首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The serum-derived phospholipid growth factor, lysophosphatidate (LPA), activates cells through a family of G-protein-coupled EDG receptors. The present article examines the role of lipid phosphate phosphatase-1 (LPP-1, or phosphatidate phosphate 2A) in regulating cell activation by LPA. Over-expressing LPP-1 approximately doubled the rate of dephosphorylation of exogenous LPA by Rat2 fibroblasts. The amount of LPA dephosphorylation was restricted to less than 10% of the total exogenous LPA. Over-expression of LPP-1 attenuated cell activation as indicated by diminished responses including cAMP, Ca(2+), activation of phospholipase D and ERK, DNA synthesis and cell division. LPP-1 therefore provides a novel level of regulation for controlling cell signalling by exogenous LPA.  相似文献   

2.
The serum-derived phospholipid growth factor, lysophosphatidate (LPA), activates cells through a family of G-protein-coupled EDG receptors. The present article examines the role of lipid phosphate phosphatase-1 (LPP-1, or phosphatidate phosphate 2A) in regulating cell activation by LPA. Overexpressing LPP-1 approximately doubled the rate of dephosphorylation of exogenous LPA by Rat2 fibroblasts. The amount of LPA dephosphorylation was restricted to less than 10% of the total exogenous LPA. Over-expression of LPP-1 attenuated cell activation as indicated by diminished responses including cAMP, Ca2+, activation of phospholipase D and ERK, DNA synthesis and cell division. LPP-1 therefore provides a novel level of regulation for controlling cell signalling by exogenous LPA.  相似文献   

3.
Grb2-associated binder-1 (Gab1) is a multisite docking protein containing a pleckstrin homology (PH) domain, multiple potential tyrosine phosphorylation sites, and several proline-rich sequences. Gab1 becomes tyrosine-phosphorylated in cells stimulated with growth factors, cytokines, and ligands for G protein-coupled receptors. A major Gab1-binding protein detected in cells treated with extracellular stimuli is the tyrosine phosphatase, SHP2. Although the role of SHP2-Gab1 interaction in cell signaling has not yet been characterized, SHP2 is known to mediate mitogen-activated protein (MAP) kinase activation induced by the epidermal growth factor (EGF). However, the mechanism by which the SHP2 phosphatase exerts a positive signaling role remains obscure. In this study, we prepared Gab1 mutants lacking the SHP2 binding site (Gab1Y627F), the phosphatidylinositol 3-kinase (PI3K) binding sites (Gab1DeltaPI3K), and the PH domain (Gab1DeltaPH). Expression of Gab1Y627F blocked the extracellular signal-regulated kinase-2 (ERK2) activation by lysophosphatidic acid (LPA) and EGF. Conversely, expression of the wild-type Gab1 in HEK293 cells augmented the LPA receptor Edg2-mediated ERK2 activation. Whereas the PH domain was required for Gab1 mediation of ERK2 activation by LPA, it was not essential for EGF-induced ERK2 activation. Expression of Gab1DeltaPI3K had no apparent effect on ERK2 activation by LPA and EGF in the cells that we have examined. These results establish a role for Gab1 in the LPA-induced MAP kinase pathway and clearly demonstrate that Gab1-SHP2 interaction is essential for ERK2 activation by LPA and EGF. These findings also suggest that the positive role of SHP2 in the MAP kinase pathway depends on its interaction with Gab1.  相似文献   

