首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
We report on a novel method to monitor changes in intracellular cAMP concentration ([cAMP]i) within intact living cells using a chimeric fusion of the catalytic subunit of cAMP-dependent protein kinase to green fluorescent protein (PKAcat-GFP). In stably transfected unstimulated fibroblasts, fusion protein fluorescence is highly concentrated in aggregates throughout the cytoplasm and absent in the nucleus. Elevation of [cAMP]i disperses GFP fluorescence from the cytoplasmic aggregates within minutes. Spot-photobleach measurements show that the rate of exchange of GFP-labeled catalytic subunits at these aggregates increases in proportion to [cAMP]i. For any given stimulus, the response curve for dispersal of GFP fluorescence from aggregates agrees closely with the increase in total [cAMP]i as measured by standard in vitro methods (SPA). The redistribution of fluorescence is completely reversible: reduction of [cAMP]i results in return of fluorescence to the cytoplasmic aggregates. Consistent behaviour of PKAcat-GFP is seen in different cell backgrounds. We demonstrate that PKA Redistribution assays are suitable for measurement of changes in [cAMP]i brought about by both Gs- and Gi-protein-coupled receptor stimulation as well as by inhibition of cAMP phosphodiesterases.  相似文献   

3.
The cAMP-dependent protein kinase (PKA) holoenzyme of Dictyostelium comprises a single regulatory (R) and catalytic (C) subunit, and both proteins increase in concentration during cellular aggregation. In order to determine the role of the kinase, we have constructed mutants of the R subunit that are defective in cAMP binding, in inhibition of the C subunit, or in both functions. Analysis of these mutants suggests that overexpression of the unmutated R subunit, which is known to block development, occurs by direct inactivation of the C subunit rather than by an effect on intracellular cAMP levels. Cells with an inactive C subunit (PKA- cells) are defective in cAMP relay, the production of cAMP in response to extracellular cAMP stimulation. This presumably accounts for their inability to undertake aggregation. When mixed with wild-type cells, PKA- cells migrate toward the signalling centre but remain confined to the periphery of the tight aggregate and are lost from the back of the migratory slug. This suggests that PKA may be required during the late, multicellular stages of development. Consistent with this, we find that a number of postaggregative genes are not expressed in PKA- cells, even when they are allowed to synergise with normal cells.  相似文献   

4.
We investigated expression, functionality and subcellular localization of C. albicans Bcy1p, the PKA regulatory subunit, in mutant strains having one BCY1 allele fused to a green fluorescent protein (GFP). DE-52 column chromatography of soluble extracts of yeast cells from strains bearing one BCY1 allele (fused or not to GFP) showed co-elution of Bcy1p and Bcy1p-GFP with phosphotransferase activity, suggesting that interaction between regulatory and catalytic subunits was not impaired by the GFP tag. Subcellular localization of Bcy1p-GFP supports our previous hypothesis on the nuclear localization of the regulatory subunit, which can thus tether the PKA catalytic subunit to the nucleus. Protein modeling of CaBcy1p, showed that the fusion of the GFP tag to Bcy1p C-terminus did not significantly disturb its proper folding. Bcy1p levels in mutant strains having one or both BCY1 alleles, led us to establish a direct correlation between the amount of protein and the number of alleles, indicating that deletion of one BCY1 allele is not fully compensated by overexpression of the other. The morphogenetic behavior of several C. albicans mutant strains bearing one or both BCY1 alleles, in a wild-type and in a TPK2 null genetic background, was assessed in N-acetylglucosamine (GlcNAc) liquid medium at 37 degrees C. Strains with one BCY1 allele tagged or not, behaved similarly, displaying pseudohyphae and true hyphae. In contrast, hyphal morphology was almost exclusive in strains having both BCY1 alleles, irrespective of the GFP insertion. It can be inferred that a tight regulation of PKA activity is needed for hyphal growth.  相似文献   

