首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Expression and affinity purification of recombinant proteins from plants   总被引:1,自引:0,他引:1  
With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag. In the proposed system, CaM is fused to GUS. In the presence of calcium, the calmodulin fusion protein binds specifically to a phenothiazine-modified surface of an affinity column. When calcium is removed with a complexing agent, e.g., EDTA, calmodulin undergoes a conformational change allowing the dissociation of the calmodulin-phenothiazine complex and, therefore, permitting the elution of the GUS-CaM fusion protein. The advantages of this approach are the fast, efficient, and economical isolation of the target protein under mild elution conditions, thus preserving the activity of the target protein. Two types of transformation methods were used in this study, namely, the Agrobacterium-mediated system and the viral-vector-mediated transformation system.  相似文献   

2.
The selective binding of the family 2a carbohydrate binding module (CBM2a) of xylanase 10A of the soil bacterium Cellulomonas fimi to a variety of cellulosic substrates is shown to provide a new, cost-effective affinity chromatography system for purification of recombinant protein. Genetic linkage of CBM2a to a target protein, in this case protein A from Staphylococcus aureus, results in a fusion protein that binds strongly to the particulate-cellulose resin Avicel PH101 and retains the biological activity of the fusion partner. Affinity purification of protein A-CBM2a from the supernatant of a recombinant E. coli JM101 culture results in a product purity of greater than 95% and a product concentration factor of 34 +/- 3. Measured column parameters are combined with one-dimensional equations governing continuity and intraparticle diffusion to predict product breakthrough curves with good accuracy over the range of realistic operating conditions. Peak spreading within the column is controlled by intraparticle diffusion for CBM2a and by a combination of film mass transfer and intraparticle diffusion for the larger protein A-CBM2a fusion protein.  相似文献   

3.
Prokaryotic expression of polypeptides as fusion proteins with glutathione-S-transferase has recently been reported as a one-step means of purifying recombinant protein. The usefulness of the glutathione-S-transferase/glutathioneagarose system, however, is significantly limited by the frequent synthesis of recombinant proteins in insuluble form by Escherichia coli. We have found that for 5 separate fusion proteins containing glutathione-S-transferase and different domains of the large cystic fibrosis transmembrane conductance regulator, all were packaged in insoluble form by E. coli. Insolubility of these products made them inaccessible to one-step purification utilizing this scheme requires proper folding of recombinant glutathione-S-transferase to allow recognition on glutathione affinity agarose, we investigated the suitability of several alternative approaches for converting insoluble recombinant fusion proteins to a soluble form amenable to glutathione-agarose affinity purification. Low-temperature induction of fusion protein synthesis, but not incubation with anion-exchange resins, led to improved one-step purification of glutathione-S-transferase fusion proteins from E. coli cell lysate using mild, nondenaturing conditions. Solubilization in 8 mol/L urea, but not with other chaotropic agents or detergents, also allowed preparative yields of affinity-purified fusion protein. These techniques increase the usefulness of this recombinant protein purification scheme, and should be broadly applicable to diverse polypeptides synthesized as fusions with glutathione-S-transferase.  相似文献   

4.
Affinity tags are highly efficient tools for protein purification. They allow the purification of virtually any protein without any prior knowledge of its biochemical properties. The use of affinity tags has therefore become widespread in several areas of research e.g., high throughput expression studies aimed at finding a biological function to large numbers of yet uncharacterized proteins. In some cases, the presence of the affinity tag in the recombinant protein is unwanted or may represent a disadvantage for the projected application of the protein, like for clinical use. Therefore, an increasing number of approaches are available at present that are designed for the removal of the affinity tag from the recombinant protein. Most of these methods employ recombinant endoproteases that recognize a specific sequence. These process enzymes can subsequently be removed from the process by affinity purification, since they also include a tag. Here, a survey of the most common affinity tags and the current methods for tag removal is presented, with special emphasis on the removal of N-terminal histidine tags using TAGZyme, a system based on exopeptidase cleavage. In the quest to reduce the significant costs associated with protein purification at large scale, relevant aspects involved in the development of downstream processes for pharmaceutical protein production that incorporate a tag removal step are also discussed. A comparison of the yield of standard vs. affinity purification together with an example of tag removal using TAGZyme is also included.  相似文献   

