首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Two main patterns of gene expression of Streptococcus pneumoniae were observed during infection in the host by quantitative real time RT-PCR; one was characteristic of bacteria in blood and one of bacteria in tissue, such as brain and lung. Gene expression in blood was characterized by increased expression of pneumolysin, pspA and hrcA, while pneumococci in tissue infection showed increased expression of neuraminidases, metalloproteinases, oxidative stress and competence genes. In vitro situations with similar expression patterns were detected in liquid culture and in a newly developed pneumococcal model of biofilm respectively. The biofilm model was dependent on addition of synthetic competence stimulating peptide (CSP) and no biofilm was formed by CSP receptor mutants. As one of the differentially expressed gene sets in vivo were the competence genes, we exploited competence-specific tools to intervene on pneumococcal virulence during infection. Induction of the competence system by the quorum-sensing peptide, CSP, not only induced biofilm formation in vitro, but also increased virulence in pneumonia in vivo. In contrast, a mutant for the ComD receptor, which did not form biofilm, also showed reduced virulence in pneumonia. These results were opposite to those found in a bacteraemic sepsis model of infection, where the competence system was downregulated. When pneumococci in the different physiological states were used directly for challenge, sessile cells grown in a biofilm were more effective in inducing meningitis and pneumonia, while planktonic cells from liquid culture were more effective in inducing sepsis. Our data enable us, using in vivo gene expression and in vivo modulation of virulence, to postulate the distinction - from the pneumococcal point of view - between two main types of disease. During bacteraemic sepsis pneumococci resemble planktonic growth, while during tissue infection, such as pneumonia or meningitis, pneumococci are in a biofilm-like state.  相似文献   

2.
The Hsp100/Clp ATPases constitute a family of closely related proteins of which some members function solely as chaperones whereas others additionally can associate with the unrelated ClpP peptidase forming a Clp proteolytic complex. We have investigated the role of four Clp ATPases in the versatile pathogen, Staphylococcus aureus. Previously, we showed that ClpX is required for expression of major virulence factors and for virulence of S. aureus, but not for survival during heat shock. In the present study, we have inactivated clpC, clpB and clpL and, while none of these mutations affected toxin production, both ClpC and ClpB and to a minor extent ClpL were required for intracellular multiplication within bovine mammary epithelial cells. These defects were paralleled by an inability of the clpC mutant to grow at high temperature and of the clpB mutant to induce thermotolerance indicating that the protective functions of these proteins are required both at high temperature and during infection. By primer extension analysis and footprint studies, we show that expression of clpC and clpB is controlled by the negative heat-shock regulator, CtsR, and that ClpC is required for its repressor activity. Thus, ClpC is a likely sensor of stress encountered during both environmental stress and infection. In addition to virulence factor production the ability to form biofilms is of importance to S. aureus as a nosocomial pathogen. Interestingly, biofilm formation was reduced in the absence of ClpX or ClpC whereas it was enhanced in the absence of ClpP. Thus, our data show that Clp proteolytic complexes and the Clp ATPases control several key processes of importance to the success of S. aureus as a pathogen.  相似文献   

3.
4.
Uropathogenic Escherichia coli (UPEC), which accounts for 85% of urinary tract infections (UTI), assembles biofilms in diverse environments, including the host. Besides forming biofilms on biotic surfaces and catheters, UPEC has evolved an intracellular pathogenic cascade that culminates in the formation of biofilm-like intracellular bacterial communities (IBCs) within bladder epithelial cells. Rapid bacterial replication during IBC formation augments a build-up in bacterial numbers and persistence within the host. Relatively little is known about factors mediating UPEC biofilm formation and how these overlap with IBC formation. To address this gap, we screened a UPEC transposon mutant library in three in vitro biofilm conditions: Luria broth (LB)-polyvinyl chloride (PVC), YESCA (yeast extract-Casamino Acids)-PVC, and YESCA-pellicle that are dependent on type 1 pili (LB) and curli (YESCA), respectively. Flagella are important in all three conditions. Mutants were identified that had biofilm defects in all three conditions but had no significant effects on the expression of type 1 pili, curli, or flagella. Thus, this approach uncovered a comprehensive inventory of novel effectors and regulators that are involved in UPEC biofilm formation under multiple conditions. A subset of these mutants was found to be dramatically attenuated and unable to form IBCs in a murine model of UTI. Collectively, this study expands our insights into UPEC multicellular behavior that may provide insights into IBC formation and virulence.  相似文献   