4.
We have previously isolated a 22 kDa protein from a rat brain which was found to be involved in activating phospholipsae D (PLD), and identified the protein as hippocalcin through sequence analysis. Nevertheless, the function of hippocalcin for PLD activation still remains to be resolved. Here, we proposed that hippocalcin was involved in extracellular signal-regulated kinase (ERK)-mediated PLD2 expression. To elucidate a role of hippocalcin, we made hippocalcin transfected NIH3T3 cells and showed that the expression of PLD2 and basal PLD activity were increased in hippocalcin transfected cells. We performed PLD assay with dominant negative PLD2 (DN-PLD2) and hippocalcin co-transfected cells. DN-PLD2 suppressed increase of basal PLD activity in hippocalcin transfected cells, suggesting that increased basal PLD activity is due to PLD2 over-expression. Hippocalcin is a Ca2+-binding protein, which is expressed mainly in the hippocampus. Since it is known that lysophosphatidic acid (LPA) increases intracellular Ca2+, we investigated the possible role of hippocalcin in the LPA-induced elevation of intracellular Ca2+. When the intracellular Ca2+ level was increased by LPA, hippocalcin was translocated to the membrane after LPA treatment in hippocalcin transfected cells. In addition, treatment with LPA in hippocalcin transfected cells markedly potentiated PLD2 expression and showed morphological changes of cell shape suggesting that increased PLD2 expression acts as one of the major factors to cause change of cell shape by making altered membrane lipid composition. Hippocalcin-induced PLD2 expression potentiated by LPA in hippocalcin transfected cells was inhibited by a PI-PLC inhibitor, U73122 and a chelator of intracellular Ca2+, BAPTA-AM suggesting that activation of hippocalcin caused by increased intracellular Ca2+ is important to induce over-expression of PLD2. However, downregulation of PKC and treatment of a chelator of extracellular Ca2+, EGTA had little or no effect on the inhibition of hippocalcin-induced PLD2 expression potentiated by LPA in the hippocalcin transfected cells. Interestingly, when we over-express hippocalcin, ERK was activated, and treatment with LPA in hippocalcin transfected cells significantly potentiated ERK activation. Specific inhibition of ERK dramatically abolished hippocalcin-induced PLD2 expression. Taken together, these results suggest for the first time that hippocalcin can induce PLD2 expression and LPA potentiates hippocalcin-induced PLD2 expression, which is mediated by ERK activation.  相似文献   

5.
6.
7.
Carbon monoxide (CO) is a gaseous vasodilator produced by many cell types, including endothelial and smooth muscle cells. The goal of the present study was to investigate signaling mechanisms responsible for CO activation of large-conductance Ca(2+)-activated K(+) (K(Ca)) channels in newborn porcine cerebral arteriole smooth muscle cells. In intact cells at 0 mV, CO (3 microM) or CO released from dimanganese decacarbonyl (10 microM), a novel light-activated CO donor, increased K(Ca) channel activity 4.9- or 3.5-fold, respectively. K(Ca) channel activation by CO was not blocked by 1-H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (25 microM), a soluble guanylyl cyclase inhibitor. In inside-out patches at 0 mV, CO shifted the Ca(2+) concentration-response curve for K(Ca) channels leftward and decreased the apparent dissociation constant for Ca(2+) from 31 to 24 microM. Western blotting data suggested that the low Ca(2+) sensitivity of newborn K(Ca) channels may be due to a reduced beta-subunit-to-alpha-subunit ratio. CO activation of K(Ca) channels was Ca(2+) dependent. CO increased open probability 3.7-fold with 10 microM free Ca(2+) at the cytosolic membrane surface but only 1.1-fold with 300 nM Ca(2+). CO left shifted the current-voltage relationship of cslo-alpha currents expressed in HEK-293 cells, increasing currents 2.2-fold at +50 mV. In summary, data suggest that in newborn arteriole smooth muscle cells, CO activates low-affinity K(Ca) channels via a direct effect on the alpha-subunit that increases apparent Ca(2+) sensitivity. The optimal tuning by CO of the micromolar Ca(2+) sensitivity of K(Ca) channels will lead to preferential activation by signaling modalities, such as Ca(2+) sparks, which elevate the subsarcolemmal Ca(2+) concentration within this range.  相似文献   

