首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Visinin-like protein 3 (VILIP-3) belongs to a family of Ca2+-myristoyl switch proteins that regulate signal transduction in the brain and retina. Here we analyze Ca2+ binding, characterize Ca2+-induced conformational changes, and determine the NMR structure of myristoylated VILIP-3. Three Ca2+ bind cooperatively to VILIP-3 at EF2, EF3 and EF4 (KD = 0.52 μM and Hill slope of 1.8). NMR assignments, mutagenesis and structural analysis indicate that the covalently attached myristoyl group is solvent exposed in Ca2+-bound VILIP-3, whereas Ca2+-free VILIP-3 contains a sequestered myristoyl group that interacts with protein residues (E26, Y64, V68), which are distinct from myristate contacts seen in other Ca2+-myristoyl switch proteins. The myristoyl group in VILIP-3 forms an unusual L-shaped structure that places the C14 methyl group inside a shallow protein groove, in contrast to the much deeper myristoyl binding pockets observed for recoverin, NCS-1 and GCAP1. Thus, the myristoylated VILIP-3 protein structure determined in this study is quite different from those of other known myristoyl switch proteins (recoverin, NCS-1, and GCAP1). We propose that myristoylation serves to fine tune the three-dimensional structures of neuronal calcium sensor proteins as a means of generating functional diversity.  相似文献   

2.
Neuronal calcium sensor-1 (NCS-1) is the primordial member of a family of proteins responsible primarily for sensing changes in neuronal Ca2+ concentration. NCS-1 is a multispecific protein interacting with a number of binding partners in both calcium-dependent and independent manners, and acting in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca2+-activated state of NCS proteins, little is known about the conformational dynamics of the Mg2+-bound and apo states, both of which are populated, at least transiently, at resting Ca2+ conditions. Here, we used optical tweezers to study the folding behavior of individual NCS-1 molecules in the presence of Mg2+ and in the absence of divalent ions. Under tension, the Mg2+-bound state of NCS-1 unfolds and refolds in a three-state process by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions were reconstructed through hidden Markov model analysis. Unlike what has been observed with the Ca2+-bound state, the presence of Mg2+ allows both the N- and C-domain to fold through all-or-none transitions with similar refolding rates. In the absence of divalent ions, NCS-1 unfolds and refolds reversibly in a two-state reaction involving only the C-domain, whereas the N-domain has no detectable transitions. Overall, the results allowed us to trace the progression of NCS-1 folding along its energy landscapes and provided a solid platform for understanding the conformational dynamics of similar EF-hand proteins.  相似文献   

3.
Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca2+-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca2+/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca2+/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178–Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca2+/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178–Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1.  相似文献   

4.
Catecholamines and other transmitters released from adrenal chromaffin cells play central roles in the “fight-or-flight” response and exert profound effects on cardiovascular, endocrine, immune, and nervous system function. As such, precise regulation of chromaffin cell exocytosis is key to maintaining normal physiological function and appropriate responsiveness to acute stress. Chromaffin cells express a number of different G protein coupled receptors (GPCRs) that sense the local environment and orchestrate this precise control of transmitter release. The primary trigger for catecholamine release is Ca2+ entry through voltage-gated Ca2+ channels, so it makes sense that these channels are subject to complex regulation by GPCRs. In particular G protein βγ heterodimers (Gβγ) bind to and inhibit Ca2+ channels. Here I review the mechanisms by which GPCRs inhibit Ca2+ channels in chromaffin cells and how this might be altered by cellular context. This is related to the potent autocrine inhibition of Ca2+ entry and transmitter release seen in chromaffin cells. Recent data that implicate an additional inhibitory target of Gβγ on the exocytotic machinery and how this might fine tune neuroendocrine secretion are also discussed.  相似文献   