5.
F?rster resonance energy transfer (FRET) technology has been used to develop genetically encoded fluorescent indicators for a variety of intracellular molecular events. Often, however, the poor dynamic range of such reporters prevents detection of subtle but physiologically relevant signals. Here we present a strategy for improving FRET efficiency between donor and acceptor fluorophores in a green fluorescent protein (GFP)-based protein indicator for cAMP. Such indicator is based on protein kinase A (PKA) and was generated by fusion of CFP and YFP to the regulatory and catalytic subunits of PKA, respectively. Our approach to improve FRET efficiency was to perform molecular dynamic simulations and modelling studies of the linker peptide (L11) joining the CFP moiety and the regulatory subunit in order to define its structure and use this information to design an improved linker. We found that L11 contains the X-Y-P-Y-D motif, which adopts a turn-like conformation that is stiffly conserved along the simulation time. Based on this finding, we designed a new linker, L22 in which the YPY motif was doubled in order to generate a stiffer peptide and reduce the mobility of the chromophore within the protein complex, thus favouring CFP/YFP dipole-dipole interaction and improving FRET efficiency. Molecular dynamic simulations of L22 showed, unexpectedly, that the conformational behaviour of L22 was very loose. Based on the analysis of the three principal conformational states visited by L22 during the simulation time, we modified its sequence in order to increase its rigidity. The resulting linker L20 displayed lower flexibility and higher helical content than L22. When inserted in the cAMP indicator, L20 yielded a probe showing almost doubled FRET efficiency and a substantially improved dynamic range.  相似文献   

6.
cAMP is a universal second messenger of many G-protein-coupled receptors and regulates a wide variety of cellular events. cAMP exerts its effects via cAMP-dependent protein kinase (PKA), cAMP-gated ion channels, and two isoforms of exchange protein directly activated by cAMP (Epac). Here we report the development of novel fluorescent indicators for cAMP based on the cAMP-binding domains of Epac and PKA. Fluorescence resonance energy transfer between variants of green fluorescent protein (enhanced cyan fluorescent protein and enhanced yellow fluorescent protein) fused directly to the cAMP-binding domains was used to analyze spatial and temporal aspects of cAMP-signaling in different cells. In contrast to previously developed PKA-based indicators, these probes are comprised of only a single binding site lacking cooperativity, catalytic properties, and interactions with other proteins and thereby allow us to easily image free intracellular cAMP and rapid signaling events. Rapid beta-adrenergic receptor-induced cAMP signals were observed to travel with high speed ( approximately 40 microm/s) throughout the entire cell body of hippocampal neurons and peritoneal macrophages. The developed indicators could be ubiquitously applied to studying cAMP, its physiological role and spatio-temporal regulation.  相似文献   

7.
分别采用两种不同绿色荧光蛋白(green fluorescent prote in,GFP)突变体作为荧光共振能量转移(fluo-rescence resonance energy transfer,FRET)对的供体和受体,并利用分子生物学技术将供体和受体分子分别与特定的生物分子融合,这种技术已经成为在单个活细胞中实时长时间检测蛋白质间的动态相互作用的主要技术。主要介绍了基于GFPs的FRET技术在单个活细胞中实时长时间研究生物分子动态行为的应用。  相似文献   

8.
9.
In this study, the applicability of fluorescently labeled adenosine analogue-oligoarginine conjugates (ARC-Photo probes) for monitoring of protein kinase A (PKA) activity in living cells was demonstrated. ARC-Photo probes possessing subnanomolar affinity towards the catalytic subunit of PKA (PKAc) and competitive with the regulatory subunit (PKAr), penetrate cell plasma membrane and associate with PKAc fused with yellow fluorescent protein (PKAc-YFP). Detection of inter-molecular Förster resonance energy transfer (FRET) efficiency between the fluorophores of the fusion protein and ARC-Photo probe can be used for both the evaluation of non-labeled inhibitors of PKAc and for monitoring of cAMP signaling via detection of changes in the activity of PKA as a cAMP downstream effector.  相似文献   

10.

Background  

The green fluorescent protein (GFP) has been widely used in cell biology as a marker of gene expression, label of cellular structures, fusion tag or as a crucial constituent of genetically encoded biosensors. Mutagenesis of the wildtype gene has yielded a number of improved variants such as EGFP or colour variants suitable for fluorescence resonance energy transfer (FRET). However, folding of some of these mutants is still a problem when targeted to certain organelles or fused to other proteins.  相似文献   

