首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of nitrogen and plant growth regulators (stem shorteners)on root and shoot characteristics associated with lodging resistancewere investigated in two winter wheat (Triticum aestivum L.)cultivars of contrasting lodging resistance: the susceptibleGalahad and the resistant Hereward. The morphology and mechanicalstrength of the stems and anchorage systems grown at two levelsof nitrogen and with or without growth regulators were measuredand related to the incidence of lodging recorded in a fieldtrial. In both cultivars high levels of nitrogen increased theheight of the stem, thereby increasing the ‘self-weight’moment transmitted into the ground and weakened both the stemsand the anchorage coronal roots. As a result, the anchoragestrength was also reduced, plants failing in the root systemin simulated lodging tests. Growth regulators, in contrast,had little effect on the bending strength of the shoots androot systems, but reduced plant height so that the over turningmoments generated by the weight of the shoot were less. Therewere also differences between cultivars: Galahad plants hadweaker anchorage due to the smaller number and lower strengthof the coronal roots. The morphological and mechanical measureswere used to calculate a safety factor against both stem androot lodging. Five factors were found to influence the safetyfactors, these were: cultivar type, the type of lodging, therate of nitrogen and growth regulator application, and time,being lowest in Galahad plants at high levels of nitrogen andwithout growth regulators and at grain filling when the earswere heaviest. This was consistent with the observed patternof lodging: root lodging occurred at grain filling and onlyin Galahad which had been treated with high nitrogen rates,most strongly in plants without growth regulators. Key words: Lodging, safety factors, anchorage, ‘self-weight’ moment  相似文献   

2.
Aspects of growth and development were evaluated in the fast-developingannual Triticum aestivum L. ‘Chinese Spring’, theslow-developing perennial Lophopyrum elongatum Löve, theiramphiploid, and chromosome addition and substitution lines ofL. elongatum into ‘Chinese Spring’. Relative growthrates (RGR) of shoots of L. elongatum and the amphiploid werelower than those of ‘Chinese Spring’ (34 and 13%respectively) and main stem development was also slower. Therewas no difference in shoot RGR of any of the chromosome additionor substitution lines and that of ‘Chinese Spring’when assessed between Haun stages 2.0 and 5.0. In contrast,several aspects of plant development were observed to differin the chromosome addition and substitution lines. SubstitutingE genome chromosomes (with the exceptions of 3E and 4E) forD genome chromosomes, or adding E genome chromosomes, slowedthe rate of main stem development, at least up to Haun stage5.0. Despite these differences in the rate of main stem development,the appearance of adventitious roots commenced at approximatelyHaun stage 2.0 in all genotypes. However, the numbers of adventitiousroots and tillers at the 5.0 Haun stage differed between someof the lines when compared to ‘Chinese Spring’.Although incorporation of some L. elongatum chromosomes alteredaspects of plant development, all lines showed more similarityto bread wheat than to L. elongatum, reflecting, in part, thegreater genetic contribution made by bread wheat to these lines.Copyright 2001 Annals of Botany Company Adventitious roots, chromosome addition and substitution lines, Haun stage, Lophopyrum elongatum, relative growth rate (RGR), Triticum aestivum(wheat)  相似文献   

3.
The structural development of the stems and basal anchorageroots of Galahad and Hereward winter wheat cultivars (Triticumaestivum L.) were investigated and related to their mechanicalfunction. Stem and root morphology, anatomy and mechanical propertieswere examined from tillering (March) up to maturity (August),together with plant weight distribution. This allowed us tocalculate a ‘factor of safety’ against root andstem failure throughout development. As the plants grew taller the stem and the anchorage ‘coronalroots’ increased in bending strength countering the increasingmechanical demands. The bending strength, in turn, was correlatedwith the amount of lignified material around the stem and rootperimeter. Structural development ceased by ear emergence, whenthe plant was at its tallest, but because the ear weight continuedto rise the ‘self-weight’ moment pushing the plantover continued to increase. This meant that the ‘safetyfactors’ of both cultivars against both root and stemmechanical failure decreased throughout development. In bothcultivars the safety factors against root failure were lowerthan for stem failure, and Galahad had lower factors of safetythan Hereward. All these findings were consistent with resultsof field trials; failure tends to occur late in development,during grain filling, and is localized to the root system, whilstGalahad is more prone to lodging than Hereward. The pattern of mechanical development of winter wheat seemsto be one which would maximize its reproductive success, maintainingits structural integrity especially early in development whileinvesting in a minimum of structural material. Key words: Safety factor, anchorage, lodging, biomechan-ics, structural development  相似文献   