5.
Fast neuromodulatory effects of 17-β-estradiol (E2) on cytosolic calcium concentration ([Ca2+] i ) have been reported in many cell types, but little is known about its direct effects on vesicular neurotransmitter secretion (exocytosis). We examined the effects of E2 on depolarization-evoked [Ca2+] i in PC12 cells using fluorescence measurements. Imaging of [Ca2+] i with FURA-2 revealed that depolarization-evoked calcium entry is inhibited after exposure to 10 nM and 10 μM E2. Calcium entry after exposure to 50 μM E2 decreases slightly, but insignificantly. To relate E2-induced changes in [Ca2+] i to functional effects, we measured exocytosis using amperometry. It was observed that E2 in some cells elicits exocytosis upon exposure. In addition, E2 inhibits depolarization-evoked exocytosis with a complex concentration dependence, with inhibition at both physiological and pharmacological concentrations. This rapid inhibition amounts to 45% at a near physiological level (10 nM E2), and 50% at a possible pharmacological concentration of 50 μM. A small percentage (22%) of cells show exocytosis during E2 exposure (“Estrogen stimulated”), thus vesicle depletion could possibly account (at least partly) for the E2-induced inhibition of depolarization-evoked exocytosis. In cells that do not exhibit E2-stimulated release (“Estrogen quiet”), the E2-induced inhibition of exocytosis is abolished by a treatment that eliminates the contribution of N-type voltage-gated calcium channels (VGCCs) to exocytosis. Overall, the data suggest that E2 can act on N-type VGCCs to affect secretion of neurotransmitters. This provides an additional mechanism for the modulation of neuronal communication and plasticity by steroids.  相似文献   

6.
L-type Ca2+ channels (LTCCs, Cav1) open readily during membrane depolarization and allow Ca2+ to enter the cell. In this way, LTCCs regulate cell excitability and trigger a variety of Ca2+-dependent physiological processes such as: excitation–contraction coupling in muscle cells, gene expression, synaptic plasticity, neuronal differentiation, hormone secretion, and pacemaker activity in heart, neurons, and endocrine cells. Among the two major isoforms of LTCCs expressed in excitable tissues (Cav1.2 and Cav1.3), Cav1.3 appears suitable for supporting a pacemaker current in spontaneously firing cells. It has steep voltage dependence and low threshold of activation and inactivates slowly. Using Cav1.3−/− KO mice and membrane current recording techniques such as the dynamic and the action potential clamp, it has been possible to resolve the time course of Cav1.3 pacemaker currents that regulate the spontaneous firing of dopaminergic neurons and adrenal chromaffin cells. In several cell types, Cav1.3 is selectively coupled to BK channels within membrane nanodomains and controls both the firing frequency and the action potential repolarization phase. Here we review the most critical aspects of Cav1.3 channel gating and its coupling to large conductance BK channels recently discovered in spontaneously firing neurons and neuroendocrine cells with the aim of furnishing a converging view of the role that these two channel types play in the regulation of cell excitability.  相似文献   

7.
Calcium ions exhibit unique properties and a universal ability to transmit diverse signals in plant cells under the primary action of hormones, pathogens, light, gravity, and various abiotic stressors. In the last few years, considerable progress has been achieved in deciphering the mechanisms of Ca2+ involvement in the regulation of plant responses. Recent studies revealed the genes encoding Ca2+-permeable channels that conduct Ca2+ currents across the membranes during the transduction of the Ca2+ signal. These proteins comprise the ligand-gated Ca2+-permeable channels activated by cyclic nucleotides (CNGC) and amino acids (glutamate receptor-like channels, GLR), the voltage-gated tonoplast channel (two-pore channel, TPC1), mechanosensitive channels (MSL, MCA, OSCA1), and annexins. The role of Ca2+-ATPase and Ca2+/H+-exchangers in the active extrusion of excess cytoplasmic Ca2+ into the apoplast or cell organelles was examined in detail. The calmodulins (CaM), CaM-like proteins (CML), Ca2+-dependent protein kinases (CDPK), and complexes of calcineurin-B-like proteins (CBL) with CBL-interacting protein kinases (CIPK) were found to produce intricate signaling networks that decode Ca2+ signals and elicit plant responses to external stimuli. This review analyzes the data accumulated over the past decade on the principles of formation and propagation of the calcium signal in plant cells.  相似文献   

