首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Purification of dual-tagged intact recombinant proteins   总被引:1,自引:0,他引:1  
Large-scale purification of recombinant proteins has been used extensively to assist numerous protein studies, including investigation of function, substrate identification and protein-protein interaction of low abundance proteins. Genetic fusion of affinity tags to these proteins has also been widely used for ease of purification by affinity chromatography. However, this technique sometimes yields unstable and degraded protein products limiting its application. In this study, we show a facile and straightforward method of dual-tagged recombinant protein purification that eliminates contamination by degraded protein products. A 6His-containing BamHI-HindIII fragment from pQE12 was ligated into the pGEX-KG BamHI-HindIII fragment and the protein of interest (p25(nck5a), which is highly susceptible to proteolytic degradation when expressed and purified from bacteria) was cloned into the BamHI site without a termination codon. The resulting plasmid construct, designated as pGST-p25(nck5a)-6His, with GST at the N-terminal and 6His at the C-terminal was expressed in Escherichia coli DH5alpha and purified using a two-step procedure. We show that using Ni(2+)-NTA chromatography as a first purification step and GSH-agarose chromatography as a second step, rather than vice-versa, yields a highly purified intact protein that is free of any contaminating degraded protein product. The purified fusion protein is soluble and fully active.  相似文献   

2.
Production of milligram quantities of numerous proteins for structural and functional studies requires an efficient purification pipeline. We found that the dual tag, his(6)-tag-maltose-binding protein (MBP), intended to facilitate purification and enhance proteins' solubility, disrupted such a pipeline, requiring additional screening and purification steps. Not all proteins rendered soluble by fusion to MBP remained soluble after its proteolytic removal, and in those cases where the protein remained soluble, standard purification protocols failed to remove completely the stoichiometric amount of his(6)-tagged MBP generated by proteolysis. Both liabilities were alleviated by construction of a vector that produces fusion proteins in which MBP, the his(6)-tag and the target protein are separated by highly specific protease cleavage sites in the configuration MBP-site-his(6)-site-protein. In vivo cleavage at the first site by co-expressed protease generated untagged MBP and his(6)-tagged target protein. Proteins not truly rendered soluble by transient association with MBP precipitated, and untagged MBP was easily separated from the his-tagged target protein by conventional protocols. The second protease cleavage site allowed removal of the his(6)-tag.  相似文献   

3.
A modular series of versatile expression vectors is described for improved affinity purification of recombinant fusion proteins. Special features of these vectors include (i) serial affinity tags (hexahistidine-GST) to yield extremely pure protein even with very low expression rates, (ii) highly efficient proteolytic cleavage of affinity tags under a variety of conditions by hexahistidine-tagged tobacco etch virus (TEV) protease, (iii) PCR cloning design that results in a product of proteolytic cleavage with only one (a single glycine) or two (gly-ala) amino acids at the N-terminus of the protein, and (iv) expression in either Escherichia coli or Saccharomyces cerevisiae. In addition, singly hexahistidine-tagged proteins can be produced for purification under denaturing conditions and some vectors allow addition of five amino acid kinase recognition sites for easy radiolabeling of proteins. To illustrate the use of these vectors, all regulatory components of the yeast GAL regulon, rather than abundant highly soluble proteins, were produced and purified under native or denaturing conditions, and their biological activity was confirmed.  相似文献   

4.
The purification of recombinant proteins by affinity chromatography is one of the most efficient strategies due to the high recovery yields and purity achieved. However, this is dependent on the availability of specific affinity adsorbents for each particular target protein. The diversity of proteins to be purified augments the complexity and number of specific affinity adsorbents needed, and therefore generic platforms for the purification of recombinant proteins are appealing strategies. This justifies why genetically encoded affinity tags became so popular for recombinant protein purification, as these systems only require specific ligands for the capture of the fusion protein through a pre-defined affinity tag tail. There is a wide range of available affinity pairs “tag-ligand” combining biological or structural affinity ligands with the respective binding tags. This review gives a general overview of the well-established “tag-ligand” systems available for fusion protein purification and also explores current unconventional strategies under development.  相似文献   