11.
《Gene》1996,173(1):13-17
We report fluorescent resonance energy transfer (FRET) between two linked variants of the green fluorescent protein (GFP). The C terminus of a red-shifted variant of GFP (RSGFP4) is fused to a flexible polypeptide linker containing a Factor Xa protease cleavage site. The C terminus of this linker is in turn fused to the N terminus of a blue variant of GFP (BFP5). The gene product has spectral properties that suggest energy transfer is occurring from BFP5 to RSGFP4. Upon incubation with Factor Xa, the protein is cleaved, and the two fluorescent proteins dissociate. This is accompanied by a marked decrease in energy transfer. The RSGFP4::BFP5 fusion protein demonstrates the feasibility of using FRET between two GFP derivatives as a tool to monitor protein-protein interactions; in addition, this construct may find applications as an intracellular screen for protease inhibitors.  相似文献   

12.
Yu S  Mei FC  Lee JC  Cheng X 《Biochemistry》2004,43(7):1908-1920
Although individual structures of cAMP-dependent protein kinase (PKA) catalytic (C) and regulatory (R) subunits have been determined at the atomic level, our understanding of the effects of cAMP activation on protein dynamics and intersubunit communication of PKA holoenzymes is very limited. To delineate the mechanism of PKA activation and structural differences between type I and II PKA holoenzymes, the conformation and structural dynamics of PKA holoenzymes Ialpha and IIbeta were probed by amide hydrogen-deuterium exchange coupled with Fourier transform infrared spectroscopy (FT-IR) and chemical protein footprinting. Binding of cAMP to PKA holoenzymes Ialpha and IIbeta leads to a downshift in the wavenumber for both the alpha-helix and beta-strand bands, suggesting that R and C subunits become overall more dynamic in the holoenzyme complexes. This is consistent with the H-D exchange results showing a small change in the overall rate of exchange in response to the binding of cAMP to both PKA holoenzymes Ialpha and IIbeta. Despite the overall similarity, significant differences in the change of FT-IR spectra in response to the binding of cAMP were observed between PKA holoenzymes Ialpha and IIbeta. Activation of PKA holoenzyme Ialpha led to more conformational changes in beta-strand structures, while cAMP induced more apparent changes in the alpha-helical structures in PKA holoenzyme IIbeta. Chemical protein footprinting experiments revealed an extended docking surface for the R subunits on the C subunit. Although the overall subunit interfaces appeared to be similar for PKA holoenzymes Ialpha and IIbeta, a region around the active site cleft of the C subunit was more protected in PKA holoenzyme Ialpha than in PKA holoenzyme IIbeta. These results suggest that the C subunit assumes a more open conformation in PKA holoenzyme IIbeta. In addition, the chemical cleavage patterns around the active site cleft of the C subunit were distinctly different in PKA holoenzymes Ialpha and IIbeta even in the presence of cAMP. These observations provide direct evidence that the R subunits may be partially associated with the C subunit with the pseudosubstrate sequence docked in the active site cleft in the presence of cAMP.  相似文献   

13.
14.
15.
The yellow and cyan variants of green fluorescent protein (GFP) constitute an excellent pair for fluorescence resonance energy transfer (FRET) and can be used to study conformational rearrangements of proteins. Our aim was to develop a library of fluorescent large conductance voltage- and Ca2+-gated channels (BK or slo channels) for future use in FRET studies. We report the results of a random insertion of YFP and CFP into multiple sites of the alpha subunit of the hslo channel using a Tn5 transposon-based technique. 55 unique fluorescent fusion proteins were obtained and tested for cell surface expression and channel function. 19 constructs are expressed at the plasma membrane and show voltage and Ca2+-dependent currents. In 16 of them the voltage and Ca2+ dependence is very similar to the wild-type channel. Two insertions in the Ca2+ bowl and one in the RCK2 domain showed a strong shift in the G-V curve. The remaining 36 constructs were retained intracellularly; a solubility assay suggests that these proteins are not forming intracellular aggregates. The "success rate" of 19 out of 55 hslo insertion constructs compares very favorably with other studies of random GFP fusions.  相似文献   