5.
Pseudomonas aeruginosa is a Gram-negative bacterial species that causes several opportunistic human infections. This organism is also found in the environment, where it is renowned (like other Pseudomonads) for its ability to use a wide variety of compounds as carbon and energy sources. It is a model species for studying group-related behaviour in bacteria. Two types of group behaviour it engages in are intercellular signalling, or quorum sensing, and the formation of surface-associated communities called biofilms. Both quorum sensing and biofilm formation are important in the pathogenesis of P. aeruginosa infections. Quorum sensing regulates the expression of several secreted virulence factors and quorum sensing mutant strains are attenuated for virulence in animal models. Biofilms have been implicated in chronic infections. Two examples are the chronic lung infections afflicting people suffering from cystic fibrosis and colonization of indwelling medical devices. This review will discuss quorum sensing and biofilm formation and studies that link these two processes.  相似文献   

6.
Mycobacterium avium is widely distributed in the environment, and it is chiefly found in water and soil. M. avium, as well as Mycobacterium smegmatis, has been recognized to produce a biofilm or biofilm-like structure. We screened an M. avium green fluorescent protein (GFP) promoter library in M. smegmatis for genes involved in biofilm formation on polyvinyl chloride (PVC) plates. Clones associated with increased GFP expression > or =2.0-fold over the baseline were sequenced. Seventeen genes, most encoding proteins of the tricarboxylic acid (TCA) cycle and GDP-mannose and fatty acid biosynthesis, were identified. Their regulation in M. avium was confirmed by examining the expression of a set of genes by real-time PCR after incubation on PVC plates. In addition, screening of 2,000 clones of a transposon mutant bank constructed using M. avium strain A5, a mycobacterial strain with the ability to produce large amounts of biofilm, revealed four mutants with an impaired ability to form biofilm. Genes interrupted by transposons were homologues of M. tuberculosis 6-oxodehydrogenase (sucA), enzymes of the TCA cycle, protein synthetase (pstB), enzymes of glycopeptidolipid (GPL) synthesis, and Rv1565c (a hypothetical membrane protein). In conclusion, it appears that GPL biosynthesis, including the GDP-mannose biosynthesis pathway, is the most important pathway involved in the production of M. avium biofilm.  相似文献   

7.
8.
Multiple Streptococcus mutans Genes Are Involved in Biofilm Formation   总被引:7,自引:0,他引:7  
Streptococcus mutans has been strongly implicated as the principal etiological agent in dental caries. One of the important virulence properties of these organisms is their ability to form biofilms known as dental plaque on tooth surfaces. Since the roles of sucrose and glucosyltransferases in S. mutans biofilm formation have been well documented, we focused our attention on sucrose-independent factors. We have initially identified several mutants that appear to be defective in biofilm formation on abiotic surfaces by an insertional inactivation mutagenesis strategy applied to S. mutans. A total of 27 biofilm-defective mutants were isolated and analyzed in this study. From these mutants, three genes were identified. One of the mutants was defective in the Bacillus subtilis lytR homologue. Another of the biofilm-defective mutants isolated was a yulF homologue, which encodes a hypothetical protein of B. subtilis whose function in biofilm formation is unknown. The vast majority of the mutants were defective in the comB gene required for competence. We therefore have constructed and examined comACDE null mutants. These mutants were also found to be attenuated in biofilm formation. Biofilm formation by several other regulatory gene mutants were also characterized using an in vitro biofilm-forming assay. These results suggest that competence genes as well as the sgp and dgk genes may play important roles in S. mutans biofilm formation.  相似文献   