5.
Several systems have been developed to allow for rapid and efficient purification of recombinant proteins expressed in bacteria. The expression of polypeptides in frame with glutathione S-transferase (GST) allows for purification of the fusion proteins from crude bacterial extracts under nondenaturing conditions by affinity chromatography on glutathione agarose (D. B. Smith and K. S. Johnson, 1988, Gene 67, 31-40). This vector expression system has also incorporated specific protease cleavage sites to facilitate proteolysis of the bacterial fusion proteins. In our hands, the cleavage of these fusion proteins at a thrombin cleavage site proceeded slowly. To facilitate the cleavage of fusion proteins, we have introduced a glycine-rich linker (glycine kinker) containing the sequence P.G.I.S.G.G.G.G.G located immediately following the thrombin cleavage site. This glycine kinker greatly increases the thrombin cleavage efficiency of several fusion proteins. The introduction of the glycine kinker into fusion proteins allows for the cleavage of the fusion proteins while they are attached to the affinity resin resulting in a single step purification of the recombinant protein. More than 2 mg of the highly purified protein was obtained from the equivalent of 100 ml of bacterial culture within a few hours when a protein tyrosine phosphatase was employed as a test protein. The vector, pGEX-KG, has also been modified to facilitate cloning of a variety of cDNAs in all reading frames and has been successfully used to express several eukaryotic proteins.  相似文献   

6.
In this work, a multifunctional expression cassette, termed Multitags, combining different and complementary functionalities, was designed and used to monitor the expression and the purification of two model proteins (Pfu DNA polymerase and Myosin-VIIa- and Rab-Interracting protein : MyRIP). Multitags contains two affinity purification tags, a polyhistidine sequence (10× His) and the streptavidin-binding peptide (SBP) and as a marker tag the heme-binding domain of rat cytochrome b5 followed by the TEV cleavage site. Using the Multitags as fusion partner, more than 90 % of both fusion proteins were produced in soluble form when expressed in Escherichia coli KRX. In addition, high purity (99 %) of recombinant proteins was achieved after two consecutive affinity purification steps. The expression cassette also demonstrated an accurate monitoring capability comparable to that of a dual recognition-based method. The choice of the SBP tag was considered as an integral process that included a method for tag removal. Thus, an immobilized TEV protease fixed on streptavidin–agarose matrix was used for the cleavage of fusion proteins. After digestion, both unprocessed fusion proteins and Multitags were retained on the proteolytic column via their SBP sequence, allowing cleavage and recovery of target proteins on one step. This combined approach may accelerate the development of optimized production processes, while insuring high product quality and a low production cost.  相似文献   

7.
Fusion tails for the recovery and purification of recombinant proteins.   总被引:7,自引:1,他引:6  
Several fusion tail systems have been developed to promote efficient recovery and purification of recombinant proteins from crude cell extracts or culture media. In these systems, a target protein is genetically engineered to contain a C- or N-terminal polypeptide tail, which provides the biochemical basis for specificity in recovery and purification. Tails with a variety of characteristics have been used: (1) entire enzymes with affinity for immobilized substrates or inhibitors; (2) peptide-binding proteins with affinity to immunoglobulin G or albumin; (3) carbohydrate-binding proteins or domains; (4) a biotin-binding domain for in vivo biotination promoting affinity of the fusion protein to avidin or streptavidin; (5) antigenic epitopes with affinity to immobilized monoclonal antibodies; (6) charged amino acids for use in charge-based recovery methods; (7) poly(His) residues for recovery by immobilized metal affinity chromatography; and (8) other poly(amino acid)s, with binding specificities based on properties of the amino acid side chain. Fusion tails are useful at the lab scale and have potential for enhancing recovery using economical recovery methods that are easily scaled up for industrial downstream processing. Fusion tails can be used to promote secretion of target proteins and can also provide useful assay tags based on enzymatic activity or antibody binding. Many fusion tails do not interfere with the biological activity of the target protein and in some cases have been shown to stabilize it. Nevertheless, for the purification of authentic proteins a site for specific cleavage is often included, allowing removal of the tail after recovery.  相似文献   

8.
The production of candidate affinity proteins in a soluble form, for downstream characterization, is often a time-consuming step in combinatorial protein engineering methods. Here, a novel approach for efficient production of candidate clones is described based on direct cleavage of the affinity protein from the surface of Staphylococcus carnosus, followed by affinity purification. To find a suitable strategy, three new fusion protein constructs were created, introducing a protease site for specific cleavage and purification tags for affinity chromatography purifications into the staphylococcal display vector. The three modified strains were evaluated in terms of transformation frequency, surface expression level and protease cleavage efficiency. A protocol for efficient affinity purification of protease-released affinity proteins using the introduced fusion-tags was successfully used, and the functionality of protease-treated and purified proteins was verified in a biosensor assay. To evaluate the devised method, a previously selected HER2-specific affibody was produced applying the new principle and was used to analyze HER2 expression on human breast cancer cells.  相似文献   