8.
Neuronal calcium sensor-1 (NCS-1) is a high-affinity, low-capacity Ca2+-binding protein expressed in many cell types. We previously showed that NCS-1 interacts with inositol 1,4,5-trisphosphate receptor (InsP3R) and modulates Ca2+-signaling by enhancing InsP3-dependent InsP3R channel activity and intracellular Ca2+ transients. Recently we reported that the chemotherapeutic agent, paclitaxel (taxol) triggers μ-calpain dependent proteolysis of NCS-1, leading to reduced Ca2+-signaling within the cell. Degradation of NCS-1 may be critical in the induction of peripheral neuropathy associated with taxol treatment for breast and ovarian cancer. To begin to design strategies to protect NCS-1, we treated NCS-1 with μ-calpain in vitro and identified the cleavage site by N-terminal sequencing and MALDI mass spectroscopy. μ-Calpain cleavage of NCS-1 occurs within an N-terminal pseudoEF-hand domain, which by sequence analysis appears to be unable to bind Ca2+. Our results suggest a role for this pseudoEF-hand in stabilizing the three functional EF-hands within NCS-1. Using isothermal titration calorimetry (ITC) we found that loss of the pseudoEF-hand markedly decreased NCS-1's affinity for Ca2+. Physiologically, this significant decrease in Ca2+ affinity may render NCS-1 incapable of responding to changes in Ca2+ levels in vivo. The reduced ability of μ-calpain treated NCS-1 to bind Ca2+ may explain the altered Ca2+ signaling in the presence of taxol and suggests a strategy for therapeutic intervention of peripheral neuropathy in cancer patients undergoing taxol treatment.  相似文献   

9.
In cardiomyocytes, intracellular calcium (Ca2+) transients are elicited by electrical and receptor stimulations, leading to muscle contraction and gene expression, respectively. Although such elevations of Ca2+levels ([Ca2+]) also occur in the nucleus, the precise mechanism of nuclear [Ca2+] regulation during different kinds of stimuli, and its relationship with cytoplasmic [Ca2+] regulation are not fully understood. To address these issues, we used a new region-specific fluorescent protein-based Ca2+ indicator, GECO, together with the conventional probe Fluo-4 AM. We confirmed that nuclear Ca2+ transients were elicited by both electrical and receptor stimulations in neonatal mouse ventricular myocytes. Kinetic analysis revealed that electrical stimulation-elicited nuclear Ca2+ transients are slower than cytoplasmic Ca2+ transients, and chelating cytoplasmic Ca2+ abolished nuclear Ca2+ transients, suggesting that nuclear Ca2+ are mainly derived from the cytoplasm during electrical stimulation. On the other hand, receptor stimulation such as with insulin-like growth factor-1 (IGF-1) preferentially increased nuclear [Ca2+] compared to cytoplasmic [Ca2+]. Experiments using inhibitors revealed that electrical and receptor stimulation-elicited Ca2+ transients were mainly mediated by ryanodine receptors and inositol 1,4,5-trisphosphate receptors (IP3Rs), respectively, suggesting different mechanisms for the two signals. Furthermore, IGF-1-elicited nuclear Ca2+ transient amplitude was significantly lower in myocytes lacking neuronal Ca2+ sensor-1 (NCS-1), a Ca2+ binding protein implicated in IP3R-mediated pathway in the heart. Moreover, IGF-1 strengthened the interaction between NCS-1 and IP3R. These results suggest a novel mechanism for receptor stimulation-induced nuclear [Ca2+] regulation mediated by IP3R and NCS-1 that may further fine-tune cardiac Ca2+ signal regulation.  相似文献   