4.
The success of Triticum aestivumxZea mays crosses, used to producewheat doubled haploids, is influenced by light intensity. Toexamine the basis for this response, pollen tube growth, embryosurvival and indicators of photosynthetic rate were measuredin two wheat cultivars (‘Karamu’ and ‘Kotuku’)crossed with maize at two irradiance levels (250 or 750 µmolm-2s-1, PAR). Pollen tube growth was significantly affectedby light intensity in ‘Karamu’ plants but not in‘Kotuku’ plants, despite both cultivars being pollinatedby the same maize source. The percentage of pollen tubes reachingthe cavity between the ovarian wall and integuments, or in themicropyle of ‘Karamu’ plants at high light intensity(65%) was nearly three-times greater than that at low lightintensity (22%). Thus, either low light intensity can affectthe maternal wheat plant in a way that inhibits pollen tubegrowth and/or high light intensity may promote pollen tube growthin ‘Karamu’ plants. Significant differences in ratesof electron transport in plants grown at the two light intensitiesindicated that the rate of photosynthesis may also have an effecton pollen tube growth. These results have importance for improvingthe efficiency of wheat x maize crosses and other wide cerealcrosses. Copyright 2001 Annals of Botany Company Intergeneric hybridization, light intensity, pollen tube growth, embryo survival, Triticum aestivum, wheat,Zea mays , maize  相似文献   

5.
Model of the mechanics of uprooting lead to the identificationof ‘optimal’ anchorage systems which can withstanda given upward force at a minimum construction cost. Such systemshave many downward-pointing fibrous roots which are strengthenedprogressively towards the base. A study of the anchorage systemof 7- and 21-d-old wheat (Triticum aestivum L.) plants showedthat the plants possessed five seminal roots, of which onlythree pointed vertically. Each root was well suited for anchorage,being convered in root hairs and strengthened progressivelytowards the base by lignification of the stele. Strength andstiffiness of roots but not their mass per unit length increasedwith age. There was little interaction between roots when plantswere uprooted; the three vertical roots broke while the twohorizontal ones pulled out, as occurred when roots were pulledout singly, Uprooting forces increased with age and the rootsystem could withstand uprooting forces greater than those requiredto pull out upper leaves, so reducing the chances of the plantbeing uprooted by a herbivore, By 3 weeks a stiff adventitiousroot system, which would later help prevent the wheat lodging,was developing.  相似文献   

6.
Species that showed marked morphological and physiological responsesby their roots to Fe-deficiency (Strategy I plants) were comparedwith others that do not exhibit these responses (Strategy IIplants). Roots from Fe-deficient cucumber (Cucumis sativusL.‘Ashley’), tomato (Lycopersicon esculentumMill.T3238FER) and pea (Pisum sativumL. ‘Sparkle’) plantsproduced more ethylene than those of Fe-sufficient plants. Thehigher production of ethylene in Fe-deficient cucumber and peaplants occurred before Fe-deficient plants showed chlorosissymptoms and was parallel to the occurrence of Fe-deficiencystress responses. The addition of either the ethylene precursorACC, 1-aminocyclopropane-1-carboxylic acid, or the ethylenereleasing substance, Ethephon, to several Fe-sufficient StrategyI plants [cucumber, tomato, pea, sugar beet (Beta vulgarisL.),Arabidopsis(Arabidopsis thaliana(L.) Heynh ‘Columbia’), plantago(Plantago lanceolataL.)] promoted some of their Fe-deficiencystress responses: enhanced root ferric-reducing capacity andswollen root tips. By contrast, Fe-deficient roots from severalStrategy II plants [maize (Zea maysL. ‘Funo’), wheat(Triticum aestivumL. ‘Yécora’), barley (HordeumvulgareL. ‘Barbarrosa’)] did not produce more ethylenethan the Fe-sufficient ones. Furthermore, ACC had no effecton the reducing capacity of these Strategy II plants and, exceptin barley, did not promote swelling of root tips. In conclusion,results suggest that ethylene is involved in the regulationof Fe-deficiency stress responses by Strategy I plants.Copyright1999 Annals of Botany Company. Arabidopsis (Arabidopsis thaliana(L.) Heynch), barley (Hordeum vulgareL.), cucumber (Cucumis sativusL.), ethylene, iron deficiency, maize (Zea maysL.), pea (Pisum sativumL.), plantago (Plantago lanceolataL.), ferric-reducing capacity, sugar beet (Beta vulgarisL.), tomato (Lycopersicon esculentumMill.), wheat (Triticum aestivumL.).  相似文献   