9.
Various constructs of the human immunodeficiency virus, type 1 (HIV-1) protease containing flanking Pol region sequences were expressed as fusion proteins with the maltose-binding protein of the malE gene of Escherichia coli. The full-length fusion proteins did not exhibit self-processing in E. coli, thereby allowing rapid purification by affinity chromatography on cross-linked amylose columns. Denaturation of the fusion protein in 5 M urea, followed by renaturation, resulted in efficient site-specific autoprocessing to release the 11-kDa protease. Rapid purification involving two column steps gave an HIV-1 protease preparations of greater than 95% purity (specific activity approximately 8500 pmol.min-1.micrograms protease-1) with an overall yield of about 1 mg/l culture. Incubation of an inactive mutant protease fusion protein with the purified wild-type protease resulted in specific trans cleavage and release of the mutant protease. Analysis of products of the HIV-1 fusion proteins containing mutations at either the N- or the C-terminal protease cleavage sites indicated that blocking one of the cleavage sites influences the cleavage at the non-mutated site. Such mutated full-length and truncated protease fusion proteins possess very low levels of proteolytic activity (approximately 5 pmol.min-1.micrograms protein-1).  相似文献   

10.
Protein splicing elements (inteins), capable of catalyzing controllable peptide bond cleavage reactions, have been used to separate recombinant proteins from affinity tags during affinity purification. Since the inteins eliminate the use of a protease in the recovery process, the intein-mediated purification system has the potential to significantly reduce recovery costs for the industrial production of recombinant proteins. Thus far, the intein system has only been examined and utilized for expression and purification of recombinant proteins at the laboratory scale for cells cultivated at low cell densities. In this study, protein splicing and in vitro cleavage of intein fusion proteins expressed in high-cell-density fed-batch fermentations of recombinant Escherichia coli were examined. Three model intein fusion constructs were used to examine the stability and splicing/cleavage activities of the fusion proteins produced under high-cell-density conditions. The data indicated that the intein fusion protein containing the wild-type intein catalyzed efficient in vivo protein splicing during high-cell-density cultivation. Also, the intein fusion proteins containing modified inteins catalyzed efficient thiol-induced in vitro cleavage reactions. The results of this study demonstrated the potential feasibility of using the intein-mediated protein purification system for industrial-scale production of recombinant proteins.  相似文献   

11.
Dihydrofolate reductase (DHFR) has been demonstrated to be a versatile "affinity handle" for expression of recombinant proteins. The DHFR "handle" has advantages not only in terms of efficiency of expressing the fusion protein as a soluble form but also in stabilizing unstable polypeptides and facilitating purification of the expressed protein by means of methotrexate-bound affinity chromatography and by making use of the enzyme activity. Fifteen genes encoding different lengths of polypeptides of 5 to 44 amino acids were chemically synthesized and introduced into expression vectors, pTP70-1 or its derivatives. All the polypeptide genes were efficiently expressed in Escherichia coli cells as fusion proteins which show DHFR activity. The respective fusion proteins were highly purified from cell-free extracts by monitoring the DHFR activity at each purification step. The use of methotrexate-bound affinity chromatography was very effective. In order to cut out the polypeptides, the purified fusion proteins were treated with either BrCN or site-specific protease according to the spacer sequence. The objective polypeptide was purified by means of a reversed-phase high-pressure liquid chromatography (HPLC) system. Specific cleavage of the purified fusion protein actually yielded very few peptide fragments, so the assignment and isolation of the objective polypeptide were carried out without difficulty.  相似文献   

12.
A new protein fusion system has been developed to generate free recombinant protein in a single affinity chromatographic step. The key component in the fusion is the catalytic core of sortase A from Staphylococcus aureus (SrtAc), which recognizes and cleaves the Thr-Gly bond at an LPXTG sequence with moderate activity. The fusion here consists of an N-terminal His6 tag, SrtAc, and an LPETG linker followed by protein of interest at the C-terminus. The fusion protein is expressed in Escherichia coli and purified by immobilized metal-ion affinity chromatography (IMAC). The immobilized fusion then undergoes on-column SrtAc-mediated cleavage at the LPETG site in the presence of Ca2+ and/or triglycine. The target protein with an extra N-terminal glycine is released from the fusion while the N-terminal portion remains bound to the column. Because the cleavage enzyme SrtAc is co-expressed as a fusion with the target protein, the purification system eliminates exogenous proteolysis. This purification approach is simple, robust, inexpensive, time saving, and allows purification of free recombinant protein via one-step chromatography.  相似文献   

