammatory response. One of the principal components that is activated and helps mediate the events during an inflammatory response is the kinin system. Therefore, the purpose of the present study was to examine whether this system could be similarly activated and involved in the cascade of events that leads to ovulation. To answer this question, immature 23-day-old female rats were primed with eCG (10 IU) and ovulation was induced by administration of hCG (10 IU) 48 h later. Groups of rats were killed at 0 h, 10 h, 20 h, and 30 h after hCG for determination of ovulation, ovarian steroid levels, and changes in the levels of kinin system components. Plasma total kininogen levels did not change during the entire period studied. In contrast, ovarian total kininogen levels rose from 0 h to reach a peak at 10 h--a time immediately preceding the beginning of ovulation--after which the levels fell at 20 h, only to rise again at 30 h. Three species of kininogens, high molecular weight (HMW), low molecular weight (LMW), and T-kininogen, were shown to be present in the ovary. T-kininogen was the major kininogen present in the ovary, accounting for 60-92% of the total kininogen at any given time point during the ovulatory process. HMW kininogen levels accounted for only 1.2% of the total ovarian kininogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A high molecular weight kininogen has been isolated from rat plasma and purified. At each preparative step the kininogen concentration and purity were monitored by assay on the perfused isolated rat uterus in terms of bradykinin equivalents formed per mg protein following incubation of the plasma fractions with rodent acid protease for 24 hours at 37 and pH 4.0. Kinin formation by crystalline trypsin and human pancreatic kallikrein also was compared. Citrated rat plasma first was precipitated with 43% ammonium sulfate. The kininogen fractions then were subjected to a series of gel filtration ion exchange chromatographic columns that included G-200 Sephadex, G-200: G-100 Sephadex interconnected columns, DEAE-A50 Sephadex, and hydroxylapatite. The kininogen fractions finally were subjected to preparative polyacrylamide gel electrophoresis, resulting in a final purification of 92.9-fold compared to the initial rat plasma. A single major kininogen protein band and a minor band of protein impurity were obtained on disc gel electrophoresis. Only the pancreatic kallikrein did not form kinin from this purified kininogen. The apparent molecular weight was estimated by SDS polyacrylamide gel technique to be 110,000.  相似文献   

20.
Direct radioimmunoassay for rat T-kininogen   总被引:1,自引:0,他引:1  
Antibodies raised in rabbits against pure rat T-kininogen did not cross-react with Ile-Ser-Bradykinin, bradykinin, nor with kininogens from other mammalian species. They presented a 1 to 15% cross-reaction with pure rat HMW kininogen, depending on the quantity of HMW kininogen. A direct radioimmunoassay for rat T-kininogen in plasma was developed and it enabled 89 fmol of the protein to be detected. A good correspondence was obtained between the direct RIA and the T-kinin generating assay. By the direct assay, it was found that T-kininogen is increased about ten fold in rats subcutaneously injected with turpentine. These data were confirmed by HPLC analysis of the plasma kinins released by trypsin which demonstrated that only T-kinins are increased, bradykinin being unchanged. It was possible according to the results obtained by the direct RIA and HPLC analysis to estimate that in the normal rat, HMW and LMW kininogen represent about 35% and T-kininogen 65%. In the turpentine-treated rat, T-kininogen reached 95%. This RIA will allow the study of the regulation of T-kininogen in the rat and the synthesis of this protein in cells in culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号