16.
BACKGROUND: Cyclic AMP binding domains possess common structural features yet are diversely coupled to different signaling modules. Each cAMP binding domain receives and transmits a cAMP signal; however, the signaling networks differ even within the same family of regulatory proteins as evidenced by the long-standing biochemical and physiological differences between type I and type II regulatory subunits of cAMP-dependent protein kinase. RESULTS: We report the first type II regulatory subunit crystal structure, which we determined to 2.45 A resolution and refined to an R factor of 0.176 with a free R factor of 0.198. This new structure of the type II beta regulatory subunit of cAMP-dependent protein kinase demonstrates that the relative orientations of the two tandem cAMP binding domains are very different in the type II beta as compared to the type I alpha regulatory subunit. Each structural unit for binding cAMP contains the highly conserved phosphate binding cassette that can be considered the "signature" motif of cAMP binding domains. This motif is coupled to nonconserved regions that link the cAMP signal to diverse structural and functional modules. CONCLUSIONS: Both the diversity and similarity of cAMP binding sites are demonstrated by this new type II regulatory subunit structure. The structure represents an intramolecular paradigm for the cooperative triad that links two cAMP binding sites through a domain interface to the catalytic subunit of cAMP-dependent protein kinase. The domain interface surface is created by the binding of only one cAMP molecule and is enabled by amino acid sequence variability within the peptide chain that tethers the two domains together.  相似文献   

17.
18.
cAMP-dependent protein kinase (PKA) forms an inactive heterotetramer of two regulatory (R; with two cAMP-binding domains A and B each) and two catalytic (C) subunits. Upon the binding of four cAMP molecules to the R dimer, the monomeric C subunits dissociate. Based on sequence analysis of cyclic nucleotide-binding domains in prokaryotes and eukaryotes and on crystal structures of cAMP-bound R subunit and cyclic nucleotide-free Epac (exchange protein directly activated by cAMP), four amino acids were identified (Leu203, Tyr229, Arg239 and Arg241) and probed for cAMP binding to the R subunits and for R/C interaction. Arg239 and Arg241 (mutated to Ala and Glu) displayed no differences in the parameters investigated. In contrast, Leu203 (mutated to Ala and Trp) and Tyr229 (mutated to Ala and Thr) exhibited up to 30-fold reduced binding affinity for the C subunit and up to 120-fold reduced binding affinity for cAMP. Tyr229Asp showed the most severe effects, with 350-fold reduced affinity for cAMP and no detectable binding to the C subunit. Based on these results and structural data in the cAMP-binding domain, a switch mechanism via a hydrophobic core region is postulated that is comparable to an activation model proposed for Epac.  相似文献   

19.
A study is presented on cyclic adenosine monophosphate- (cAMP-) dependent phosphorylation of mammalian mitochondrial proteins. Immunodetection with specific antibodies reveals the presence of the catalytic and the regulatory subunits of cAMP-dependent protein kinase (PKA) in the inner membrane and matrix of bovine heart mitochondria. The mitochondrial cAMP-dependent protein kinase phosphorylates mitochondrial proteins of 29, 18, and 6.5 kDa. With added histone as substrate, PKA exhibits affinities for ATP and cAMP and pH optimum comparable to those of the cytosolic PKA. Among the mitochondrial proteins phosphorylated by PKA, one is the nuclear-encoded (NDUFS4 gene) 18 kDa subunit of complex I, which has phosphorylation consensus sites in the C terminus and in the presequence. cAMP promotes phosphorylation of the 18 kDa subunit of complex I in myoblasts in culture and in their isolated mitoplast fraction. In both cases cAMP-dependent phosphorylation of the 18 kDa subunit of complex I is accompanied by enhancement of the activity of the complex. These results, and the finding of mutations in the NDUFS4 gene in patients with complex I deficiency, provide evidence showing that cAMP-dependent phosphorylation of the 18 kDa subunit of complex I plays a major role in the control of the mitochondrial respiratory activity.  相似文献   

20.
Fluorescence resonance energy transfer (FRET) was used to establish a novel in vivo screening system that allows rapid detection of protein folding and protein variants with increased thermodynamic stability in the cytoplasm of Escherichia coli. The system is based on the simultaneous fusion of the green fluorescent protein (GFP) to the C terminus of a protein X of interest, and of blue-fluorescent protein (BFP) to the N terminus of protein X. Efficient FRET from BFP to GFP in the ternary fusion protein is observed in vivo only when protein X is folded and brings BFP and GFP into close proximity, while FRET is lost when BFP and GFP are far apart due to unfolding or intracellular degradation of protein X. The screening system was validated by identification of antibody V(L) intradomains with increased thermodynamic stabilities from expression libraries after random mutagenesis, bacterial cell sorting, and colony screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号