13.
We introduce a new method for purifying recombinant proteins expressed in bacteria using a highly specific, inducible, self-cleaving protease tag. This tag is comprised of the Vibrio cholerae MARTX toxin cysteine protease domain (CPD), an autoprocessing enzyme that cleaves exclusively after a leucine residue within the target protein-CPD junction. Importantly, V. cholerae CPD is specifically activated by inositol hexakisphosphate (InsP6), a eukaryotic-specific small molecule that is absent from the bacterial cytosol. As a result, when His6-tagged CPD is fused to the C-terminus of target proteins and expressed in Escherichia coli, the full-length fusion protein can be purified from bacterial lysates using metal ion affinity chromatography. Subsequent addition of InsP6 to the immobilized fusion protein induces CPD-mediated cleavage at the target protein-CPD junction, releasing untagged target protein into the supernatant. This method condenses affinity chromatography and fusion tag cleavage into a single step, obviating the need for exogenous protease addition to remove the fusion tag(s) and increasing the efficiency of tag separation. Furthermore, in addition to being timesaving, versatile, and inexpensive, our results indicate that the CPD purification system can enhance the expression, integrity, and solubility of intractable proteins from diverse organisms.  相似文献   

14.
New vectors for high level expression of recombinant proteins in bacteria.   总被引:26,自引:0,他引:26  
A system has been developed for synthesis and rapid purification of recombinant polypeptides expressed in frame with glutathione S-transferase (D. B. Smith and K. S. Johnson, 1988, Gene 67, 31-40). Expressed fusion proteins are purified from bacterial extracts by glutathione-agarose affinity chromatography. A thrombin protease cleavage site allowed for proteolysis of the fusion protein. We reported the construction of the vector pGEX-KG (K. Guan and J. E. Dixon, 1991, Anal. Biochem. 192, 262-267) which has a glycine-rich "kinker" immediately after the thrombin cleavage site. This kinker dramatically improved the thrombin cleavage efficiency of several fusion proteins. One potential drawback of expressing proteins in this vector is that, following proteolytic cleavage, unrelated amino acids from the vector remain at the amino terminus of the released protein. These extensions could affect enzymatic activity or protein structure. We have constructed two new vectors, pGEX-KT and pGEX-KN, which have the glycine kinker placed N-terminal to the thrombin cleavage site in order to minimize the unrelated amino acids associated with the cleaved protein. The change in location of the kinker had no effect on the increased thrombin cleavage efficiency. A strategy combining the kinker in the vector pGEX-KN with polymerase chain reaction has also been developed to express fusion proteins which when cleaved with thrombin released a protein having no amino terminal extensions of any kind.  相似文献   

15.
A major problem in assessing the vaccine and diagnostic potential of various proteins encoded by Mycobacterium tuberculosis genome is the inability to produce large quantities of these proteins, even when Escherichia coli or other heterologous systems are employed for recombinant protein production. To overcome these barriers, we have constructed a modified expression vector, using pGEX-4T-1 vector as the backbone. In addition to the features offered by the pGEX-4T vectors, the new vector allowed easy purification of recombinant proteins on the highly versatile Ni-NTA-agarose affinity matrix. The utility of the new vector was demonstrated by expressing and purifying, to near homogeneity, two M. tuberculosis proteins, i.e., Rv3872 (a member of the multi-gene PE subfamily) and Rv3873 (a member of the multi-gene PPE subfamily), which are encoded by the RD1 region of M. tuberculosis. The proteins encoded by rv3872 and rv3873 were expressed at high levels as fusion proteins with glutathione-S-transferase in E. coli. The recombinant Rv3872 and Rv3873 proteins were purified and isolated free of the fusion partner (GST) by affinity purification on glutathione-Sepharose and/or Ni-NTA-agarose affinity matrix and cleavage of the purified fusion proteins by thrombin protease. The recombinant Rv3872 protein was nearly homogeneous (more than 95% pure) while Rv3873 preparation was more than 90% pure. The recombinant Rv3872 and Rv3873 proteins were immunologically active and reacted with antibodies in sera from TB patients. Our results demonstrate the utility of the newly constructed expression vector with two affinity tags for efficient expression and purification of recombinant M. tuberculosis proteins expressed in E. coli, which could be used for further diagnostic and immunological studies.  相似文献   

