首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 955 毫秒
1.
The purpose of this research was to micronize beclomethasone-17,21-dipropionate (BDP), an anti-inflammatory inhaled corticosteroid commonly used to treat asthma, using the rapid expansion of supercritical solution (RESS) technique. The RESS technique was chosen for its ability to produce both micron particles of high purity for inhalation, and submicron/nano particles as a powder handling aid for use in next generation dry powder inhalers (DPIs). Particle formation experiments were carried out with a capillary RESS system to determine the effect of experimental conditions on the particle size distribution (PSD). The results indicated that the RESS process conditions strongly influenced the particle size and morphology; with the BDP mean particle size decreasing to sub-micron and nanometer dimensions. An increase in the following parameters, i.e. nozzle diameter, BDP mol fraction, system pressure, and system temperature; led to larger particle sizes. Aerodynamic diameters were estimated from the SEM data using three separate relations, which showed that the RESS technique is promising to produce particles suitable for pulmonary delivery.  相似文献   

2.
The objective of this paper is to assess the number of drug particles or droplets contained in metered dose inhaler (MDI) aerosols. Equations were developed to estimate this. The number of drug particles was estimated to be as high as about 300 million for QVAR solution MDIs and as low as 670,000 for Beclovent MDIs. The number of particles in MDI aerosols was shown to be highly dependent on the mass median aerodynamic diameter (MMAD) and geometric standard deviation, and to a lesser extent the total mass of the aerosol. It was demonstrated that when the number of particles are calculated assuming that the aerosol is monodisperse and using the MMAD as the particle size, the number of particles are significantly underestimated. The number of droplets atomized from HFA-134a MDIs was estimated to range from about 220 million to about 1.1 billion droplets per actuation. For solution MDIs, each of the atomized droplets contains drug and thus the number of drug particles is the same as the number of atomized droplets. However, for suspension MDI formulations many of the droplets do not contain any micronized drug particles and the number of drug particles is much lower than the number of atomized droplets.  相似文献   

3.
A new technique is presented for the production of immobilized biocatalysts in large quantities. It consists of breaking up a jet of the biocatalyst/presupport mixture in uniform droplets by means of a resonance technique. Entrapment of yeast and plant cells in calcium alginate has been used as the model. The production capacity of the nozzles used (0.5, 0.8, and 1.1 mm exit diameters) is two orders of magnitude larger than the production capacity of the conventional techniques (maximum capacity with a 1.1-mm nozzle diameter is 24 L/h). Depending on frequency, nozzle diameter, and volumetric flow rate, the bead size varies between 1 and 2 mm, with standard deviations of 3-5% for yeast immobilization and 10-15% for plant cells. The deactivation of both yeast and plant cells is small and comparable to that found in the corresponding conventional procedures.  相似文献   

4.
Cyclosporine A (CyA) is a standard component of immunosuppressive regimens. It is a critical-dose drug for which a minor change in absorption can have important clinical consequences. The aim of the study was to compare the pharmacokinetics and safety of the new generic CyA formulation, Equoral capsules, after a switch from original formulation, Neoral capsules, in seventy stable adult renal transplant recipients. The extent and rate of pharmacokinetic parameters for bioequivalence were compared in a non-randomized, steady-state clinical study with fixed non-replicate study design. Pharmacokinetic analysis of CyA have shown that both the rate and extent of absorption of Equoral does not differ significantly from that of Neoral. At identical dosing, the new formulation was found to have geometric means of C(max) 717 ng/ml and AUCtau 3108 ng/ml.h, while corresponding results of comparator were 725 ng/ml and AUCtau 3039 ng/ml.h, respectively. The 90 % confidence intervals of C(max) and AUCtau were within 80- 125 % interval of the mean values. The results suggest that Equoral capsules can be used as an alternative treatment to Neoral capsules in CyA regimen.  相似文献   

5.