8.
Endothelial nitric-oxide synthase (eNOS) plays a central role in cardiovascular regulation. eNOS function is critically modulated by Ca(2+) and protein phosphorylation, but the interrelationship between intracellular Ca(2+) mobilization and eNOS phosphorylation is poorly understood. Here we show that endoplasmic reticulum (ER) Ca(2+) release activates eNOS by selectively promoting its Ser-635/633 (bovine/human) phosphorylation. With bovine endothelial cells, thapsigargin-induced ER Ca(2+) release caused a dose-dependent increase in eNOS Ser-635 phosphorylation, leading to elevated NO production. ER Ca(2+) release also promoted eNOS Ser-633 phosphorylation in mouse vessels in vivo. This effect was independent of extracellular Ca(2+) and selective to Ser-635 because the phosphorylation status of other eNOS sites, including Ser-1179 or Thr-497, was unaffected in thapsigargin-treated cells. Blocking ERK1/2 abolished ER Ca(2+) release-induced eNOS Ser-635 phosphorylation, whereas inhibiting protein kinase A or Ca(2+)/calmodulin-dependent protein kinase II had no effect. Protein phosphorylation assay confirmed that ERK1/2 directly phosphorylated the eNOS Ser-635 residue in vitro. Further studies demonstrated that ER Ca(2+) release-induced ERK1/2 activation mediated the enhancing action of purine or bradykinin receptor stimulation on eNOS Ser-635/633 phosphorylation in bovine/human endothelial cells. Mutating the Ser-635 to nonphosphorylatable alanine prevented ATP from activating eNOS in cells. Taken together, these studies reveal that ER Ca(2+) release enhances eNOS Ser-635 phosphorylation and function via ERK1/2 activation. Because ER Ca(2+) is commonly mobilized by agonists or physicochemical stimuli, the identified ER Ca(2+)-ERK1/2-eNOS Ser-635 phosphorylation pathway may have a broad role in the regulation of endothelial function.  相似文献   

9.
The calcium-sensing receptor (CaR) recently has been shown to activate MAP kinase (ERK1/2) in various cell types as well as in heterologous expression systems. In this study we show that the CaR agonist NPS R-467 (1 microm), which does not activate the CaR by itself, robustly activates ERK1/2 in the presence of a low concentration of Ca(2+) (0.5 mm CaCl(2)) in human embryonic kidney (HEK) cells permanently expressing the human CaR (HEK-hCaR). Ca(2+) (4 mm) also activates ERK1/2 but with differing kinetics. CaR-dependent ERK1/2 activation begins to desensitize to 4 mm Ca(2+) after 10 min, whereas there is no desensitization to NPS R-467/CaCl(2) as late as 4 h. Moreover, recovery from desensitization occurs as rapidly as 30 min with 4 mm CaCl(2). Pretreatment of HEK-hCaR cells with concanavalin A (250 microg/ml) to block CaR internalization completely eliminated the NPS R-467/CaCl(2)-mediated ERK1/2 activation but did not block the 2-min time point of 4 mm Ca(2+)-mediated ERK1/2 activation. Neither dominant-negative dynamin (K44A) nor dominant-negative beta-arrestin inhibited ERK1/2 activation by either CaR agonist treatment, suggesting that CaR-elicited ERK1/2 signaling occurs via a dynamin-independent pathway. Pertussis toxin pretreatment partially attenuated the 4 mm Ca(2+)-ERK1/2 activation; this attenuated activity was completely restored by co-expression of the Galpha(i2) (C351I) but not Galpha(i1) (C351I) or Galpha(i3) (C351I) G proteins, PTX-insensitive G protein mutants. Taken together, these data suggest that both 4 mm Ca(2+) and NPS R-467/CaCl(2) activate ERK1/2 via distinguishable pathways in HEK-hCaR cells and may represent a nexus to differentially regulate differentiation versus proliferation via CaR activation.  相似文献   