7.
The anchorage of winter wheat, Triticum aestivum L., is providedby a cone of rigid coronal roots which emerge from around thestem base. During root lodging this cone rotates at its windwardedge below the soil surface, the soil inside the cone movingas a block and compressing the soil beneath. A theoretical modelof anchorage suggested that lodging resistance should be dependenton the diameter of the root-soil cone, coronal root bendingstrength and soil shear strength. We tested the predictions of the anchorage model by carryingout two series of experiments. In the first, varieties of contrastinglodging resistances were artificially lodged. The moment requiredto rotate plants into the soil, the diameter of the root-soilcone, and the bending strength of the coronal roots were recorded.The lodging moment was correlated with the size of the soilcone, as predicted. Generally, differences in anchorage strengthbetween varieties were due to differences in root-soil conediameter, although coronal root strength was also important. A second series of tests was carried out using model plantsanchored by plastic discs. The behaviour of the models duringartificial lodging supported the anchorage model; the forceresisting lodging was similar to that of plants with root-soilcones of the same size and the resisting force was dependenton the soil strength. These results suggest that root lodging resistance might beimproved by increasing both the angle of spread and the bendingstrength of the coronal roots. Key words: Anchorage, root-soil cone, coronal roots, lodging, wheat  相似文献   

8.
Expression of foreign DNA has been detected in intact, germinatingwheat embryos (Triticum aestivum L.) following bombardment withtungsten particles complexed with a reporter gene encoding thebacterial enzyme ß-glucuronidase (‘GUS’:E.C.3.2.1.31). Expression was detected in situ in individualcells and groups of cells, by supplying the germinating embryoswith the chromogenic substrate of the GUS enzyme, ‘X-gluc’.Expression was dependent on the presence of a constitutive plantpromoter, the Cauliflower Mosaic Virus ‘35S’ promoter,fused to the GUS structural coding sequence. The relative simplicityof this technique recommends its future use for the assay ofregulatory elements which control the spatial and temporal specificityof genes expressed during embryo development. Key words: Transient expression, particle bombardment, wheat embryo, Triticum aestivum L.  相似文献   

9.
The root system of mature wheat Triticum aestivum Marts Doveis dominated by the 7 to 15 adventitious roots which emergefrom the perimeter of the stem base, pointing radially outwardsand downwards. The basal, coronal region of these roots is thickand unbranched, attached to a rhizosheath of earth by a densecovering of root hairs and stiffened in bending by lignificationof outer layers of the cortex. Root lodging of plants involves bending of the coronal rootsat their base and axial movement of leeward and windward rootsthrough the soil; their resistance to these motions providemoments resisting lodging. A model of anchorage was producedby summing the resistance of each root to both forms of motionto give two anchorage components. The model was tested in aseries of mechanical experiments in which simulated lodgingwas followed by loading of individual roots; results supportedthe anchorage model and suggested that in the experimental conditionsthe two components of anchorage were approximately equal inmagnitude. The stem was about 30% stronger than the anchoragesystem. The coronal anchorage roots made up 4.4% of total dry mass;it is suggested that anchorage could be improved either by increasinginvestment in this region or by altering root orientation. Sequentialdevelopment of seminal and adventitious root systems is relatedto the changes in anchorage requirement with age.  相似文献   

10.
The Responses of Field-grown Sunflower and Maize to Mechanical Support   总被引:4,自引:1,他引:4  
The effects of mechanical support on two contrasting speciesof herbaceous annual, the dicot sunflower (Helianthus annuusL.) and the monocot maize (Zea mays L.), were investigated bycomparing the growth and mechanical properties of supportedplants and those which were left to sway freely in the wind. Providing support had its greatest effect on the more highly-stressedbasal areas of the plants, such as the lower stem and the baseof the lateral roots. The diameter of the stem bases of bothspecies was approx. 10% lower in supported plants, but therewas no difference between treatments in the diameter of thestem above 50 cm. Roots of both species also showed a reductionin rigidity and bending strength of 40–50% in the supportedplants compared with freely swaying plants. There was a significantreduction in the partitioning of biomass to the root systemsof supported plants of both species. There were differences in the way in which sunflower and maizeresponded to the provision of support; in sunflower, the reductionin lateral diameter was about twice that in maize, whereas inmaize the decrease in the number of first-order laterals wastwice that of sunflower. This study suggests that thigmomorphogenesismay be a localized response, but that different species canrespond in different ways to mechanical stimulation. Wind; support; anchorage; thigmomorphogenesis; Helianthus annuus L.; sunflower; Zea mays L.; maize  相似文献   