In this paper, the effect of the turbulence and swirling of the inlet flow and the diameter of the nozzle on the flow characteristics and the particles' transport/deposition patterns in a realistic combination of the nasal cavity (NC) and the maxillary sinus (MS) were examined. A computational fluid dynamics (CFD) model was developed in ANSYS® Fluent using a hybrid Reynolds averaged Navier–Stokes–large-eddy simulation algorithm. For the validation of the CFD model, the pressure distribution in the NC was compared with the experimental data available in the literature. An Eulerian–Lagrangian approach was employed for the prediction of the particle trajectories using a discrete phase model. Different inlet flow conditions were investigated, with turbulence intensities of 0.15 and 0.3, and swirl numbers of 0.6 and 0.9 applied to the inlet flow at a flow rate of 7 L/min. Monodispersed particles with a diameter of 5 µm were released into the nostril for various nozzle diameters. The results demonstrate that the nasal valve plays a key role in nasal resistance, which damps the turbulence and swirl intensities of the inlet flow. Moreover, it was found that the effect of turbulence at the inlet of the NC on drug delivery to the MS is negligible. It was also demonstrated that increasing the flow swirl at the inlet and decreasing the nozzle diameter improves the total particle deposition more than threefold due to the generation of the centrifugal force, which acts on the particles in the nostril and vestibule. The results also suggest that the drug delivery efficiency to the MS can be increased by using a swirling flow with a moderate swirl number of 0.6. It was found that decreasing the nozzle diameter can increase drug delivery to the proximity of the ostium in the middle meatus by more than 45%, which subsequently increases the drug delivery to the MS. The results can help engineers design a nebulizer to improve the efficiency of drug delivery to the maxillary sinuses.

  相似文献   

6.
A novel biosorbent from Azolla filiculoides was used in fixed-bed sorption columns and allowed quantitative determination of the characteristic process parameters which could then be used for performance comparison and process design. An zinc sorption capacity of 31.3mg/g predicted at a flow rate 480ml/h and pH 6.2, closely corresponded to the value observed. Lowering the influent pH to 4, the influent Zn2+ concentration to 50mg/l and increasing the flow rate to 800ml/h (residence time: 2.6 min), resulted in decreased sorption capacities by 15.3, 7.7 and 9.6%, respectively.  相似文献   

7.
The total deposition of monodisperse, 0.026-0.19 micron (dry volume equivalent diameter) sodium chloride particles in the lungs of five healthy subjects, who breathed orally, was measured. For a tidal volume of 1,000 ml and flow rate of 500 ml/s, the percentages deposited were: 37.2 +/- 8.4% (mean +/- SD) for 0.026 micron, 23.8 +/- 3.3% for 0.051 micron, 22.8 +/- 3.1% for 0.096 micron, and 31.8 +/- 6.2% for 0.19 micron particles. The deposition minimum corresponded to a particle size of approximately 0.08 micron. Deposition did not correlate with measures of lung volume or body size but did correlate with forced expired flow rate after 75% of forced vital capacity (FVC) exhaled (FEF 75%/FVC) and with percent-predicted values for FEF 25-75% and FEF 75%. Lengthening the breathing period from 4 to 8 s/breath while maintaining flow rate at 500 ml/s caused an additional 11.3 +/- 3.1% of the inhaled particles to deposit. Sedimentation and diffusion were found to be the principal deposition mechanisms. These hygroscopic particles deposited according to sizes they would attain in air with a relative humidity between 96 and 100%.  相似文献   

8.
Gao S  Wang Y  Wang T  Luo G  Dai Y 《Bioresource technology》2009,100(2):996-999
In this work, methyl-modified silica aerogels, a new kind of macro-porous material with high porosity, were used as carriers to immobilize lipase by adsorption. SEM, TEM, nitrogen adsorption device, and thermogravimetric analysis were used to characterize the properties of modified aerogels. The surface area was 395.6 m(2)/g, and the average pore diameter was 68.72 nm. The contact angle of aerogel particles increased from 20.9 degrees to 99.2 degrees after methyl modification. Reaction characteristics of the material after enzyme loading were also discussed. The results showed that adsorption capacity could reach 67.42 mg/g; and the maximal enzyme activity was 19.87 micromol min(-1)mg(-1) (protein), and activity retention could reach 56.44%. It is worth mentioning that the amount of modified aerogels added had significant effects on the diameter of droplets and the mass transfer behavior of substrates in the reaction emulsion. Online microscope was used to visualize the droplets in the emulsion, where the aerogel particles were observed locating at the interface of oil and water. The average diameter of droplets reached the minimum when 0.06 g of modified aerogels was added into the reaction emulsion which contained 10 ml of oil and 10 ml of phosphate buffer solution. The phenomenon was resulted from the wettability of methyl-modified silica aerogels.  相似文献   