10.
VEGF is a key angiogenic cytokine and a major target in anti-angiogenic therapeutic strategies. In endothelial cells (ECs), VEGF binds VEGF receptors and activates ERK1/2 through the phospholipase γ (PLCγ)-PKCα-B-Raf pathway. Our previous work suggested that influx of extracellular Ca(2+) is required for VEGF-induced ERK1/2 activation, and we hypothesized that this could occur through reverse mode (Ca(2+) in and Na(+) out) Na(+)-Ca(2+) exchange (NCX). However, the role of NCX activity in VEGF signaling and angiogenic functions of ECs had not previously been described. Here, using human umbilical vein ECs (HUVECs), we report that extracellular Ca(2+) is required for VEGF-induced ERK1/2 activation and that release of Ca(2+) from intracellular stores alone, in the absence of extracellular Ca(2+), is not sufficient to activate ERK1/2. Furthermore, inhibitors of reverse mode NCX suppressed the VEGF-induced activation of ERK1/2 in a time- and dose-dependent manner and attenuated VEGF-induced Ca(2+) transients. Knockdown of NCX1 (the main NCX isoform in HUVECs) by siRNA confirmed the pharmacological data. A panel of NCX inhibitors also significantly reduced VEGF-induced B-Raf activity and inhibited PKCα translocation to the plasma membrane and total PKC activity in situ. Finally, NCX inhibitors reduced VEGF-induced HUVEC proliferation, migration, and tubular differentiation in surrogate angiogenesis functional assays in vitro. We propose that Ca(2+) influx through reverse mode NCX is required for the activation and the targeting of PKCα to the plasma membrane, an essential step for VEGF-induced ERK1/2 phosphorylation and downstream EC functions in angiogenesis.  相似文献   

11.
Voltage-gated sodium channels (VGSC) are involved in the generation of action potentials in neurons. Brevetoxins (PbTx) are potent allosteric enhancers of VGSC function and are associated with the periodic 'red tide' blooms. Using PbTx-2 as a probe, we have characterized the effects of activation of VGSC on Ca(2+) dynamics and extracellular signal-regulated kinases 1/2 (ERK1/2) signaling in neocortical neurons. Neocortical neurons exhibit synchronized spontaneous Ca(2+) oscillations, which are mediated by glutamatergic signaling. PbTx-2 (100 nm) increased the amplitude and reduced the frequency of basal Ca(2+) oscillations. This modulatory effect on Ca(2+) oscillations produced a sustained rise in ERK1/2 activation. At 300 nm, PbTx-2 disrupted oscillatory activity leading to a sustained increase in intracellular Ca(2+) ([Ca(2+)](i)) and induced a biphasic, activation followed by dephosphorylation, regulation of ERK1/2. PbTx-2-induced ERK1/2 activation was Ca(2+) dependent and was mediated by Ca(2+) entry through manifold routes. PbTx-2 treatment also increased cAMP responsive element binding protein (CREB) phosphorylation and increased gene expression of brain-derived neurotrophic factor (BDNF). These findings indicate that brevetoxins, by influencing the activation of key signaling proteins, can alter physiologic events involved in survival in neocortical neurons, as well as forms of synaptic plasticity associated with development and learning.  相似文献   

