首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several recent publications illustrated advantages of using sequence profiles in recognizing distant homologies between proteins. At the same time, the practical usefulness of distant homology recognition depends not only on the sensitivity of the algorithm, but also on the quality of the alignment between a prediction target and the template from the database of known proteins. Here, we study this question for several supersensitive protein algorithms that were previously compared in their recognition sensitivity (Rychlewski et al., 2000). A database of protein pairs with similar structures, but low sequence similarity is used to rate the alignments obtained with several different methods, which included sequence-sequence, sequence-profile, and profile-profile alignment methods. We show that incorporation of evolutionary information encoded in sequence profiles into alignment calculation methods significantly increases the alignment accuracy, bringing them closer to the alignments obtained from structure comparison. In general, alignment quality is correlated with recognition and alignment score significance. For every alignment method, alignments with statistically significant scores correlate with both correct structural templates and good quality alignments. At the same time, average alignment lengths differ in various methods, making the comparison between them difficult. For instance, the alignments obtained by FFAS, the profile-profile alignment algorithm developed in our group are always longer that the alignments obtained with the PSI-BLAST algorithms. To address this problem, we develop methods to truncate or extend alignments to cover a specified percentage of protein lengths. In most cases, the elongation of the alignment by profile-profile methods is reasonable, adding fragments of similar structure. The examples of erroneous alignment are examined and it is shown that they can be identified based on the model quality.  相似文献   

2.
Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods.  相似文献   

3.
Database searching by flexible protein structure alignment   总被引:1,自引:0,他引:1  
We have recently developed a flexible protein structure alignment program (FATCAT) that identifies structural similarity, at the same time accounting for flexibility of protein structures. One of the most important applications of a structure alignment method is to aid in functional annotations by identifying similar structures in large structural databases. However, none of the flexible structure alignment methods were applied in this task because of a lack of significance estimation of flexible alignments. In this paper, we developed an estimate of the statistical significance of FATCAT alignment score, allowing us to use it as a database-searching tool. The results reported here show that (1) the distribution of the similarity score of FATCAT alignment between two unrelated protein structures follows the extreme value distribution (EVD), adding one more example to the current collection of EVDs of sequence and structure similarities; (2) introducing flexibility into structure comparison only slightly influences the sensitivity and specificity of identifying similar structures; and (3) the overall performance of FATCAT as a database searching tool is comparable to that of the widely used rigid-body structure comparison programs DALI and CE. Two examples illustrating the advantages of using flexible structure alignments in database searching are also presented. The conformational flexibilities that were detected in the first example may be involved with substrate specificity, and the conformational flexibilities detected in the second example may reflect the evolution of structures by block building.  相似文献   

4.
We report the largest and most comprehensive comparison of protein structural alignment methods. Specifically, we evaluate six publicly available structure alignment programs: SSAP, STRUCTAL, DALI, LSQMAN, CE and SSM by aligning all 8,581,970 protein structure pairs in a test set of 2930 protein domains specially selected from CATH v.2.4 to ensure sequence diversity. We consider an alignment good if it matches many residues, and the two substructures are geometrically similar. Even with this definition, evaluating structural alignment methods is not straightforward. At first, we compared the rates of true and false positives using receiver operating characteristic (ROC) curves with the CATH classification taken as a gold standard. This proved unsatisfactory in that the quality of the alignments is not taken into account: sometimes a method that finds less good alignments scores better than a method that finds better alignments. We correct this intrinsic limitation by using four different geometric match measures (SI, MI, SAS, and GSAS) to evaluate the quality of each structural alignment. With this improved analysis we show that there is a wide variation in the performance of different methods; the main reason for this is that it can be difficult to find a good structural alignment between two proteins even when such an alignment exists. We find that STRUCTAL and SSM perform best, followed by LSQMAN and CE. Our focus on the intrinsic quality of each alignment allows us to propose a new method, called "Best-of-All" that combines the best results of all methods. Many commonly used methods miss 10-50% of the good Best-of-All alignments. By putting existing structural alignments into proper perspective, our study allows better comparison of protein structures. By highlighting limitations of existing methods, it will spur the further development of better structural alignment methods. This will have significant biological implications now that structural comparison has come to play a central role in the analysis of experimental work on protein structure, protein function and protein evolution.  相似文献   