9.
The objective of this study was to investigate the influence of processing parameters on the morphology, porosity, and crystallinity of polymeric polyethylene glycol (PEG) microparticles by spray freezing into liquid (SFL), a new particle engineering technology. Processing parameters investigated were the viscosity and flow rate of the polymer solution, nozzle diameter, spray time, pressure, temperature, and flow rate of the cryogenic liquid. By varying the processing parameters and feed composition, atomization and heat transfer mechanisms were modified resulting in particles of different size distribution, shape, morphology, density, porosity, and crystallinity. Median particle diameter (M50) varied from 25 μm to 600 μm. Particle shape was spherical or elongated with highly irregular surfaces. Granule density was between 0.5 and 1.5 g/mL. In addition to producing particles of pure polymer, drug particles were encapsulted in polymeric microparticles. The encapsulation efficiency of albuterol sulfate was 96.0% with a drug loading of 2.4%, indicating that SFL is useful for producing polymeric microparticles for drug delivery applications. It was determined that the physicochemical characteristics of model polymeric microparticles composed of PEG could be modified for use as a drug delivery carrier.  相似文献   

10.
Aerosol particle size influences airway drug deposition. Current inhaler devices are inefficient, delivering a heterodisperse distribution of drug particle sizes where, at best, 20% reaches the lungs. Monodisperse aerosols are the appropriate research tools to investigate basic aerosol science concepts within the human airways. We hypothesized that engineering such aerosols of albuterol would identify the ideal bronchodilator particle size, thereby optimizing inhaled therapeutic drug delivery. Eighteen stable mildly to moderately asthmatic patients [mean forced expiratory volume in 1 s (FEV1) 74.3% of predicted] participated in a randomized, double-blind, crossover study design. A spinning-top aerosol generator was used to produce monodisperse albuterol aerosols that were 1.5, 3, and 6 microm in size, and also a placebo, which were inhaled at cumulative doses of 10, 20, 40, and 100 microg. Lung function changes and tolerability effects were determined. The larger particles, 6 and 3 microm, were significantly more potent bronchodilators than the 1.5-microm and placebo aerosols for FEV1 and for the forced expiratory flow between exhalation of 25 and 75% of forced vital capacity. A 20-microg dose of the 6- and 3-microm aerosols produced FEV1 bronchodilation comparable to that produced by 200 microg from a metered-dose inhaler. No adverse effects were observed in heart rate and plasma potassium. The data suggest that in mildly to moderately asthmatic patients there is more than one optimal beta2-agonist bronchodilator particle size and that these are larger particles in the higher part of the respirable range. Aerosols delivered in monodisperse form can enable large reductions of the inhaled dose without loss of clinical efficacy.  相似文献   