12.
Although lysophosphatidic acid (LPA) is known to increase intracellularfree calcium concentration ([Ca(2+)](i)) in different cell types, the effect of LPA on the skeletal muscle cells is not known. The present study was therefore undertaken to examine the effect of LPA on the [Ca(2+)](i) in C2C12 cells. LPA induced a concentration and time dependent increase in [Ca(2+)](i), which was inhibited by VPC12249, VPC 32183 and dioctanoyl glycerol pyrophosphate, LPA1/3 receptor antagonists. Pertussis toxin, a G(i) protein inhibitor, also inhibited the LPA-induced increase in [Ca(2+)](i). Inhibition of tyrosine kinase activities with tyrphostin A9 and genistein also prevented the increase in [Ca(2+)](i) due to LPA. Likewise, wortmannin and LY 294002, phosphatidylinositol 3-kinase (PI3-K) inhibitors, inhibited [Ca(2+)](i) response to LPA. The LPA effect was also attenuated by ethylene glycolbis(beta-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), an extracellular Ca(2+) chelator, Ni(2+) and KB-R7943, inhibitors of the Na(+)-Ca(2+) exchanger; the receptor operated Ca(2+) channel (ROC) blockers, 2-aminoethoxydiphenyl borate and SK&F 96365. However, the L-type Ca(2+) channel blockers, verapamil and diltiazem; the store operated Ca(2+) channel blockers, La(3+) and Gd(3+); a sarcoplasmic reticulum calcium pump inhibitor, thapsigargin; an inositol trisphosphate receptor antagonist, xestospongin and a phospholipase C inhibitor, U73122, did not prevent the increase [Ca(2+)](i) due to LPA. Our data suggest that the LPA-induced increase in [Ca(2+)](i) might occur through G(i)-protein coupled LPA(1/3) receptors that may be linked to tyrosine kinase and PI3-K, and may also involve the Na(+)-Ca(2+) exchanger as well as the ROC. In addition, LPA stimulated C2C12 cell proliferation via PI3-K. Thus, LPA may be an important phospholipid in the regulation of [Ca(2+)](i) and growth of skeletal muscle cells.  相似文献   

13.
14.
Susa S  Wakabayashi I 《FEBS letters》2003,554(3):399-402
Extracellular alkalosis induced phosphorylation of extracellular signal-regulated kinase (ERK) and enhanced serum-induced ERK phosphorylation in cultured rat aortic smooth muscle cells. While extracellular alkalinization increased verapamil-sensitive (45)Ca(2+) uptake into the cells, ERK phosphorylation induced by extracellular alkalosis was not affected by verapamil. On the other hand, probes for oxidant signaling, such as superoxide dismutase, 4,5-dihydroxy-1,3-benzene-disulfonic acid, a cell-permeable antioxidant, and diphenyliodonium, a NADPH oxidase inhibitor, inhibited extracellular alkalosis-induced phosphorylation of ERK. These results suggest that activation of ERK induced by extracellular alkalosis is not dependent on transplasmalemmal Ca(2+) entry but is caused by reactive oxygen species derived from an activation of NADPH oxidase.  相似文献   

15.
Ca(2+)-dependent agonists, such as carbachol (CCh), stimulate epidermal growth factor receptor (EGFR) transactivation and mitogen-activated protein kinase activation in T(84) intestinal epithelial cells. This pathway constitutes an antisecretory mechanism by which CCh-stimulated chloride secretion is limited. Here, we investigated mechanisms underlying CCh-stimulated epidermal growth factor receptor (EGFR) transactivation. Thapsigargin (TG, 2 microM) stimulated EGFR and extracellular signal-regulated kinase (ERK) phosphorylation in T(84) cells. Inhibition of either EGFR or ERK activation, with tyrphostin AG1478 (1 microM) and PD 98059 (20 microM), respectively, potentiated chloride secretory responses to TG, as measured by changes in short-circuit current (I(sc)) across T(84) cells. CCh (100 microM) stimulated tyrosine phosphorylation and association of the Ca(2+)-dependent tyrosine kinase, PYK-2, with the EGFR, which was inhibited by the Ca(2+) chelator, BAPTA (20 microM). The calmodulin inhibitor, fluphenazine (50 microM) inhibited CCh-stimulated PYK-2 association with the EGFR and phosphorylation of EGFR and ERK. CCh also induced tyrosine phosphorylation of p60(src) and association of p60(src) with both PYK-2 and the EGFR. The Src family kinase inhibitor, PP2 (20 nM-20 microM) attenuated CCh-stimulated EGFR and ERK phosphorylation and potentiated chloride secretory responses to CCh. We conclude that CCh-stimulated transactivation of the EGFR is mediated by a pathway involving elevations in intracellular Ca(2+), calmodulin, PYK-2, and p60(src). This pathway represents a mechanism that limits CCh-stimulated chloride secretion across intestinal epithelia.  相似文献   