10.
Large-conductance Ca2+-dependent K+ (BKCa) channels are activated by intracellular Ca2+ and membrane depolarization in an allosteric manner. We investigated the pharmacological and biophysical characteristics of a BKCa-type K+ channel in androgen-dependent LNCaP (lymph node carcinoma of the prostate) cells with novel functional properties, here termed BKL. K+ selectivity, high conductance, activation by Mg2+ or NS1619, and inhibition by paxilline and penitrem A largely resembled the properties of recombinant BKCa channels. However, unlike conventional BKCa channels, BKL channels activated in the absence of free cytosolic Ca2+ at physiological membrane potentials; the half-maximal activation voltage was shifted by about −100 mV compared with BKCa channels. Half-maximal Ca2+-dependent activation was observed at 0.4 μM for BKL (at −20 mV) and at 4.1 μM for BKCa channels (at +50 mV). Heterologous expression of hSlo1 in LNCaP cells increased the BKL conductance. Expression of hSlo-β1 in LNCaP cells shifted voltage-dependent activation to values between that of BKL and BKCa channels and reduced the slope of the Popen (open probability)-voltage curve. We propose that LNCaP cells harbor a so far unknown type of BKCa subunit, which is responsible for the BKL phenotype in a dominant manner. BKL-like channels are also expressed in the human breast cancer cell line T47D. In addition, functional expression of BKL in LNCaP cells is regulated by serum-derived factors, however not by androgens.  相似文献   

11.
Combining Voltage and Calcium Imaging from Neuronal Dendrites   总被引:2,自引:0,他引:2  
The ability to monitor membrane potential (V m) and calcium (Ca2+) transients at multiple locations on the same neuron can facilitate further progress in our understanding of neuronal function. Here we describe a method to combine V m and Ca2+ imaging using styryl voltage sensitive dyes and Fura type UV-excitable Ca2+ indicators. In all cases V m optical signals are linear with membrane potential changes, but the calibration of optical signals on an absolute scale is presently possible only in some neurons. The interpretation of Ca2+ optical signals depends on the indicator Ca2+ buffering capacity relative to the cell endogenous buffering capacity. In hippocampal CA1 pyramidal neurons, loaded with JPW-3028 and 300 μM Bis-Fura-2, V m optical signals cannot be calibrated and the physiological Ca2+ dynamics are compromised by the presence of the indicator. Nevertheless, at each individual site, relative changes in V m and Ca2+ fluorescence signals under different conditions can provide meaningful new information on local dendritic integration. In cerebellar Purkinje neurons, loaded with JPW-1114 and 1 mM Fura-FF, V m optical signals can be calibrated in terms of mV and Ca2+ optical signals quantitatively reveal the physiological changes in free Ca2+. Using these two examples, the method is explained in detail.  相似文献   

12.
The inositol 1,4,5-trisphosphate (IP3)-mediated intracellular Ca2+ releases in secretory cells play vital roles in controlling not only the intracellular Ca2+ concentrations but also the Ca2+-dependent exocytotic processes. Of intracellular organelles that release Ca2+ in response to IP3, secretory granules stand out as the most prominent organelle and are responsible for the majority of IP3-dependent Ca2+ releases in the cytoplasm of chromaffin cells. Bovine chromaffin granules were the first granules that demonstrated the IP3-mediated Ca2+ release as well as the presence of the IP3 receptor (IP3R) in granule membranes. Secretory granules contain all three (type 1, 2, and 3) IP3R isoforms, and 58–69% of total cellular IP3R isoforms are expressed in bovine chromaffin granules. Moreover, secretory granules contain large amounts (2–4 mM) of chromogranins and secretogranins; chromogranins A and B, and secretogranin II being the major species. Chromogranins A and B, and secretogranin II are high-capacity, low-affinity Ca2+ binding proteins, binding 30–93 mol of Ca2+/mol of protein with dissociation constants of 1.5–4.0 mM. Due to this high Ca2+ storage properties of chromogranins secretory granules contain ~40 mM Ca2+. Furthermore, chromogranins A and B directly interact with the IP3Rs and modulate the IP3R/Ca2+ channels, i.e., increasing the open probability and the mean open time of the channels 8- to 16-fold and 9- to 42-fold, respectively. Coupled chromogranins change the IP3R/Ca2+ channels to a more ordered, release-ready state, whereby making the IP3R/Ca2+ channels significantly more sensitive to IP3.  相似文献   

13.
Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca2+ entry (SOCE) to Ca2+ homeostasis and its role in regulation of neurotransmission at cone synapses. Mn2+ quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca2+ influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca2+ stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca2+ channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca2+ entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca2+ channels. Exposure to MRS 1845 resulted in ∼40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca2+ currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca2+ homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse.  相似文献   