11.
Single populations of three hexaploid species of wheat, Triticumaestivum, Triticum spelta and Triticum macha, and two populationsof the tetraploid wheat, Triticum dicoccum (Pontus and Bordeaux),were grown in a greenhouse experiment at a range of soil floodingregimes: free draining, two levels of transient flooding andcontinuous flooding. Increasing severity of flooding treatment resulted in increasedsoil reduction and an increase in the concentration of reducediron and manganese in the experimental soil, and also resultedin a reduction in vegetative growth, number of inflorescences,grain number and grain weight. There were, however, large differencesbetween the wheat populations in the degree of reduction inyield caused by flooding. The population of T. macha was muchmore flooding-tolerant than the other hexaploid species andthe ‘Pontus’ population of the emmer wheat, T. dicoccum,was more tolerant than the ‘Bordeaux’ populationof this species and than T. spelta and T. aestivum. The results are discussed in relation to the origin of the populations. Soil flooding, Triticum aeslivum, Triticum macha, Triticum spelta, Triticum dicoccum  相似文献   

12.
Mixed Nitrogen Nutrition and Productivity of Wheat Grown in Hydroponics   总被引:12,自引:1,他引:11  
The objective of this study was to study the effects of nitrogen(N) supplied as either mixtures of NO3 and NH4 or as all NO3on the final yield of spring wheat. Two separate greenhouseexperiments evaluated the durum spring wheat (Triticum durumL.) cultivar ‘Inbar’ in 1986, and the hard red springwheat (Triticum aestmum L.) cultivar ‘Len’ in 1987.Nitrogen treatments consisted of all NO, or mixtures (75/25or 50/50) of NO3 and NH4. At maturity, plants were harvested,separated into leaves, stems, roots, and grain, and each partanalysed for dry matter and chemical composition Compared to plants receiving only NO3 as the source of N, mixedN nutrition resulted in greater accumulation of whole plantreduced-N (49 to 108% more), phosphorus (38 to 69% more), andpotassium (25% more) for both cultivars. In all cases, plantsproduced higher grain yields (28% for Len to 78% for Inbar)when grown with mixed N nutrition than with only NO3. The yieldincrease was not associated with heavier grains or more grainsper ear, but rather with an increase in the number of ear-bearingtillers per plant. For both cultivars, the higher yields withmixed N resulted from the production of more total biomass (36to 76%) as the partitioning of dry matter between plant partswas not altered by N treatment. Under the hydroponic conditionsof this experiment, the utilization of both NO3 and NH4 resultedin greater growth, nutrient absorption, and yield than NO3 alone,which was primarily associated with an enhancement in tillerdevelopment Triticum aestivum L., Triticum durum L., spring wheat, hydroponics, ammonium nutrition, nitrate nutrition, tillering, yield components, partitioning  相似文献   

13.
Stagnant nutrient solution containing 0.1% agar and with anextremely low oxygen level (‘stagnant agar solution’)was used to simulate the gaseous composition and slow gas diffusionof waterlogged soils. Comparisons were made between the growthof two wheat cultivars(Triticum aestivum,cvs. Gamenya and Kite)and one triticale cultivar(Triticosecale,cv. Muir) grown instagnant relative to aerated solution. For all genotypes tested,immersion of roots in stagnant agar solution resulted in thedeath of the entire seminal root system and led to profuse branchingof the laterals of the nodal roots. In the stagnant agar solutionaerenchyma, as a percentage of the total cross sectional areaof nodal roots, was 18% for Muir, 14% for Kite and 12% for Gamenya;the roots of species with more aerenchyma also attained a longermaximum root length as predicted by the model of Armstrong (in:Woolhouse HW, ed.Advances in botanical research, vol. 7. London:Academic Press, 1979). Muir also had a nodal root/shoot freshweight ratio of 0.5 compared with 0.2–0.3 in Kite andGamenya. The greater number and length of nodal roots of Muirdid not lead to better shoot growth than in the other genotypes;one possible reason for this lack of improvement is a low efficiencyof aerenchymatous roots in wheat.Copyright 1998 Annals of BotanyCompany Root development; aerenchyma; stagnant agar;Triticum aestivumcv. Gamenya;Triticum aestivumcv. Kite;Triticosecalecv. Muir.  相似文献   