5.
Software tools for analyzing pairwise alignments of long sequences.   总被引:4,自引:1,他引:3       下载免费PDF全文
Pairwise comparison of long stretches of genomic DNA sequence can identify regions conserved across species, which often indicate functional significance. However, the novel insights frequently must be windowed from a flood of information; for instance, running an alignment program on two 50-kilobase sequences might yield over a hundred pages of alignments. Direct inspection of such a volume of printed output is infeasible, or at best highly undesirable, and computer tools are needed to summarize the information, to assist in its analysis, and to report the findings. This paper describes two such software tools. One tool prepares publication-quality pictorial representations of alignments, while another facilitates interactive browsing of pairwise alignment data. Their effectiveness is illustrated by comparing the beta-like globin gene clusters between humans and rabbits. A second example compares the chloroplast genomes of tobacco and liverwort.  相似文献   

6.
R B Russell  G J Barton 《Proteins》1992,14(2):309-323
An algorithm is presented for the accurate and rapid generation of multiple protein sequence alignments from tertiary structure comparisons. A preliminary multiple sequence alignment is performed using sequence information, which then determines an initial superposition of the structures. A structure comparison algorithm is applied to all pairs of proteins in the superimposed set and a similarity tree calculated. Multiple sequence alignments are then generated by following the tree from the branches to the root. At each branchpoint of the tree, a structure-based sequence alignment and coordinate transformations are output, with the multiple alignment of all structures output at the root. The algorithm encoded in STAMP (STructural Alignment of Multiple Proteins) is shown to give alignments in good agreement with published structural accounts within the dehydrogenase fold domains, globins, and serine proteinases. In order to reduce the need for visual verification, two similarity indices are introduced to determine the quality of each generated structural alignment. Sc quantifies the global structural similarity between pairs or groups of proteins, whereas Pij' provides a normalized measure of the confidence in the alignment of each residue. STAMP alignments have the quality of each alignment characterized by Sc and Pij' values and thus provide a reproducible resource for studies of residue conservation within structural motifs.  相似文献   

7.
An algorithm is presented for the multiple alignment of protein sequences that is both accurate and rapid computationally. The approach is based on the conventional dynamic-programming method of pairwise alignment. Initially, two sequences are aligned, then the third sequence is aligned against the alignment of both sequences one and two. Similarly, the fourth sequence is aligned against one, two and three. This is repeated until all sequences have been aligned. Iteration is then performed to yield a final alignment. The accuracy of sequence alignment is evaluated from alignment of the secondary structures in a family of proteins. For the globins, the multiple alignment was on average 99% accurate compared to 90% for pairwise comparison of sequences. For the alignment of immunoglobulin constant and variable domains, the use of many sequences yielded an alignment of 63% average accuracy compared to 41% average for individual variable/constant alignments. The multiple alignment algorithm yields an assignment of disulphide connectivity in mammalian serotransferrin that is consistent with crystallographic data, whereas pairwise alignments give an alternative assignment.  相似文献   

8.
MOTIVATION: Molecular biologists frequently can obtain interesting insight by aligning a set of related DNA, RNA or protein sequences. Such alignments can be used to determine either evolutionary or functional relationships. Our interest is in identifying functional relationships. Unless the sequences are very similar, it is necessary to have a specific strategy for measuring-or scoring-the relatedness of the aligned sequences. If the alignment is not known, one can be determined by finding an alignment that optimizes the scoring scheme. RESULTS: We describe four components to our approach for determining alignments of multiple sequences. First, we review a log-likelihood scoring scheme we call information content. Second, we describe two methods for estimating the P value of an individual information content score: (i) a method that combines a technique from large-deviation statistics with numerical calculations; (ii) a method that is exclusively numerical. Third, we describe how we count the number of possible alignments given the overall amount of sequence data. This count is multiplied by the P value to determine the expected frequency of an information content score and, thus, the statistical significance of the corresponding alignment. Statistical significance can be used to compare alignments having differing widths and containing differing numbers of sequences. Fourth, we describe a greedy algorithm for determining alignments of functionally related sequences. Finally, we test the accuracy of our P value calculations, and give an example of using our algorithm to identify binding sites for the Escherichia coli CRP protein. AVAILABILITY: Programs were developed under the UNIX operating system and are available by anonymous ftp from ftp://beagle.colorado.edu/pub/consensus.  相似文献   