14.
Calcium entry through Ca2+‐permeable AMPA/kainate receptors may activate signaling cascades controlling neuronal development. Using the fluorescent Ca2+‐indicator Calcium Green 1‐AM we showed that the application of kainate or AMPA produced an increase of intracellular [Ca2+] in embryonic chick retina from day 6 (E6) onwards. This Ca2+ increase is due to entry through AMPA‐preferring receptors, because it was blocked by the AMPA receptor antagonist GYKI 52466 but not by the N‐methyl‐D ‐aspartic acid (NMDA) receptor antagonist AP5, the voltage‐gated Ca2+ channel blockers diltiazem or nifedipine, or by the substitution of Na+ for choline in the extracellular solution to prevent the depolarizing action of kainate and AMPA. In dissociated E8 retinal cultures, application of glutamate, kainate, or AMPA reduced the number of neurites arising from these cells. The effect of kainate was prevented by the AMPA/kainate receptor antagonist CNQX and by GYKI 52466 but not by AP5, indicating that the reduction in neurite outgrowth resulted from the activation of AMPA receptors. Blocking Ca2+ influx through L‐type voltage‐gated Ca2+ channels with diltiazem and nifedipine prevented the effect of 10–100 μM kainate but not that of 500 μM kainate. In addition, joro spider toxin‐3, a blocker of Ca2+‐conducting AMPA receptors, prevented the effect of all doses of kainate. Neither GABA, which is depolarizing at this age in the retina, nor the activation of metabotropic glutamate receptors with tACPD mimicked the effects of AMPA receptor activation. Calcium entry via AMPA receptor channels themselves may therefore be important in the regulation of neurite outgrowth in developing chick retinal cells. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 200–211, 2001  相似文献   

15.
The dependence of intracellular calcium dynamics on geometrical size relations between calcium-exchanging parts of the intracellular space was studied in mathematical models corresponding to a thin fragment of the Purkinje neuron spiny dendrite. The plasma membrane contained ion channels typical of this cell type, including channels that conduct an excitatory synaptic current, and ion pumps. The model equations took into account calcium exchange between the cytosol, extracellular medium, intracellular store (a cistern of the endoplasmic reticulum, ER), endogenous calcium buffers, and an exogenous buffer (fluorescent dye used in the experiments). The ER membrane contained the calcium pump and channels of calcium-dependent and inositol-3-phosphate-dependent calcium release, as well as leakage channels. With the compartment size fixed, the ER cistern diameter was varied so that the proportion of the organelle in the total volume changed from 1 to 36%. Under these conditions, identical synaptic excitation caused similar electrical reactions (calcium spikes) but different concentration responses. Equal increments in the ER diameter led to unequal, more pronounced at thicker diameters, increments of the peak cytosolic concentrations of Са2+ ([Ca2+] i ) and of a Са2+-fluorescent dye complex [CaD], as well as those of the Са2+ concentration in the dendrite ER (characterized by a shift from the basal level, Δ[Ca2+]ER). The changes in [Ca2+] i and [CaD] followed more adequately those in the volume of the organelle-free cytosol, while Δ[Ca2+]ER changes were more similar to those in the ER membrane area. Therefore, the relative occupancy of the intracellular volume by organellar calcium stores and their sizes in a dendritic compartment are important structural factors that essentially modulate the calcium dynamics, and this structural dependence can be adequately reflected in the experiments using fluorophores. Neirofiziologiya/Neurophysiology, Vol. 41, No. 1, pp. 19–31, January–February, 2009.  相似文献   

