首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
QUARRIE  S. A. 《Annals of botany》1980,46(4):383-394
Recent work with spring wheat has revealed significant genotypicvariation in changes of water potential and abscisic acid (ABA)concentration in response to drought Two experiments with eightspring wheat genotypes have been carried out to check the earlierwork on relationships between water potential and ABA concentrationand to examine causes of genotypic variation in the rate ofdecline of water potential during drought Changes in prolineconcentration were also studied Plants were grown in controlled environment cabinets with nutrientsolution culture and were stressed by withholding water as thefifth or sixth leaf on the main stem emerged. Plants were harvested4, 5 and 6 days after the treatment commenced and measurementsof leaf water potential, stomatal conductance, ABA and prolineconcentrations, and tissue d wts were taken. Significant genotypic variation was found in the decrease ofwater potential with time and in the slopes of linear regressionsof ABA concentration on water potential, confirming earlierresults When differences between leaf areas at the start of the treatmentwere minimised by varying the genotype sowing date significantgenotypic variation in water potentials at harvest was stillobtained. The change in water potential was significantly positivelycorrelated with shoot root d wt ratios at harvest and pre-treatmentstomatal conductances. Proline concentrations were significantly correlated with waterpotential for every genotype, although there was no clear evidenceof genotypic variation in proline concentrations at a givenwater potential The possible role of ABA concentration in drought resistanceof cereals is discussed Triticum aestivum L, spring wheat, water potential, abscisic acid, proline, drought stress  相似文献   

2.
The present study was conducted to evaluate phenotypic interactionin reciprocal grafts between wilty (w-1) sunflower mutant andnormal (W-1) plants. The w-1 genotype is a ‘leaky’ABA-deficient mutant, characterized by high stomatal conductance,in both light and dark conditions, and high transpiration rate. In well-watered conditions, mutant scions grafted on to normalrootstock (w-1/W-1) showed higher leaf relative water content,leaf water potential and ABA levels than those of control grafts(w-1/w-1). In addition, detached leaves of w-1/W-1 exhibitedlower water loss than w-1/w-1 grafts, while mutant rootstockdid not affect the transpiration rate of detached W-1 leaves.When drought stress was imposed to potted plants by withholdingwater, the mutant scions grafted on to normal roots showed apartial phenotypic reversion. A rapid stomatal closure and arise in ABA levels in response to a small decrease in leaf waterpotential was observed. By contrast, in w-1/w-1 grafts significantreductions in stomatal conductance and ABA accumulation weredetected only in conjunction with a severe water deficit. W-1scions on mutant stocks (W-1/w-1) maintained the normal phenotypeof control wild-type grafts (W1/W-1). Key words: ABA, grafting, Helianthus annuus, stomatal conductance, water relations, wilty mutant  相似文献   

3.
Stomatal conductance of siratro declined linearly as leaf waterpotential fell until zero conductance was reached at –10bar. In a grass/legume pasture stomata of siratro respondedto humidity (saturation deficit), and to a lesser extent toleaf water potential, such that leaf water potential did notfall below –9 bar, whereas that of the grass continuedto decline for most of the day. The dual response of siratroto both humidity and leaf water potential suggests that thisspecies has an efficient two-stage stomatal control of waterloss which provides an explanation of its higher leaf waterpotential and greater drought avoidance compared with sown grassesin semi-arid areas of north-eastern Australia. Macroptilium atropurpureum (DC) Urb., siratro, Desmodium uncinatum, stomatal control, stomatal conductance, water loss, leaf water potential, drought avoidance, saturation deficit  相似文献   

4.
The response of w-1, a wilty sunflower (Helianthus annuus L.)mutant, to water stress is described in comparison with thecontrol line (W-1). Detached leaves of w-1 strongly dehydratedduring the first 30 min without significant changes in leafconductance, whereas W-1 responded rapidly to water loss byreducing stomatal aperture. After 2 h stress ABA increased slightlyin w-1, while W-1 leaves showed a 20-fold increase. When waterstress was imposed to potted plants by water withholding, w-1quickly dehydrated, and lost turgor, while W-1 maintained positiveturgor values for a longer period. Wild-type plants respondedto small changes in leaf water potential by accumulating ABAand by closing stomata, whereas in the mutant significant changesin ABA content and in stomatal conductance were found only atvery low water potentials. In another experiment in which waterwas withheld under high relative humidity, when soil water contentstarted to decrease W-1 rapidly closed stomata in the absenceof any change in leaf water status and the reduction in conductancewas paralleled by a rise in xylem sap ABA concentration. Bycontrast the mutant started to accumulate ABA in the xylem sapand to close stomata when soil water content and leaf waterpotential were dramatically reduced. The low endogenous ABAlevels and the inability to synthesize the hormone rapidly eitherin the leaves or in the roots seem to be responsible for thehigh sensitivity of w-1 to water stress. Key words: ABA, Helianthus annuus L, water relations, stomatal conductance, drought, wilty mutant  相似文献   