5.
Multiple recombinant proteins can be expressed simultaneously by inoculating multiple seed cultures into a single growth medium and inducing protein expression at a single time point. Up to three recombinant proteins can be individually purified from such a mixed culture (cocultivation) through the use of a combination of a multihistidine and a modified intein as affinity tags and the Ni sepharose and chitin as affinity matrices. This method may facilitate the study of protein complexes by rapidly obtaining multiple protein components in a single process and may potentially increase the efficiency of recombinant protein production at research and industrial scales.  相似文献   

6.
Summary Sequences encoding GST-fusion proteins were cloned into the Saccharomyces cerevisiae secretion vector, pYEX-S1, to direct secretion into the culture medium. GST and metallothionein fused to GST were secreted successfully and the fusion proteins purified. With several other GST-fusion proteins however, the proteins were retained inside the cell, indicating limitations to the types of proteins that can be secreted from yeast.  相似文献   

7.
Expression of recombinant proteins as translational fusions is commonly employed to enhance stability, increase solubility and facilitate purification of the desired protein. In general, such fusion proteins must be cleaved to release the mature protein in its native form. The usefulness of the procedure depends on the efficiency and precision of cleavage and its cost per unit activity. We report here the development of a general procedure for precise and highly efficient cleavage of recombinant fusion proteins using the protease chymosin. DNA encoding a modified pro-peptide from bovine chymosin was fused upstream of hirudin, carp growth hormone, thioredoxin and cystatin coding sequences and expressed in a bacterial Escherichia coli host. Each of the resulting fusion proteins was efficiently cleaved at the junction between the pro-peptide and the desired protein by the addition of chymosin, as determined by activity, N-terminal sequencing and mass spectrometry of the recovered protein. The system was tested further by cleavage of two fusion proteins, cystatin and thioredoxin, sequestered on oilbody particles obtained from transgenic Arabidopsis seeds. Even when the fusion protein was sequestered and immobilized on oilbodies, precise and efficient cleavage was obtained. The precision, efficiency and low cost of this procedure suggest that it could be used in larger scale manufacturing of recombinant proteins which benefit from expression as fusions in their host organism.  相似文献   

8.
A gene fusion approach to simplify protein immobilization and purification is described. A gene encoding the protein of interest is fused to a gene fragment encoding the affinity peptide Ala-His-Gly-His-Arg-Pro. The expressed fusion proteins can be purified using immobilized metal affinity chromatography. A vector, designed to ensure obligate head-to-tail polymerization of oligonucleotide linkers was constructed by in vitro mutagenesis. A linker encoding the affinity peptide, was synthesized and polymerized to two, four and eight copies. These linkers were fused to the 3' end of a structural gene encoding a two-domain protein A molecule, ZZ, and to the 5' end of a gene encoding beta-galactosidase. Fusion proteins, of both types, with zero or two copies of the linker showed little or no binding to immobilized Zn2+, while a relatively strong interaction could be observed for the fusions based on four or eight copies of the linker. Using a pH gradient, the ZZ fusions were found to be eluted from the resin at different pHs depending on the number of the affinity peptide. These results demonstrate that genetic engineering can be used to facilitate purification and immobilization of proteins to immobilized Zn2+ and that the multiplicity of the affinity peptide is an important factor determining the binding characteristics.  相似文献   

9.
Biospecific affinity chromatography has been used to purify specific cyclic AMP and cyclic GMP receptor proteins. Several variables are important for successful purification of the cyclic AMP receptor protein, the most critical being the length of the aliphatic spacer side arm. 8-(2-Aminoethyl)-amino-cyclic AMP coupled to the aliphatic spacer side arm. 8-(2-Aminoethyl)-amino-cyclic AMP coupled to agarose specifically retains the cyclic AMP receptor protein by interaction with the immobilized nucleotide. Binding of the cyclic AMP receptor subunit of cyclic AMP-dependent protein kinase to the immobilized nucleotide results in dissociation of the catalytic protein phosphokinase subunit which is not retained. The retained cyclic AMP receptor protein is subsequently eluted by cyclic AMP. Homogeneous cyclic AMP receptor protein prepared from rabbit skeletal muscle by affinity chromatography has been characterized. The molecular weight of the native protein as determined by analytical ultracentrifugation and polyacrylamide gel electrophoresis at varying acrylamide concentrations is 76 800 and 82 000, respectively. The protein is asymmetric with frictional and axial ratios of 1.64 and 12. SDS and urea polyacrylamide gel electrophoresis indicate that the native cyclic AMP receptor is composed of two identical subunits of 42 700 molecular weight. The native protein dimer binds 2 moles of cyclic AMP per mole of protein and is active in suppressing activity of isolated catalytic subunits of cyclic AMP-dependent protein kinase. Cyclic GMP receptor protein from bovine lung has been purified using the same affinity chromatography media. Since cyclic nucleotide binding to cyclic GMP-dependent protein kinase does not result in dissociation of regulatory receptor and catalytic phosphotransferase subunits, the cyclic GMP-dependent protein kinase holoenzyme is retained on the column and can be subsequently specifically eluted with cyclic GMP.  相似文献   