16.
Summary We have previously shown that pertussis toxin (PTX) stimulates delayed-onset, [Ca2–] a -dependent catecholamine (CA) release from bovine chromaffin cells. We now show that this effect of PTX is inhibited in part (50%) by dihydropyridine Ca2–-channel antagonists niludipine and nifedipine, and is potentiated by the dihydropyridine Ca2+-channel agonist Bay K-8644. We and others have shown that pretreatment of chromaffin cells with PTX results in enhanced catecholamine secretion in response to high [K] a , nicotine and muscarine, and here we extend these observations by showing that toxin pretreatment also enhances the secretory response to [Ba2+] a . All these data are consistent with the concept that PTX may act on Ca2– channels. To examine the possibility of a direct action of the toxin on the voltage-gated L-type Ca2+ channel known to be present in these cells, we studied the effects of the toxin on whole cell Ca2+ currents. We found and report here that spontaneous electrical activity was considerably increased in PTX-treated cells. Our measurements of whole cell inward Ca2+ currents indicate that the underlying mechanism is a marked shift of the activation curve of the L-type Ca2+ current along the voltage axis towards more negative potentials. While treatment of the cells with PTX had no effect on L-type Ca2+-channel conductance (6 nS/cell at 2.6mm [Ca2+] a ). PTX evoked the activation of a new class of Ca2+-selective channels (5 pS in 25mm [Ca2+]pipet), which are rather insensitive to membrane potential. We have termed theseG-type calcium channels. These data suggest that treatment with PTX not only increases the probability of L-type Ca2+-channel activation at more negative potentials, but also increases the probability of opening of an entirely new, voltage-independent, Ca2+ channel. These actions of PTX should promote Ca2+ entry and might explain the stimulation by the toxin of CA secretion from medullary chromaffin cells in culture.  相似文献   

17.
Despite the progress in studies of the properties and functions of low-threshold calcium channels (LTCCs) [1], the mechanisms of their selectivity and permeability remain unstudied in detail. We performed a comparative analysis of the selectivity of three cloned pore-forming LTCC subunits (α1G, α1H, and α1I) functionally expressed in Xenopus oocytes with respect to bivalent alkaline-earth metal cations (Ba2+, Ca2+, and Sr2+. The relative conductivities (G) of these channels were determined according to the amplitudes of macroscopic currents (I) and potentials of zero currents (E). The currents were recorded after preliminary intracellular injection of a fast calcium buffer, BAPTA, in order to suppress the endogenous calcium-dependent chloride conductivity. Channels formed by α1G subunits demonstrated the following ratios of the amplitudes of macroscopic currents and potentials of zero current: I Ca:I Ba:I Sr = 1.00:0.75:1.12 and E CaE BaE Sr. For channels that were formed by α1H and α1I subunits, these ratios were as follows: I Ca:I Ba:I Sr = 1.00:1.20:1.17, E CaE BaE Sr and I Ca:I Ba:I Sr = 1.00:1.48: 1.45, E CaE BaE Sr respectively. The different macroscopic conductivities and similar potentials of zero current typical of α1G and α1I channels indicate that, probably, various bivalent cations can in a differential manner influence the stochastic parameters of functioning of these channels. At the same time, channels formed by α1H subunits are characterized by more positive potentials of zero current for Ca2+. It seems possible that the selectivity of the above channels is determined by mechanisms that mediate the selectivity of most high-threshold calcium channels (more affine binding of Ca2+ inside the pore). Neirofiziologiya/Neurophysiology, Vol. 37, No. 4, pp. 319–329, July–August, 2005.  相似文献   