5.
Stomatal responses to water stress and to applied (±)-abscisicacid (ABA) were examined in genotypes of pearl millet (Pennisetumamericanum (L.) Leeke) known to differ in amounts of endogenousABA accumulating during drought. In both a pot and a field experiment,Serere 39, a genotype with a high capacity to accumulate ABA,showed a higher stomatal sensitivity to water stress than didthe ‘low’ ABA accumulator, BJ 104. In the fieldexperiment, a third genotype, B282, accumulating least amountsof ABA, also had the lowest stomatal sensitivity to water stress. There were no significant differences between these genotypesin stomatal response to applied (±)-ABA, or in the relationshipsbetween leaf conductance and levels of endogenous ABA. It isconcluded that the differences in accumulation of endogenousABA by these genotypes of pearl millet are of functional significance,and that endogenous ABA generated during a water stress whichdevelops over days or weeks mediates stomatal responses to suchstress.  相似文献   

6.
The role of water relations and abscisic acid (ABA) in the responsesto drought were studied in a mediterranean forage crop, Trifoliumsubterraneum L. under field conditions. Soil and plant waterstatus, leaf gas exchange parameters, and xylem sap ABA contentwere determined at different times during a long-term soil dryingepisode in irrigated and droughted plants. The diurnal time-coursesof these parameters were also measured at the end of a droughtperiod. In response to soil drying stomatal conductance (g) was reducedearly to 50% that of irrigated plants before any substantialchange in water potential was detected. A close logarithmicregression between photosynthesis rate (A) and g was present.For the first weeks of drought the decline in A was less pronouncedthan in g, thus increasing water use efficiency. Stomatal conductanceduring diurnal time-courses showed no consistent relationshipswith respect to etther ABA or leaf water potential. Throughoutthe experimental period dependence of g on leaf water statuswas evident from the tight correlation (r2=0.88, P<0.01)achieved between stomatal conductance and midday water potential,but the correlation was also high when comparing g with respectto ABA content in xylem sap (r=0.83, P<0.001). However, thestomata from drought acclimated plants were apparently moresensitive to xylem ABA content. For similar xylem ABA concentrationsstomatal conductance was significantly higher in irrigated thanin waterstressed plants. Key words: Drought, stomatal conductance, water potential, abscisic acid  相似文献   

7.
Among grain legumes, faba bean is becoming increasingly popular in European agriculture due to recent economic and environmental interests. Faba bean can be a highly productive crop, but it is sensitive to drought stress and yields can vary considerably from season to season. Understanding the physiological basis of drought tolerance would indicate traits that can be used as indirect selection criteria for the development of cultivars adapted to drought conditions. To assess genotypic variation in physiological traits associated with drought tolerance in faba bean and to determine relationships among these attributes, two pot experiments were established in a growth chamber using genetic materials that had previously been screened for drought response in the field. Nine inbred lines of diverse genetic backgrounds were tested under adequate water supply and limited water conditions. The genotypes showed substantial variation in shoot dry matter, water use, stomatal conductance, leaf temperature, transpiration efficiency, carbon isotope discrimination (Δ13C), relative water content (RWC) and osmotic potential, determined at pre-flowering vegetative stage. Moisture deficits decreased water usage and consequently shoot dry matter production. RWC, osmotic potential, stomatal conductance and Δ13C were lower, whereas leaf temperature and transpiration efficiency were higher in stressed plants, probably due to restricted transpirational cooling induced by stomatal closure. Furthermore, differences in stomatal conductance, leaf temperature, Δ13C and transpiration efficiency characterized genotypes that were physiologically more adapted to water deficit conditions. Correlation analysis also showed relatively strong relationships among these variables under well watered conditions. The drought tolerant genotypes, ILB-938/2 and Melodie showed lower stomatal conductance associated with warmer leaves, whereas higher stomatal conductance and cooler leaves were observed in sensitive lines (332/2/91/015/1 and Aurora/1). The lower value of Δ13C coupled with higher transpiration efficiency in ILB-938/2, relative to sensitive lines (Aurora/1 and Condor/3), is indeed a desirable characteristic for water-limited environments. Finally, the results showed that stomatal conductance, leaf temperature and Δ13C are promising physiological indicators for drought tolerance in faba bean. These variables could be measured in pot-grown plants at adequate water supply and may serve as indirect selection criteria to pre-screen genotypes.  相似文献   