10.
The pMAL vectors provide a method for purifying proteins from cloned genes by fusing them to maltose-binding protein (MBP, product of malE), which binds to amylose. The vectors use the tac promoter and the translation initiation signals of MBP to give high-level expression of the fusion, and an affinity purification for MBP to isolate the fusion protein. The pMAL polylinkers carry restriction sites to insert the gene of interest, and encode a site for a specific protease to separate MBP from the target protein after purification. Vectors with or without the malE signal sequence can be used, to express the protein cytoplasmically for the highest level of production or periplasmically to help in proper folding of disulfide-bonded proteins.  相似文献   

11.
Literature data are analysed in this review on the use of immobilized triazine dyes for the characterization, isolation and purification of non-enzymatic human plasma proteins in both conventional and high-pressure liquid chromatography systems. Attention is focused on the mode of interaction between the dyes and these proteins, as well as on the advantages over previously reported techniques. Future developments are discussed.  相似文献   

12.
A new protein fusion system has been developed to generate free recombinant protein in a single affinity chromatographic step. The key component in the fusion is the catalytic core of sortase A from Staphylococcus aureus (SrtAc), which recognizes and cleaves the Thr-Gly bond at an LPXTG sequence with moderate activity. The fusion here consists of an N-terminal His6 tag, SrtAc, and an LPETG linker followed by protein of interest at the C-terminus. The fusion protein is expressed in Escherichia coli and purified by immobilized metal-ion affinity chromatography (IMAC). The immobilized fusion then undergoes on-column SrtAc-mediated cleavage at the LPETG site in the presence of Ca2+ and/or triglycine. The target protein with an extra N-terminal glycine is released from the fusion while the N-terminal portion remains bound to the column. Because the cleavage enzyme SrtAc is co-expressed as a fusion with the target protein, the purification system eliminates exogenous proteolysis. This purification approach is simple, robust, inexpensive, time saving, and allows purification of free recombinant protein via one-step chromatography.  相似文献   

13.
de Marco A 《Nature protocols》2006,1(3):1538-1543
The present purification protocol applies to target proteins that are fused to a double tag, such as NusA-His6, through a linker that includes a protease-recognition sequence. It involves two steps of immobilized metal ion affinity chromatography (IMAC). NusA stabilizes the passenger protein during translation, whereas the His-tag enables affinity purification of the fusion. The eluate resulting from the first IMAC is buffer-exchanged to remove the imidazole and to achieve optimal conditions for the enzymatic cleavage performed by a His-tagged recombinant protease. The digested sample is loaded directly for a second IMAC step and the target protein is selectively recovered in the flow-through. The resin binds residual non-digested fusion protein, double-tagged moiety, protease and any contaminant that bound the affinity resin and was eluted from the first IMAC. The purity of the target protein usually makes a further purification step unnecessary for most of the lab applications. It takes less than 5 hours to purify the protein from a 5 g pellet.  相似文献   

14.
A fusion tag, called FLAG and consisting of eight amino acids (AspTyrLysAspAspAspAspLys) including an enterokinase-cleavage site, was specifically designed for immunoaffinity chromatography. It allows elution under non-denaturing conditions [Bio/Technology, 6 (1988) 1204]. Several antibodies against this peptide have been developed. One antibody, denoted as M1, binds the peptide in the presence of bivalent metal cations, preferably Ca(+). Elution is effected by chelating agents. Another strategy is competitive elution with excess of free FLAG peptide. Antibodies M2 and M5 are applied in this procedure. Examples demonstrating the versatility, practicability and limitations of this technology are given.  相似文献   