9.
Sequence alignment profiles have been shown to be very powerful in creating accurate sequence alignments. Profiles are often used to search a sequence database with a local alignment algorithm. More accurate and longer alignments have been obtained with profile-to-profile comparison. There are several steps that must be performed in creating profile-profile alignments, and each involves choices in parameters and algorithms. These steps include (1) what sequences to include in a multiple alignment used to build each profile, (2) how to weight similar sequences in the multiple alignment and how to determine amino acid frequencies from the weighted alignment, (3) how to score a column from one profile aligned to a column of the other profile, (4) how to score gaps in the profile-profile alignment, and (5) how to include structural information. Large-scale benchmarks consisting of pairs of homologous proteins with structurally determined sequence alignments are necessary for evaluating the efficacy of each scoring scheme. With such a benchmark, we have investigated the properties of profile-profile alignments and found that (1) with optimized gap penalties, most column-column scoring functions behave similarly to one another in alignment accuracy; (2) some functions, however, have much higher search sensitivity and specificity; (3) position-specific weighting schemes in determining amino acid counts in columns of multiple sequence alignments are better than sequence-specific schemes; (4) removing positions in the profile with gaps in the query sequence results in better alignments; and (5) adding predicted and known secondary structure information improves alignments.  相似文献   

10.
MOTIVATION: Adding more distant homologs to a multiple alignment and thus increasing its diversity may eventually deteriorate the numerical profile constructed from this alignment. Here, we addressed the question whether such a diversity limit can be reached in the alignments of confident homologs found by PSI-BLAST, and we analyzed the dependence of the quality of the profile-profile comparison made by COMPASS on the sequence diversity within these alignments. RESULTS: Protein families that have a greater number of diverse confident homologs in the current sequence databases provide an increased quality of similarity detection in profile databases, but produce on average less accurate profile-profile alignments with their remote relatives. This lower alignment accuracy cannot be improved when the most distant members of these families are excluded from their profiles. On the contrary, the presence of more diverse members results in more accurate alignments. For families with a high diversity of confident homologs, the lower quality of profile alignments with their remote relatives seems to be an attribute of these families or their alignments, rather than to be caused by the large number of diverse sequences itself. Our results suggest that at any level of profile diversity, one should include in the multiple alignment as many confident sequence homologs as possible in order to produce the most accurate results.  相似文献   

11.
MOTIVATION: We present a structural alignment database that is specifically targeted for use in derivation and optimization of sequence-structure alignment algorithms for homology modeling. We have paid attention to ensure that fold-space is properly sampled, that the structures involved in alignments are of significant resolution (better than 2.5 A) and the alignments are accurate and reliable. RESULTS: Alignments have been taken from the HOMSTRAD, BAliBASE and SCOP-based Gerstein databases along with alignments generated by a global structural alignment method described here. In order to discriminate between equivalent alignments from these different sources, we have developed a novel scoring function, Contact Alignment Quality score, which evaluates trial alignments by their statistical significance combined with their ability to reproduce conserved three-dimensional residue contacts. The resulting non-redundant, unbiased database contains 1927 alignments from across fold-space with high-resolution structures and a wide range of sequence identities. AVAILABILITY: The database can be interactively queried either over the web at http://abagyan.scripps.edu/lab/web/sad/show.cgi or by using MySQL, and is also available to download over the web.  相似文献   

12.
Kim J  Ma J 《Nucleic acids research》2011,39(15):6359-6368
Multiple sequence alignment, which is of fundamental importance for comparative genomics, is a difficult problem and error-prone. Therefore, it is essential to measure the reliability of the alignments and incorporate it into downstream analyses. We propose a new probabilistic sampling-based alignment reliability (PSAR) score. Instead of relying on heuristic assumptions, such as the correlation between alignment quality and guide tree uncertainty in progressive alignment methods, we directly generate suboptimal alignments from an input multiple sequence alignment by a probabilistic sampling method, and compute the agreement of the input alignment with the suboptimal alignments as the alignment reliability score. We construct the suboptimal alignments by an approximate method that is based on pairwise comparisons between each single sequence and the sub-alignment of the input alignment where the chosen sequence is left out. By using simulation-based benchmarks, we find that our approach is superior to existing ones, supporting that the suboptimal alignments are highly informative source for assessing alignment reliability. We apply the PSAR method to the alignments in the UCSC Genome Browser to measure the reliability of alignments in different types of regions, such as coding exons and conserved non-coding regions, and use it to guide cross-species conservation study.  相似文献   