11.
Removal of pleural liquid and protein by lymphatics in awake sheep   总被引:1,自引:0,他引:1  
The contribution of the parietal pleural lymphatics to pleural liquid and protein removal is unclear. We asked two questions. What is the rate of removal of sterile, artificial hydrothoraxes in awake sheep? What percentage is removed through parietal pleural lymphatics? Three days after the placement of a rib capsule in 18 sheep, we instilled a 10 ml/kg 1.0 g/dl autologous protein solution with labeled albumin and erythrocytes through the capsule into the pleural space. Erythrocytes were used as a marker for lymphatic flow. We measured terminal pleural liquid volume and radioactivity at periods from 2 to 48 h. In three sheep, we obtained a third volume measurement at 6 h by the volume of dilution technique. We found that hydrothorax removal could be described by a linear function with a constant rate: 0.28 +/- 0.01 ml.kg-1.h-1 (mean +/- SE) for the grouped data, and 0.20, 0.28, and 0.31 ml.kg-1.h-1 for the individual sheep. At 24 h, erythrocyte clearance was 89 +/- 16% (mean +/- SD) that of liquid and albumin clearance. We conclude that in awake sheep with large hydrothoraxes, pleural liquid and protein are removed at a rate of 0.28 +/- 0.01 ml.kg-1.h-1 (mean +/- SE) and lymphatics are responsible for at least 89% of this removal.  相似文献   

12.
Successful esophageal emptying depends on the generation of a sustained intrabolus pressure (IBP) sufficient to overcome esophagogastric junction (EGJ) obstruction. Our aim was to develop a manometric analysis paradigm that describes the bolus driving pressure difference and the flow permissive time for esophageal bolus transit. Twenty normal subjects were studied with a 36-channel manometry assembly (1-cm spacing) during two 5- and one 10-ml barium swallows and concurrent fluoroscopy. Bolus domain pressure plots were generated by plotting bolus domain pressure (BDP) and EGJ relaxation pressure. BDP was defined as the pressure midway between the peristaltic ramp-up and the proximal margin of the EGJ. The flow permissive time was defined as the period where the BDP was > or = EGJ relaxation pressure. The mean BDP was 11.7 +/- 1.0 mmHg (SE), and the mean flow permissive time was 3.9 +/- 0.4 s for 5-ml swallows in normal controls. The mean BDP difference during flow was 4.0 +/- 1.0 mmHg. There was no significant difference in the fluoroscopic transit time and the flow permissive time calculated from the BDP plots (5 ml: fluoroscopy 3.4 +/- 0.2 s; BDP 3.9 +/- 0.4 s, P > 0.05). BDP plots provide a reliable measurement of IBP and its relationship with EGJ relaxation. The time available for flow can be readily delineated from this analysis, and the driving pressure responsible for flow can be accurately described and quantified. This may help predict abnormal bolus transit and the underlying mechanical properties of the EGJ.  相似文献   

13.
营养及水力条件影响光合细菌生物膜生长特性实验   总被引:4,自引:0,他引:4  
对平板式生物膜反应器内,流量及底物浓度范围分别为37.8~1080ml/h、0.05~10g/L的不同生长条件下光合产氢细菌生物膜生长特性进行了实验研究,讨论了不同水力及营养条件对沼泽红假单胞菌生物膜表面覆盖率、膜厚、干重和密度的影响。实验结果表明,不同水力及营养条件对生物膜生长速率及结构具有重要影响。在相同的时间间隔内,在高流速条件下光合细菌菌落生长较快,但过高的液体流速会导致部分生物膜脱落;高流速条件易使生物膜形成薄而致密的结构。光合细菌生物膜在循环液底物浓度较高时生长较快,密度也最高;而贫营养条件可以促成结构疏松生物膜在固液界面的形成,这种生物膜结构有利于微生物在低底物浓度条件下底物在生物膜内的传输。  相似文献   

14.
Abstract

In this study, a niosome nanodispersion was manufactured using high-pressure homogenization following the hydration of proniosomes. Using beclometasone dipropionate (BDP) as a model drug, the characteristics of the homogenized niosomes were compared with vesicles prepared via the conventional approach of probe-sonication. Particle size, zeta potential, and the drug entrapment efficiency were similar for both size reduction mechanisms. However, high-pressure homogenization was much more efficient than sonication in terms of homogenization output rate, avoidance of sample contamination, offering a greater potential for a large-scale manufacturing of noisome nanodispersions. For example, high-pressure homogenization was capable of producing small size niosomes (209?nm) using a short single-step of size reduction (6?min) as compared with the time-consuming process of sonication (237?nm in >18?min) and the BDP entrapment efficiency was 29.65%?±?4.04 and 36.4%?±?2.8. In addition, for homogenization, the output rate of the high-pressure homogenization was 10?ml/min compared with 0.83?ml/min using the sonication protocol. In conclusion, a facile, applicable, and highly efficient approach for preparing niosome nanodispersions has been established using proniosome technology and high-pressure homogenization.  相似文献   