15.
We describe a new method for affinity purification of recombinant proteins using a dual protease protocol. Escherichia coli maltose binding protein (MBP) is employed as an N-terminal tag to increase the yield and solubility of its fusion partners. The MBP moiety is then removed by rhinovirus 3C protease, prior to purification, to yield an N-terminally His6-tagged protein. Proteins that are only temporarily rendered soluble by fusing them to MBP are readily identified at this stage because they will precipitate after the MBP tag is removed by 3C protease. The remaining soluble His6-tagged protein, if any, is subsequently purified by immobilized metal affinity chromatography (IMAC). Finally, the N-terminal His6 tag is removed by His6-tagged tobacco etch virus (TEV) protease to yield the native recombinant protein, and the His6-tagged contaminants are removed by adsorption during a second round of IMAC, leaving only the untagged recombinant protein in the column effluent. The generic strategy described here saves time and effort by removing insoluble aggregates at an early stage in the process while also reducing the tendency of MBP to “stick” to its fusion partners during affinity purification.  相似文献   

16.
N- or C-terminal fusions of red-fluorescent protein (RFP) with various fungal cellulose-binding domains (CBDs) belonging to carbohydrate binding module (CBM) family 1 were expressed in a Pichia pastoris expression system, and the resulting fusion proteins were used to examine the feasibility of large-scale affinity purification of CBD-tagged proteins on cellulose columns. We found that RFP fused with CBD from Trichoderma reesei CBHI (CBD(Tr)(CBHI)) was expressed at up to 1.2g/l in the culture filtrate, which could be directly injected into the cellulose column. The fusion protein was tightly adsorbed on the cellulose column in the presence of a sufficient amount of ammonium sulfate and was efficiently eluted with pure water. Bovine serum albumin (BSA) was not captured under these conditions, whereas both BSA and the fusion protein were adsorbed on a phenyl column, indicating that the cellulose column can be used for the purification of not only hydrophilic proteins but also for hydrophobic proteins. Recovery of various fusion proteins exceeded 80%. Our results indicate that protein purification by expression of a target protein as a fusion with a fungal family 1 CBD tag in a yeast expression system, followed by affinity purification on a cellulose column, is simple, effective and easily scalable.  相似文献   

17.
A purification procedure for neutral proteases from bacilli is described, in which bacitracin-silica was used as affinity medium. This enabled a one-step purification of the proteases directly from culture supernatant. Since neutral proteases are extremely sensitive towards autodigestion, conditions were chosen such, that autodigestion was largely prevented. Isopropanol appeared to be useful in both eluting the enzymes from the affinity medium, and inhibiting enzymatic activity during this step. The bacitracin-silica medium allowed high flow rates: with columns prepared for use in an FPLC system flow rates up to one column volume per minute were feasible, and still gave satisfactory results. The neutral proteases purified by this method were found to be homogeneous both by SDS-PAGE and analytical gel filtration.  相似文献   

18.
In order to improve the effectiveness of the production of recombinant proteins in E. coli, integrated fermentation processes were developed. Therefore, expression vectors were constructed containing a strongly expressed gene for a β-glucanase fused with a metal-chelating affinity tag and a leader peptide for directing the fusion protein into the periplasmic space. Its export into the medium was achieved by means of co-expression of a bacteriocin-release protein, the Kil protein from pColE1. Bioreactors were modified so that special devices containing metal chelate pentadentate chelator PDC resins were located within the bioreactor. Using the bioreactor with an internal device the Zn2+-PDC had a 4.3-fold higher binding capacity than metal-free PDC (12.3 and 2.6 kU ml−1 PDC, respectively. Using the bioreactor with charged PDC in an external circuit revealed even higher β-glucanase concentration (65.6 kU ml−1), i.e. 1.5-fold compared to the internal adsorbent system. An erratum to this article can be found at  相似文献   

19.
20.
A number of ligands for the selective purification by affinity chromatography of the trypsin-like protease, porcine pancreatic kallikrein, were designed de novo by computer-aided molecular design. The ligands were designed to mimic the side-chains of a number of arginyl dipeptides and included a benzamidine moiety substituted on a triazine ring. The ligands displayed inhibitory activities against pancreatic kallikrein which mirrored the specificity constants of the dipeptides they were designed to mimic. The ligand with the highest affinity for the enzyme, an analogue of a Phe-Arg dipeptide, when immobilized to Sepharose CL-4B via a hexamethylene spacer arm, purified pancreatic kallikrein 110-fold in one step from a crude pancreatic acetone extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号