16.
A new strategy to prevent degradation of recombinant proteins caused by non-specific cleavage by thrombin is described. We demonstrate that degradation due to non-specific cleavage of recombinant protein mediated by thrombin can be completely prevented by separation of thrombin from the recombinant protein on spin columns packed with heparin-sepharose. This method is generally applicable to all recombinant proteins that require the thrombin for the cleavage of affinity tags for purification. To our knowledge, this is the first report of an efficient and reliable method for the separation of residual thrombin from purified recombinant proteins.  相似文献   

17.
Lucast LJ  Batey RT  Doudna JA 《BioTechniques》2001,30(3):544-6, 548, 550 passim
Tobacco etch virus NIa proteinase (NIa-Pro) has become the enzyme of choice for removing tags and fusion domains from recombinant proteins in vitro. We have designed a mutant NIa-Pro that resists autoproteolytic inactivation and present an efficient method for producing large amounts of this enzyme that is highly pure, active, and stable over time. Histidine-tagged forms of both wild-type and mutant NIa-Pro were overexpressed in E. coli under conditions in which greater than 95% of the protease was in the insoluble fraction after cell lysis. An inclusion body preparation followed by denaturing purification over a single affinity column and protein renaturation yields greater than 12.5 mg enzyme per liter of bacterial cell culture. NIa-Pro purified according to this protocol has been used for quantitative removal of fusion domains from a variety of proteins prepared for crystallization and biochemical analysis.  相似文献   

18.
Site-specific proteases are the most popular kind of enzymes for removing the fusion tags from fused target proteins. Nuclear inclusion protein a (NIa) proteases obtained from the family Potyviridae have become promising due to their high activities and stringencies of sequences recognition. NIa proteases from tobacco etch virus (TEV) and tomato vein mottling virus (TVMV) have been shown to process recombinant proteins successfully in vitro. In this report, recombinant PPV (plum pox virus) NIa protease was employed to process fusion proteins with artificial cleavage site in vitro. Characteristics such as catalytic ability and affecting factors (salt, temperature, protease inhibitors, detergents, and denaturing reagents) were investigated. Recombinant PPV NIa protease expressed and purified from Escherichia coli demonstrated efficient and specific processing of recombinant GFP and SARS-CoV nucleocapsid protein, with site F (N V V V H Q black triangle down A) for PPV NIa protease artificially inserted between the fusion tags and the target proteins. Its catalytic capability is similar to those of TVMV and TEV NIa protease. Recombinant PPV NIa protease reached its maximal proteolytic activity at approximately 30 degrees C. Salt concentration and only one of the tested protease inhibitors had minor influences on the proteolytic activity of PPV NIa protease. Recombinant PPV NIa protease was resistant to self-lysis for at least five days.  相似文献   

19.
The new bacterial vector pETM60 enables the expression of His-tagged recombinant proteins fused to the C-terminus of NusA through a TEV protease recognition sequence. Three sequences coding for two protein domains (Xklp3A and Tep3Ag) and one membrane-bound viral protein (E8R) could not be expressed in a soluble form in bacteria. Their GST-fusions were mostly soluble but quickly degraded during purification. The same sequences cloned in pETM60 were efficiently purified by metal affinity and recovered soluble after the removal of the fusion partner. The NusA-fused constructs enabled to yield 13-20mg of fusion protein per litre of culture and 2.5-5mg of pure protein per litre of culture. Structural analysis indicated that the purified proteins were monodispersed and correctly folded. NusA has been used to raise antibodies that have been successfully used for Western blot and immunoprecipitation of NusA fusion proteins.  相似文献   

20.
Li Y 《Biotechnology letters》2011,33(5):869-881
Fusion expression is a common practice for recombinant protein production. Some fusion tags confer solubility on the target protein whereas others provide affinity handles that facilitate purification. However, the tag usually needs to be removed from the final product, which involves using expensive proteases or hazardous chemicals and requires additional chromatography steps. Self-cleaving tags are a special group of fusion tags that possess inducible proteolytic activity. Combined with appropriate affinity tags, they enable fusion purification, cleavage and target separation to be achieved in a single step, which saves time, labor and cost. This paper reviews currently available self-cleaving fusion tags for recombinant protein production. For each system, an introduction of its key characteristics and a brief discussion of its advantages and disadvantages is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号