15.
Summary The contributions of the kidneys, the small intestine and the lower intestine (rectum plus cloaca) to water conservation during dehydration in unanaesthetized, unrestrained house sparrows (Passer domesticus) were assessed. Thirty hours of acute dehydration resulted in a 12% loss in body mass and a significant increase in plasma osmolality. Glomerular filtration rate declined by 55%, from 7.7 to 3.5 ml/h, and urine flow rate delined by more than 80%, from 0.2 to 0.03 ml/h. These changes are likely attributable to a large increase in plasma levels of arginine vasotocin during dehydration, from <26 pg/ml in hydrated birds to greater than 200 pg/ml after 30 h dehydration. Flow of water from the ileum to the lower intestine was reduced during dehydration, primarily because of a reduced flow of dry matter (with no significant reduction in water content). The rate of water loss in the excreta declined from 0.2 ml/h in hydrated birds to 0.04 ml/h in dehydrated birds. The rate of water reabsorption in the lower intestine (equal to the rate of water loss in the excreta minus the combined rates of inflow into the lower intestine from the urine and the ileal contents) slightly exceeded the rate of water flow from the ileum in both hydrated and dehydrated birds. We suggest that much of the water reabsorbed in the lower intestine of hydrated birds derives from the urine, but that primarily water from ileal contents is reabsorbed in dehydrated birds. That is, urine undergoes significant post-renal modification in hydrated but not dehydrated house sparrows.  相似文献   

16.

Background

The therapeutic effect of inhaled corticosteroids (ICS) may be affected by the metabolism of the drug in the target organ. We investigated the in vitro metabolism of beclomethasone dipropionate (BDP), budesonide (BUD), ciclesonide (CIC), and fluticasone propionate (FP) in human lung precision-cut tissue slices. CIC, a new generation ICS, is hydrolyzed by esterases in the upper and lower airways to its pharmacologically active metabolite desisobutyryl-ciclesonide (des-CIC).

Methods

Lung tissue slices were incubated with BDP, BUD, CIC, and FP (initial target concentration of 25 μM) for 2, 6, and 24 h. Cellular viability was assessed using adenosine 5'-triphosphate content and protein synthesis in lung slices. Metabolites and remaining parent compounds in the tissue samples were analyzed by HPLC with UV detection.

Results

BDP was hydrolyzed to the pharmacologically active metabolite beclomethasone-17-monopropionate (BMP) and, predominantly, to inactive beclomethasone (BOH). CIC was hydrolyzed initially to des-CIC with a slower rate compared to BDP. A distinctly smaller amount (approximately 10-fold less) of fatty acid esters were formed by BMP (and/or BOH) than by BUD or des-CIC. The highest relative amounts of fatty acid esters were detected for BUD. For FP, no metabolites were detected at any time point. The amount of drug-related material in lung tissue (based on initial concentrations) at 24 h was highest for CIC, followed by BUD and FP; the smallest amount was detected for BDP.

Conclusion

The in vitro metabolic pathways of the tested ICS in human lung tissue were differing. While FP was metabolically stable, the majority of BDP was converted to inactive polar metabolites. The formation of fatty acid conjugates was confirmed for BMP (and/or BOH), BUD, and des-CIC.  相似文献   