9.
10.
Candida albicans is the leading cause of systemic fungal infections in immunocompromised humans. The ability to form biofilms on surfaces in the host or on implanted medical devices enhances C. albicans virulence, leading to antimicrobial resistance and providing a reservoir for infection. Biofilm formation is a complex multicellular process consisting of cell adhesion, cell growth, morphogenic switching between yeast form and filamentous states, and quorum sensing. Here we describe the role of the C. albicans EAP1 gene, which encodes a glycosylphosphatidylinositol-anchored, glucan-cross-linked cell wall protein, in adhesion and biofilm formation in vitro and in vivo. Deleting EAP1 reduced cell adhesion to polystyrene and epithelial cells in a gene dosage-dependent manner. Furthermore, EAP1 expression was required for C. albicans biofilm formation in an in vitro parallel plate flow chamber model and in an in vivo rat central venous catheter model. EAP1 expression was upregulated in biofilm-associated cells in vitro and in vivo. Our results illustrate an association between Eap1p-mediated adhesion and biofilm formation in vitro and in vivo.  相似文献   

11.
Biofilms are microbial communities that adhere to biotic or abiotic surfaces and are enclosed in a protective matrix of extracellular compounds. An important advantage of the biofilm lifestyle for soil bacteria (rhizobacteria) is protection against water deprivation (desiccation or osmotic effect). The rhizosphere is a crucial microhabitat for ecological, interactive, and agricultural production processes. The composition and functions of bacterial biofilms in soil microniches are poorly understood. We studied multibacterial communities established as biofilm-like structures in the rhizosphere of Medicago sativa (alfalfa) exposed to 3 experimental conditions of water limitation. The whole biofilm-forming ability (WBFA) for rhizospheric communities exposed to desiccation was higher than that of communities exposed to saline or nonstressful conditions. A culture-dependent ribotyping analysis indicated that communities exposed to desiccation or saline conditions were more diverse than those under the nonstressful condition. 16S rRNA gene sequencing of selected strains showed that the rhizospheric communities consisted primarily of members of the Actinobacteria and α- and γ-Proteobacteria, regardless of the water-limiting condition. Our findings contribute to improved understanding of the effects of environmental stress factors on plant-bacteria interaction processes and have potential application to agricultural management practices.  相似文献   

12.
13.
Infections caused by the leading nosocomial pathogen Staphylococcus epidermidis are characterized by biofilm formation on implanted medical devices. However, the molecular basis of biofilm formation and its regulation are not completely understood. Here, we describe an important role of the ClpP protease in biofilm development and virulence of S. epidermidis. We constructed an isogenic clpP mutant strain of a biofilm-forming clinical isolate of S. epidermidis. The mutant strain showed decreased biofilm formation in vitro and reduced virulence in a rat model of biofilm-associated infection. Biofilm forming ability of the mutant strain could be restored by expressing clpP on a plasmid, but not when a catalytically inactive allele of clpP gene was introduced. These observations indicate that the peptidase function of ClpP determines its role in biofilm formation. Experimental data in this work also suggested that clpP influenced initial attachment of bacteria on the plastic surface, the first step of biofilm formation. Furthermore, clpP was found to be regulated by the quorum-sensing agr, suggesting that part of the previously described influence of agr on the initial attachment to plastic surfaces may be mediated by clpP.  相似文献   