16.
We studied hsBAFF activity in in vitro mouse splenic B cells. hsBAFF effects on intracellular free Ca(2+) concentration ([Ca(2+)](i)) were assayed, using a laser scanning confocal microscope with fluorescent probe, Fluo-3/AM. We showed that treatment of B cells with 0.5-5 microg/ml hsBAFF resulted in significantly higher [Ca(2+)](i) levels in a dose-dependent fashion at 12 and 24 h, respectively (p<0.05 or p<0.01 vs. control). Furthermore, we noticed that 2.5 microg/ml hsBAFF-treated cells were significantly resistant to decrease of cellular viability induced by thapsigargin (Tg), an endoplasmic reticulum (ER) Ca(2+)-ATPase inhibitor (p<0.05 hsBAFF plus Tg group vs. Tg group). Thus hsBAFF may promote B cell survival by direct upregulation of [Ca(2+)](i) physiological homeostasis contributing to prevention of [Ca(2+)](i) dysfunction. Using immunocytochemistry and Western blot analysis, we found that the activation of ERK1/2 due to hsBAFF was triggered by a [Ca(2+)](i) -dependent pathway, leading to elevation of B cell proliferation. This is supported by the findings that intracellular Ca(2+) chelator BAPTA/AM attenuated phosphorylated ERK1/2 expression and cell proliferation in hsBAFF-stimulated B cells. hsBAFF-stimulated B cell proliferation was obviously reduced by mitogen extracellular kinase 1/2 (MEK1/2, upstream of ERK1/2) inhibitor U0126. Taken together, the main finding of this study is that hsBAFF elicits higher but homeostatic [Ca(2+)](i) levels, which regulates ERK1/2 activity and cell proliferation in in vitro B cells.  相似文献   

17.
The sensing of extracellular Ca(2+) concentration ([Ca(2+)](o)) and modulation of cellular processes associated with acute or sustained changes in [Ca(2+)](o) are cell-type specific and mediated by the calcium sensing receptor (CaR). [Ca(2+)](o) signalling requires protein kinase C (PKC), but the identity and role of PKC isoforms in CaR-mediated responses remain unclear. Here we show that high [Ca(2+)](o) activated PKC-alpha and PKC- in parathyroid cells and in human embryonic kidney (HEK293) cells overexpressing the CaR (HEK-CaR) and that this response correlated with the CaR-dependent activation of mitogen-activated protein kinases ERK1/2. Activation of ERK1/2 by acute high [Ca(2+)](o) required influx of Ca(2+)through Ni(2+)-sensitive Ca(2+)channels and phosphatidylinositol-dependent phospholipase C-beta activity. Inhibition of PKC by co-expression of dominant-negative (DN) mutants of PKC-alpha or - with the CaR attenuated sustained ERK1/2 activation. Overexpression of a PKC phosphorylation site (T888A) mutant CaR in HEK293 cells showed that this site was important for ERK1/2 activation at high [Ca(2+)](o). Activation of ERK1/2 by high [Ca(2+)](o) was not necessary for the [Ca(2+)](o)-regulated secretion of parathyroid hormone (PTH) in dispersed bovine parathyroid cells. These data suggest that the CaR-mediated [Ca(2+)](o) signal leading to regulated PTH secretion that requires diacylglycerol-responsive PKC isoforms is not mediated via the ERK pathway.  相似文献   