13.
The current pace of structural biology now means that protein three-dimensional structure can be known before protein function, making methods for assigning homology via structure comparison of growing importance. Previous research has suggested that sequence similarity after structure-based alignment is one of the best discriminators of homology and often functional similarity. Here, we exploit this observation, together with a merger of protein structure and sequence databases, to predict distant homologous relationships. We use the Structural Classification of Proteins (SCOP) database to link sequence alignments from the SMART and Pfam databases. We thus provide new alignments that could not be constructed easily in the absence of known three-dimensional structures. We then extend the method of Murzin (1993b) to assign statistical significance to sequence identities found after structural alignment and thus suggest the best link between diverse sequence families. We find that several distantly related protein sequence families can be linked with confidence, showing the approach to be a means for inferring homologous relationships and thus possible functions when proteins are of known structure but of unknown function. The analysis also finds several new potential superfamilies, where inspection of the associated alignments and superimpositions reveals conservation of unusual structural features or co-location of conserved amino acids and bound substrates. We discuss implications for Structural Genomics initiatives and for improvements to sequence comparison methods.  相似文献   

14.
Basic local alignment search tool   总被引:1594,自引:0,他引:1594  
A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score. Recent mathematical results on the stochastic properties of MSP scores allow an analysis of the performance of this method as well as the statistical significance of alignments it generates. The basic algorithm is simple and robust; it can be implemented in a number of ways and applied in a variety of contexts including straightforward DNA and protein sequence database searches, motif searches, gene identification searches, and in the analysis of multiple regions of similarity in long DNA sequences. In addition to its flexibility and tractability to mathematical analysis, BLAST is an order of magnitude faster than existing sequence comparison tools of comparable sensitivity.  相似文献   

15.
Structurally similar but sequentially unrelated proteins have been discovered and rediscovered by many researchers, using a variety of structure comparison tools. For several pairs of such proteins, existing structural alignments obtained from the literature, as well as alignments prepared using several different similarity criteria, are compared with each other. It is shown that, in general, they differ from each other, with differences increasing with diminishing sequence similarity. Differences are particularly strong between alignments optimizing global similarity measures, such as RMS deviation between C alpha atoms, and alignments focusing on more local features, such as packing or interaction pattern similarity. Simply speaking, by putting emphasis on different aspects of structure, different structural alignments show the unquestionable similarity in a different way. With differences between various alignments extending to a point where they can differ at all positions, analysis of structural similarities leads to contradictory results reported by groups using different alignment techniques. The problem of uniqueness and stability of structural alignments is further studied with the help of visualization of the suboptimal alignments. It is shown that alignments are often degenerate and whole families of alignments can be generated with almost the same score as the "optimal alignment." However, for some similarity criteria, specially those based on side-chain positions, rather than C alpha positions, alignments in some areas of the protein are unique. This opens the question of how and if the structural alignments can be used as "standards of truth" for protein comparison.  相似文献   

16.
An open question in protein homology modeling is, how well do current modeling packages satisfy the dual criteria of quality of results and practical ease of use? To address this question objectively, we examined homology‐built models of a variety of therapeutically relevant proteins. The sequence identities across these proteins range from 19% to 76%. A novel metric, the difference alignment index (DAI), is developed to aid in quantifying the quality of local sequence alignments. The DAI is also used to construct the relative sequence alignment (RSA), a new representation of global sequence alignment that facilitates comparison of sequence alignments from different methods. Comparisons of the sequence alignments in terms of the RSA and alignment methodologies are made to better understand the advantages and caveats of each method. All sequence alignments and corresponding 3D models are compared to their respective structure‐based alignments and crystal structures. A variety of protein modeling software was used. We find that at sequence identities >40%, all packages give similar (and satisfactory) results; at lower sequence identities (<25%), the sequence alignments generated by Profit and Prime, which incorporate structural information in their sequence alignment, stand out from the rest. Moreover, the model generated by Prime in this low sequence identity region is noted to be superior to the rest. Additionally, we note that DSModeler and MOE, which generate reasonable models for sequence identities >25%, are significantly more functional and easier to use when compared with the other structure‐building software.  相似文献   

17.