14.
15.
Irie Y  Mattoo S  Yuk MH 《Journal of bacteriology》2004,186(17):5692-5698
Bordetella species utilize the BvgAS (Bordetella virulence gene) two-component signal transduction system to sense the environment and regulate gene expression among at least three phases: a virulent Bvg+ phase, a nonvirulent Bvg- phase, and an intermediate Bvgi phase. Genes expressed in the Bvg+ phase encode known virulence factors, including adhesins such as filamentous hemagglutinin (FHA) and fimbriae, as well as toxins such as the bifunctional adenylate cyclase/hemolysin (ACY). Previous studies showed that in the Bvgi phase, FHA and fimbriae continue to be expressed, but ACY expression is significantly downregulated. In this report, we determine that Bordetella bronchiseptica can form biofilms in vitro and that the generation of biofilm is maximal in the Bvgi phase. We show that FHA is required for maximal biofilm formation and that fimbriae may also contribute to this phenotype. However, expression of ACY inhibits biofilm formation, most likely via interactions with FHA. Therefore, the coordinated regulation of adhesins and ACY expression leads to maximal biofilm formation in the Bvgi phase in B. bronchiseptica.  相似文献   

16.
Bacteria belonging to the Burkholderia species are important pulmonary pathogens in cystic fibrosis (CF) patients. Their ability to establish chronic and sometimes fatal infections seems linked to the quorum sensing-regulated expression of virulence factors. We examined 23 Burkholderia isolates, 19 obtained from CF patients and 4 from the environment, to evaluate their ability to form biofilm and to penetrate and replicate inside J774 macrophagic cells. Our results indicate that biofilm formation and intracellular survival are behavioral traits frequently expressed by Burkholderia strains isolated from CF patients. Successive isolates obtained from each of four chronically infected patients yielded bacteria consistently belonging to the same strain but showing increasing ability to replicate intracellularly and to produce biofilm, possibly due to in vivo bacterial microevolution driven by the selective lung environmental conditions. Protection against antimicrobials granted to burkholderiae by the expression of these two virulence factors might account for the frequent failures of antibiotic treatment in CF patients.  相似文献   

17.
Mycobacterium avium is widely distributed in the environment, and it is chiefly found in water and soil. M. avium, as well as Mycobacterium smegmatis, has been recognized to produce a biofilm or biofilm-like structure. We screened an M. avium green fluorescent protein (GFP) promoter library in M. smegmatis for genes involved in biofilm formation on polyvinyl chloride (PVC) plates. Clones associated with increased GFP expression ≥2.0-fold over the baseline were sequenced. Seventeen genes, most encoding proteins of the tricarboxylic acid (TCA) cycle and GDP-mannose and fatty acid biosynthesis, were identified. Their regulation in M. avium was confirmed by examining the expression of a set of genes by real-time PCR after incubation on PVC plates. In addition, screening of 2,000 clones of a transposon mutant bank constructed using M. avium strain A5, a mycobacterial strain with the ability to produce large amounts of biofilm, revealed four mutants with an impaired ability to form biofilm. Genes interrupted by transposons were homologues of M. tuberculosis 6-oxodehydrogenase (sucA), enzymes of the TCA cycle, protein synthetase (pstB), enzymes of glycopeptidolipid (GPL) synthesis, and Rv1565c (a hypothetical membrane protein). In conclusion, it appears that GPL biosynthesis, including the GDP-mannose biosynthesis pathway, is the most important pathway involved in the production of M. avium biofilm.  相似文献   

18.
Two-component sensors are widely used by bacteria to sense and respond to the environment. Pseudomonas aeruginosa has one of the largest sets of two-component sensors known in bacteria, which likely contributes to its unique ability to adapt to multiple environments, including the human host. Several of these two-component sensors, such as GacS and RetS, have been shown to play roles in virulence in rodent infection models. However, the role and function of the majority of these two-component sensors remain unknown. Danio rerio is a recently characterized model host for pathogenesis-related studies that is amenable to higher-throughput analysis than mammalian models. Using zebrafish embryos as a model host, we have systematically tested the role of 60 two-component sensors and identified 6 sensors that are required for P. aeruginosa virulence. We found that KinB is required for acute infection in zebrafish embryos and regulates a number of virulence-associated phenotypes, including quorum sensing, biofilm formation, and motility. Its regulation of these phenotypes is independent of its kinase activity and its known response regulator AlgB, suggesting that it does not fit the canonical two-component sensor-response regulator model.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号