14.
The Anchorage Mechanics of Maize, Zea mays   总被引:2,自引:0,他引:2  
The anchorage system of mature maize Zea mays was investigatedby combining morphological and anatomical study of the rootsystem with mechanical tests on roots and with studies in whichplants were pulled over. The root system is dominated by 20–30adventitious roots which emerge in rings from the stem basepointing radially downwards and outwards, approximately 30°from the vertical. Roots are strengthened near their base bya heavily lignified exodermis which makes them rigid in bending;distally, strength and rigidity both decrease because rootsbecome thinner and less lignified. When plants were pulled over,a maximum anchorage moment of 5–20 Nm was mobilized atangles of 8–10°, larger plants having stronger anchorage.Movement was initially centred on the leeward side of the stem,anchorage being due to the resistance of both windward and leewardroots to axial motion through the soil and to bending. At displacementsover 10°, however, leeward roots buckled under combinedbending and compression and the centre of rotation shifted tothe windward perimeter of the root system; subsequent movementof the cone of roots and soil was resisted only by the bearingstrength of the soil beneath it. The differences between anchorage failure in balsam and sunflowersand that in maize probably results from the lower angular spreadand the weakness in compression of the maize roots which preventsthe leeward side of the root system from bearing large downwardloads. The system behaves more like that of wheat; these resultssuggest that the lodging resistance of both plants may be improvedby increasing the bending strength and angle of spread of theadventitious roots. Key words: Zea mays, roots, anchorage  相似文献   

15.
The relationship between amino acid and sugar export to thephloem was studied in young wheat plants (Triticum aestivumL. ‘Pro-INTA, Isla Verde’) using the EDTA-phloemcollection technique. Plants grown with a 16 h photoperiod showeda rapid decrease in the concentration of sugars and amino acidsin the phloem exudate from the beginning of the dark period.When plants grown with a 16 h photoperiod were kept in the darkfor longer than 8 h the free amino acid content in leaves andexudate (on a dry weight basis) increased continually throughoutthe 72 h of darkness. During the first 24 h of darkness thesugars in the phloem exudate decreased to 30% of the initialvalue, and returned to the control level when plants were returnedto light. When plants grown under low light intensity for 10d were transferred to high light intensity, they showed an increasein leaf sugar content (dry weight basis) after 3 d but therewere no differences in leaf free amino acid content (dry weightbasis) compared to low-light plants. The sugar concentrationin the phloem exudate was increased by higher light intensities,but there was no difference in the amino acid concentrationof the phloem exudate, and thus the amino acid:sugar ratio inthe phloem decreased in the high-light plants. The present resultssuggest that amino acids can be exported to the phloem independentlyof the export of sugars. Copyright 1999 Annals of Botany Company Sugar exudation, amino acid transport, nitrogen, phloem, transport, wheat, Triticum aestivum L.  相似文献   

16.
Red light-emitting diodes (LEDs) are a potential light sourcefor growing plants in spaceflight systems because of their safety,small mass and volume, wavelength specificity, and longevity.Despite these attractive features, red LEDs must satisfy requirementsfor plant photosynthesis and photomorphogenesis for successfulgrowth and seed yield. To determine the influence of galliumaluminium arsenide (GaAIAs) red LEDs on wheat photomorphogenesis,photosynthesis, and seed yield, wheat (Triticum aestivum L.,cv. ‘USU-Super Dwarf’) plants were grown under redLEDs and compared to plants grown under daylight fluorescent(white) lamps and red LEDs supplemented with either 1% or 10%blue light from blue fluorescent (BF) lamps. Compared to whitelight-grown plants, wheat grown under red LEDs alone demonstratedless main culm development during vegetative growth throughpreanthesis, while showing a longer flag leaf at 40 DAP andgreater main culm length at final harvest (70 DAP). As supplementalBF light was increased with red LEDs, shoot dry matter and netleaf photosynthesis rate increased. At final harvest, wheatgrown under red LEDs alone displayed fewer subtillers and alower seed yield compared to plants grown under white light.Wheat grown under red LEDs+10% BF light had comparable shootdry matter accumulation and seed yield relative to wheat grownunder white light. These results indicate that wheat can completeits life cycle under red LEDs alone, but larger plants and greateramounts of seed are produced in the presence of red LEDs supplementedwith a quantity of blue light. Key words: Triticum aestivum L., red light, blue light, subtillering, bioregenerative advanced life support  相似文献   