18.
Wound healing is a complex process that involves cell communication, migration, proliferation, and changes in gene expression. One of the first events after injury is the rapid release of Ca(2+) that propagates as a wave to neighboring cells (Klepeis et al. [2001]: J. Cell. Sci. 114:4185-4195). Our goal was to examine the signaling events induced by cellular injury and identify extracellular molecules that induce the activation of extracellular signal responsive kinase (ERK) (p42/44). In this study we demonstrated that injury induced ERK1/2 activation occurred within 2 min and was negligible by 15 min. Treatment of unwounded cells with wound media caused activation of ERK that could be inhibited by apyrase III. Stimulation with epidermal growth factor (EGF) did not mimic the injury response and it was not detected in the wound media. To identify the active component, size fractionation was performed and factor(s) less than 3 kDa that induced the release of Ca(2+) and activation of ERK1/2 were identified. Activity was not altered by heat denaturation, incubation with proteinase K but it was lost by treatment with apyrase. Adenosine triphosphate (ATP), uridine triphosphate (UTP), adenosine diphosphate (ADP), and uridine diphosphate (UDP) promoted activation by 2 min with similar profiles as that generated by injury. Preincubation with phospholipase C inhibitor, U73122, inhibited activation that was induced by injury and/or nucleotides. Lack of activation by alpha-beta-methylATP (alpha, beta-MeATP) and beta-gamma-methylATP (beta, gamma-MeATP) to purinergic (P)2X receptors further indicated that activation occurs via P2Y and not P2X purinergic receptors. These results indicate that injury-induced activation of ERK1/2 is mediated by a P2Y signaling pathway.  相似文献   

19.
In this report we sought to elucidate the mechanism by which the follicle-stimulating hormone (FSH) receptor signals to promote activation of the p42/p44 extracellular signal-regulated protein kinases (ERKs) in granulosa cells. Results show that the ERK kinase MEK and upstream intermediates Raf-1, Ras, Src, and L-type Ca(2+) channels are already partially activated in vehicle-treated cells and that FSH does not further activate them. This tonic stimulatory pathway appears to be restrained at the level of ERK by a 100-kDa phosphotyrosine phosphatase that associates with ERK in vehicle-treated cells and promotes dephosphorylation of its regulatory Tyr residue, resulting in ERK inactivation. FSH promotes the phosphorylation of this phosphotyrosine phosphatase and its dissociation from ERK, relieving ERK from inhibition and resulting in its activation by the tonic stimulatory pathway and consequent translocation to the nucleus. Consistent with this premise, FSH-stimulated ERK activation is inhibited by the cell-permeable protein kinase A-specific inhibitor peptide Myr-PKI as well as by inhibitors of MEK, Src, a Ca(2+) channel blocker, and chelation of extracellular Ca(2+). These results suggest that FSH stimulates ERK activity in immature granulosa cells by relieving an inhibition imposed by a 100-kDa phosphotyrosine phosphatase.  相似文献   

20.
We have investigated possible signaling pathways coupled to injury-induced ERK1/2 activation and the subsequent initiation of vascular rat smooth muscle cell migration and proliferation. Aortic smooth muscle cells were cultured to confluency and subjected to in vitro injury under serum-free conditions. In fluo-4-loaded cells, injury induced a rapid wave of intracellular Ca(2+) release that propagated about 200 microm in radius from the injured zone, reached a peak in about 20 s, and subsided to the baseline within 2 min. The wave was abolished by prior treatment with the sarcoplasmic reticulum ATPase inhibitor thapsigargin, but not by omission of extracellular Ca(2+). ERK1/2 activation reached a peak at 10 min after injury and was inhibited by the MEK1 inhibitor PD98059, as well as by thapsigargin, fluphenazine, genistein, and the Src inhibitor PP2. These inhibitors also reduced [(3)H]thymidine incorporation and migration of cells into the injured area determined at 48 h after injury. These results show that mechanical injury to vascular smooth muscle cells induces a Ca(2+) wave which is dependent on intracellular Ca(2+) release. Furthermore, the injury activates ERK1/2 phosphorylation as well as cell migration and replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号