18.
The superficial (tonic) abdominal flexor muscles of Atya lanipes do not generate Ca2+ action potentials when depolarized and have no detectable inward Ca2+ current. These fibers, however, are strictly dependent on Ca2+ influx for contraction, suggesting that they depend on Ca2+-induced Ca2+ release for contractile activation. The nature of the communication between Ca2+ channels in the sarcolemmal/tubular membrane and Ca2+ release channels in the sarcoplasmic reticulum in this crustacean muscle was investigated. The effects of dihydropyridines on tension generation and the passive electrical response were examined in current-clamped fibers: Bay K 8644 enhanced tension about 100% but did not alter the passive electrical response; nifedipine inhibited tension by about 70%. Sr2+ and Ba2+ action potentials could be elicited in Ca2+-free solutions. The spikes generated by these divalent cations were abolished by nifedipine. As the Sr2+ or Ba2+ concentrations were increased, the amplitudes of the action potentials and their maximum rate of rise, V max , increased and tended towards saturation. Three-microelectrode voltage-clamp experiments showed that even at high (138 mm) extracellular Ca2+ concentration the channels were silent, i.e., no inward Ca2+ current was detected. In Ca2+-free solutions, inward currents carried by 138 mm Sr2+ or Ba2+ were observed. The currents activated at voltages above −40 mV and peaked at about 0 mV. This voltage-activation profile and the sensitivity of the channels to dihydropyridines indicate that they resemble L-type Ca2+ channels. Peak inward current density values were low, ca.−33 μA/cm2 for Sr2+ and −14 μA/cm2 for Ba2+, suggesting that Ca2+ channels are present at a very low density. It is concluded that Ca2+-induced Ca2+ release in this crustacean muscle operates with an unusually high gain: Ca2+ influx through the silent Ca2+ channels is too low to generate a macroscopic inward current, but increases sufficiently the local concentration of Ca2+ in the immediate vicinity of the sarcoplasmic reticulum Ca2+ release channels to trigger the highly amplified release of Ca2+ required for tension generation. Received: 5 April 1999/Revised: 15 September 1999  相似文献   

19.
Fast inactivation of the Ca2+ release-activated Ca2+ current (I CRAC) was studied using whole cell patch-clamp recordings in rat basophilic leukemia (RBL-1) cells. Application of hyperpolarizing voltage steps from the holding potential of 0 mV revealed that I CRAC declined in amplitude over tens of milliseconds during steps more negative than −40 mV. This fast inactivation was predominantly Ca2+-dependent because first, it could be more effectively suppressed when BAPTA was included in the recording pipette instead of EGTA and second, replacing external Ca2+ with Sr2+ resulted in less inactivation. Recovery from inactivation was faster in the presence of BAPTA than EGTA. The extent of fast inactivation was independent of the whole cell I CRAC amplitude, compatible with the notion that the inactivation arose from a local feedback inhibition by permeating Ca2+ ions only on the channel it permeated. Ca2+ release from stores did not affect fast inactivation, nor did FCɛRI receptor stimulation. Current clamp recordings showed that the majority of RBL cells had a membrane potential close to −90 mV following stimulation of FCɛRI receptors. Hence fast inactivation is likely to impact on the extent of Ca2+ influx through CRAC channels under physiological conditions and appears to be an important negative feedback process that limits Ca2+ increases. Received: 28 August 1998/Revised: 30 November 1998  相似文献   

20.
Calcium (Ca2+)-activated K+ (KCa) channels regulate membrane excitability and are activated by an increase in cytosolic Ca2+ concentration ([Ca2+]i), leading to membrane hyperpolarization. Most patch clamp experiments that measure KCa currents use steady-state [Ca2+] buffered within the patch pipette. However, when cells are stimulated physiologically, [Ca2+]i changes dynamically, for example during [Ca2+]i oscillations. Therefore, the aim of the present study was to examine the effect of dynamic changes in [Ca2+]i on small (SK3), intermediate (hIK1), and large conductance (BK) channels. HEK293 cells stably expressing each KCa subtype in isolation were used to simultaneously measure agonist-evoked [Ca2+]i signals, using indo-1 fluorescence, and current/voltage, using perforated patch clamp. Agonist-evoked [Ca2+]i oscillations induced a corresponding KCa current that faithfully followed the [Ca2+]i in 13–50% of cells, suggesting a good synchronization. However, [Ca2+]i and KCa current was much less synchronized in 50–76% of cells that exhibited Ca2+-independent current events (55% of SK3-, 50% of hIK1-, and 53% of BK-expressing cells) and current-independent [Ca2+]i events (18% SK3- and 33% of BK-expressing cells). Moreover, in BK-expressing cells, where [Ca2+]i and KCa current was least synchronized, 36% of total [Ca2+]i spikes occurred without activating a corresponding KCa current spike, suggesting that BKCa channels were either inhibited or had become desensitized. This desynchronization between dynamic [Ca2+]i and KCa current suggests that this relationship is more complex than could be predicted from steady-state [Ca2+]i and KCa current. These phenomena may be important for encoding stimulus–response coupling in various cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号