Background

Obtaining an accurate sequence alignment is fundamental for consistently analyzing biological data. Although this problem may be efficiently solved when only two sequences are considered, the exact inference of the optimal alignment easily gets computationally intractable for the multiple sequence alignment case. To cope with the high computational expenses, approximate heuristic methods have been proposed that address the problem indirectly by progressively aligning the sequences in pairs according to their relatedness. These methods however are not flexible to change the alignment of an already aligned group of sequences in the view of new data, resulting thus in compromises on the quality of the deriving alignment. In this paper we present ReformAlign, a novel meta-alignment approach that may significantly improve on the quality of the deriving alignments from popular aligners. We call ReformAlign a meta-aligner as it requires an initial alignment, for which a variety of alignment programs can be used. The main idea behind ReformAlign is quite straightforward: at first, an existing alignment is used to construct a standard profile which summarizes the initial alignment and then all sequences are individually re-aligned against the formed profile. From each sequence-profile comparison, the alignment of each sequence against the profile is recorded and the final alignment is indirectly inferred by merging all the individual sub-alignments into a unified set. The employment of ReformAlign may often result in alignments which are significantly more accurate than the starting alignments.

Results

We evaluated the effect of ReformAlign on the generated alignments from ten leading alignment methods using real data of variable size and sequence identity. The experimental results suggest that the proposed meta-aligner approach may often lead to statistically significant more accurate alignments. Furthermore, we show that ReformAlign results in more substantial improvement in cases where the starting alignment is of relatively inferior quality or when the input sequences are harder to align.

Conclusions

The proposed profile-based meta-alignment approach seems to be a promising and computationally efficient method that can be combined with practically all popular alignment methods and may lead to significant improvements in the generated alignments.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-265) contains supplementary material, which is available to authorized users.  相似文献   

18.
MOTIVATION: Local structure segments (LSSs) are small structural units shared by unrelated proteins. They are extensively used in protein structure comparison, and predicted LSSs (PLSSs) are used very successfully in ab initio folding simulations. However, predicted or real LSSs are rarely exploited by protein sequence comparison programs that are based on position-by-position alignments. RESULTS: We developed a SEgment Alignment algorithm (SEA) to compare proteins described as a collection of predicted local structure segments (PLSSs), which is equivalent to an unweighted graph (network). Any specific structure, real or predicted corresponds to a specific path in this network. SEA then uses a network matching approach to find two most similar paths in networks representing two proteins. SEA explores the uncertainty and diversity of predicted local structure information to search for a globally optimal solution. It simultaneously solves two related problems: the alignment of two proteins and the local structure prediction for each of them. On a benchmark of protein pairs with low sequence similarity, we show that application of the SEA algorithm improves alignment quality as compared to FFAS profile-profile alignment, and in some cases SEA alignments can match the structural alignments, a feat previously impossible for any sequence based alignment methods.  相似文献   

19.
SUMMARY: BLAST statistics have been shown to be extremely useful for searching for significant similarity hits, for amino acid and nucleotide sequences. Although these statistics are well understood for pairwise comparisons, there has been little success developing statistical scores for multiple alignments. In particular, there is no score for multiple alignment that is well founded and treated as a standard. We extend the BLAST theory to multiple alignments. Following some simple assumptions, we present and justify a significance score for multiple segments of a local multiple alignment. We demonstrate its usefulness in distinguishing high and moderate quality multiple alignments from low quality ones, with supporting experiments on orthologous vertebrate promoter sequences.  相似文献   

20.
Several protein families of different nature were studied for genetic relationship, correct alignment at non-homologous fragments, optimal sequence consensus construction, and confirmation of their actual relevance. A comparison of the genetic semihomology approach with statistical approaches indicates a high accuracy and cognition significance of the former. This is particularly pronounced in the study of related proteins that show a low degree of homology. The sequence multiple alignments were verified and corrected with respect to the questionable, non-homologous fragments. The verified alignments were the basis for consensus sequence formation. The frequency of six-codon amino acids occurrence versus position variability was studied and their possible role in amino acid mutational exchange at variable positions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号