17.
Root overproduction in embryogenic calli of wheat cv. ‘ChineseSpring’ was controlled by the addition of IAA-degradingcompounds (citric acid, MnSO4 or EDTA) to the culture media.In the presence of 20 gl–1 sucrose, the number of rootson calli decreased significantly when media for either callusmaintenance or plant regeneration were amended with citric acid.EDTA was less effective in reducing the number of roots thancitric acid. An increase in the amount of a 31kDa (P1) polypeptideunder conditions which favoured a reduction in root formationwas observed. Key words: Wheat, Triticum aestivum, IAA-degrading compounds, indoleacetic acid, root number.  相似文献   

18.
A model was constructed to describe the translocation and partitioningof nitrogen on the seventh day after anthesis for well-wateredand droughted plants of two wheat varieties (Triticum aestivumL. cv. Warigal and Condor). The glasshouse-grown plants weredetillered so that a simplified model could be derived for themain stem. A 9-d drought treatment was imposed just after anthesisand this coincided with the period of endosperm cell divisionin the grains. Warigal, which had a higher grain yield thanCondor under drought, absorbed up to 15-times more nitrogenand translocated 1.5-fold more nitrogen to the shoot via thexylem. In both varieties, nitrogen redistributed from vegetativeorgans accounted for more than 60 per cent in control and 70per cent in droughted plants of the nitrogen needed for eargrowth. The net loss of nitrogen increased by 4-3 per cent inthe leaves, but decreased by 60 per cent in the stem under drought.Stem and roots appeared to play an important role in the nitrogeneconomy of droughted plants: less nitrogen was translocateddirectly to the grains from the senescing leaves and 40–60per cent more nitrogen was translocated to the roots. Nearlyall the nitrogen reaching the roots in the phloem was reloadedinto the xylem stream and translocated back to the shoot. Thetransfer of nitrogen through the stem was reduced under droughtand this resulted in a constant C:N ratio of the grains whichmay be important in the regulation of endosperm cell division. Triticum aestivum L., wheat, drought, nitrogen, senescence, translocation  相似文献   

19.
The objectives of this study were: (1) to quantify post-anthesiskernel cytokinin levels in ‘Tibet Dwarf’, a dwarfwheat (Triticum aestivumL.) that accumulates elevated quantitiesof leaf cytokinins; and (2) to measure the effects of temperatureon kernel cytokinin accumulation and mature kernel mass in thiswheat. Post-anthesis kernel cytokinin accumulation was measuredin control plants maintained at 25/12 °C (day/night) andtreated plants which received a 7 d exposure to 35/25 °Cbeginning at anthesis and grown to maturity at 25/15 °C.Zeatin (Z), dihydrozeatin (diHZ) and their respective ribosideswere the predominant cytokinins detected in control and treatedplants. Minimal quantities of isopentenyl adenine-type cytokininswere detected. Kernel cytokinin content peaked within 3 d afteranthesis in both groups and returned to baseline levels within1–2 d. Relative to controls, exposure to high temperaturereduced kernel cytokinin content approx. 80% within 1 d afteranthesis. Because kernel cytokinin in control Tibet Dwarf plantsexceeded that previously measured in other varieties by over100-fold, the reduced content of treated plants still exceededthat of untreated plants of other varieties. The increased cytokinincontent did not enhance thermotolerance. The temperature treatmentreduced mature kernel weights approx. 27%, similar to reductionsmeasured in other wheat varieties.Copyright 1999 Annals of BotanyCompany Triticum aestivum, endosperm development, heat stress, kernel mass, cytokinins.  相似文献   

20.
Anatomical changes in roots of wheat seedlings (Triticum aestivumL. cv. Hatri) following oxygen deficiency in the rooting mediumwere investigated. The response of the plant to stress was testedat a very early developmental stage when the first adventitiousroots had just emerged. In order to analyze the adaptation ofdifferent roots, respiration rates of the roots 1–3 and4–n were compared with the respiration rates of the totalroot system. Oxygen deficiency was induced either by flushingnutrient solution with nitrogen or flooding of sand. In contrast to plants grown in well aerated media, both stressvariants led to a significant increase of the intercellularspace of the root cortex in seminal and first adventitious roots.Radial cell enlargement of cortical cells near the root tip,cell wall thickenings in flooded sand cultures and an increasein phloroglucinol-stainable substances were found to be furtherindicators of low oxygen supply. The roots 4–n which were promoted in growth under hypoxiashowed higher respiration rates; hence the total root respirationwas not restricted. Triticum aestivum L. cv. Hatri, wheat, roots, anatomy, anaerobiosis, stress, root respiration, intercellular space  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号