17.
Hand-to-hand transmission of herpes simplex virus type 1   总被引:2,自引:0,他引:2  
D Bardell 《Microbios》1989,59(239):93-100
Droplets of tissue culture fluid containing herpes simplex virus type 1 were placed on the palm of the hand. Each 0.01 ml droplet was taken from a stock virus suspension with a titre of 10(7.5) TCID50/0.1 ml. At 0, 15, 30, 60 and 120 min a droplet was firmly touched with the middle finger of the right hand, after which, attempts were made to recover virus from the finger. At 0 min, when the virus-containing droplet was in a liquid state, there was a 100% rate of virus recovery. By 15 min the droplets had dried out, and after touching dried out droplets there was a 40% virus recovery rate, even though experimental procedures demonstrated that infectious virus was present in the dried out droplets at all test times. If the finger was moistened with tap water or saliva, there was a 100% recovery rate of virus after touching dried out droplets, as well as after touching droplets in a liquid state.  相似文献   

18.
Suspensions of gel particles which are pourable or spoonable at room temperature can be created by shearing a gelling biopolymer through its gelation (thermal or ion mediated) rather than allowing quiescent cooling – thus the term ‘fluid gel’ may be used to describe the resulting material. As agar gelation is thermoreversible this type of fluid gel is able to be heated again to melt agar gel particles to varying degrees then re-form a network quiescently upon cooling, whose strength depends on the temperature of re-heating, determining the amount of agar solubilised and subsequently able to partake in re-gelation. Using this principle, for the first time fluid gels have been applied to a high viscosity 3D printing process wherein the printing temperature (at the nozzle) is controllable. This allows the use of ambient temperature feedstocks and by altering the nozzle temperature, the internal nature (presence or absence of gel particles) and gel strength of printed droplets differs. If the nozzle prints at different temperatures for each layer a structure with modulated texture could be created.  相似文献   

19.
Due to their particle size in the submicrometer range, lipid nanoparticles are suitable for parenteral administration. In order to obtain information on their potential in vivo performance, a simple and effective in vitro assay to evaluate the drug release behavior of such particles is required. This study compares the use of different experimental setups for this purpose. Lipid nanoparticles from trimyristin which were loaded with fluorescent lipophilic drug models (a temoporfin and Nile red) were used as donor particles. The transfer of the two drug models to multilamellar vesicles (MLV) and emulsion droplets as lipophilic acceptor compartments was examined. The determination of the transferred substance was performed either after separation by centrifugation or by an in situ flow cytometric technique. The transfer of temoporfin was slow to the acceptor MLV and very rapid to the acceptor emulsion. With both acceptors, the transfer of temoporfin stopped at a concentration much lower than the theoretical equilibrium values. The transfer of the less lipophilic drug Nile red was very rapid to both acceptors with equilibrium concentrations close to the expected values. The transfer results of temoporfin especially to the acceptor MLV obtained with the two detection techniques were comparable while the centrifugation technique indicated an apparently higher Nile red transfer rate than the flow cytometric technique. Both techniques are equally suitable to study the transfer of temoporfin, while the flow cytometric technique is advantageous to measure the very rapid transfer of Nile red.Key words: drug transfer, flow cytometry, lipid nanoparticles, liposomes, ultracentrifugation  相似文献   

20.
A high-performance liquid chromatographic (HPLC) method has been developed for the simultaneous analysis of the local anesthetic amide drugs, bupivacaine, mepivacaine and ropivacaine, belonging to the pipecoloxylidide group using a C(18) reversed-phase column (150 x 4.6 mm I.D.) filled with 5-microm particles and attached to a UV detector. The mobile phase was composed of acetonitrile-methanol-30 mM NaH(2)PO(4) (pH 5.6) (100:100:300, v/v/v) and the flow rate was 1ml/min. The absorbance of the eluate was monitored at 210 nm. The retention times of the three compounds were: 4.6 min (mepivacaine), 9.7min (ropivacaine) and 16.4 min (bupivacaine). With this sample preparation method, good and consistent recoveries of the three compounds were obtained: 88-91% for mepivacaine, 87-89% for ropivacaine and 88-91% for bupivacaine. The limit of quantification for three compounds in human serum was 2 ng/ml for mepivacaine, 5 ng/ml for bupivacaine and ropivacaine. This method may be useful in clinical and forensic applications for the determination or identification of the local anesthetic drugs: bupivacaine, mepivacaine or ropivacaine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号