8.
Blum, A., Mayer, J. and Golan, G. 1988. The effect of grainnumber per ear (sink size) on source activity and its water-relationsin wheat.–J. exp. Bot. 39: 106–114. Work was done to evaluate the nature of sink-source relationshipsin wheat (Triticum aestivum L.), when the strength of the sinkwas modified by the removal of half of the grain from the earat about anthesis. The main hypothesis was that sink-sourcerelationship would be modified by water stress and that a weakersink would improve the drought resistance of the source. Two experiments were performed. The first experiment evaluatedthe effect of de-graining in two wheat varieties grown in thefield. The second experiment (in the greenhouse) evaluated theeffect of de-graining in plants subjected to water stress afteranthesis by immersing the root system in a solution of polyethyleneglycol (6000), as compared with non-stressed controls. In bothexperiments measurements were performed after de-graining toprovide data on leaf gas exchange, leaf water potential, osmoticadjustment of leaves and ears (greenhouse), the percent of stemweight loss as an index of stem reserve mobilization, finalroot weight (greenhouse) and ear weight components. De-graining caused a decrease in flag leaf stomatal conductance,carbon exchange rate (CER) and transpiration and an increasein flag leaf water potential. These effects were stronger withwater stress. De-graining did not affect osmotic adjustmentin the flag leaf but induced better adjustment in glumes andawns. De-graining decreased the percent of stem weight lossand increased final root weight, especially under drought stress. A weaker sink was, therefore, considered to improve plant droughtresistance in terms of the maintenance of higher leaf waterpotential, a larger root, a better osmotic adjustment in theear and, possibly, increased flag leaf longevity. The ‘cost’of this improved drought resistance was in reduced flag leafCER and reduced stem (and root?) reserve mobilization. Key words: Drought resistance, carbon exchange rate, stomata, transpiration, osmotic adjustment, leaf water potential, root, awns, yield  相似文献   

9.
Leaf resistances of 14 cultivated potato genotypes (Solanumspp) and three tuber-bearing wild Solanum species were comparedwhen plants were grown under water stress at two tropical sitesFactors investigated were diurnal changes in leaf resistance,the effect of plant age, transient drought versus well-wateredconditions of potted and field-grown plants These measurementswere carried out in order to determine the stomatal behaviourof tuber-bearing genotypes and species Significant genotypic differences in leaf resistances were notedwithin the cultivated genotypes All genotypes had higher resistanceswhen water-stressed, but LT-7 appeared to have the lowest leafresistances Genetic differences in stomatal behaviour of tuber-bearingSolanum species were confirmed Abaxial stomatal resistancesof water-stressed plants of the species ranged between 1 74and 13 8 s cm–1 Stomata of S chacoense were less affectedby drought (three-fold) than S tuberosum (four-fold) The greatesteffect was on S jungasense (five-fold) and on S raphanifoliumThese data show that stomata behaviour among tuber-bearing Solanumspecies is sufficiently different to warrant investigationsof drought-resistance in potato species under dry hot conditions Solanum tuberosum L., Solanum raphanifolium, Solanum chacoense, Solanum jungasense, leaf resistance  相似文献   

10.
Stomatal sensitivity to water stress was investigated in pearlmillet [Pennisetum americanum (L.) Leeke] in relation to stageof plant development, leaf water status and ABA content by samplingplants at midday. For the same leaf water potential (), droughtedplants with emerged panicles were found to have a greater leafconductance (gL), indicative of greater stomatal opening, thanplants sampled prior to panicle emergence. The difference betweensuch flowering (F) and non-flowering (NF) plants in at stomatalclosure was estimated to be at least 0.6 MPa. This differencewas considered unlikely to be the result of differential bulkleaf osmotic adjustment, and for most samples from both F andNF plants, bulk leaf turgor potential (p) was estimated to bezero. Stomatal closure in NF plants was associated in two genotypes(BJ 104 and line 112) with higher leaf ABA levels. Differencesin ABA levels between F and NF plants were, however, smalleror absent in genotypes Serere 39 and B282. These genotypes wereat lower than BJ 104 and line 112 when sampled and showed smallerdifferences between F and NF plants in conductance. Lower ABA levels in F plants are ascribed either to effectsof leaf ageing or to effects of flowering on ABA content ofthe leaf. Significant differences in gL in the absence of differencesin ABA content are taken to imply changes in stomatal sensitivityto the hormone or in its access to the stomatal complex. Pennisetum americanum (L.) Leeke, pearl millet, flowering, stomata, water stress, abscisic acid  相似文献   

11.
The hybrid Richter-110 (Vitis berlandieri x Vitis rupestris) (R-110) has the reputation of being a genotype strongly adapted to drought. A study was performed with plants of R-110 subjected to water withholding followed by re-watering. The goal was to analyze how stomatal conductance (g(s)) is regulated with respect to different physiological variables under water stress and recovery, as well as how water stress affects adjustments of water use efficiency (WUE) at the leaf level. Water stress induced a substantial stomatal closure and an increase in WUE, which persisted many days after re-watering. The g(s) during water stress was mainly related to the content of ABA in the xylem and partly related to plant hydraulic conductivity but not to leaf water potential. By contrast, low g(s) during re-watering did not correlate with ABA contents and was only related to a sustained decreased hydraulic conductivity. In addition to a complex physiological regulation of stomatal closure, g(s) and rate of transpiration (E) were strongly affected by leaf-to-air vapor pressure deficit (VPD) in a way dependent of the treatment. Interestingly, E increased with increasing VPD in control plants, but decreased with increasing VPD in severely stressed plants. All together, the fine stomatal regulation in R-110 resulted in very high WUE at the leaf level. This genotype is revealed to be very interesting for further studies on the physiological mechanisms leading to regulation of stomatal responsiveness and WUE in response to drought.  相似文献   

12.
Leaf water characteristics and drought acclimation in sunflower genotypes   总被引:1,自引:0,他引:1  
Maury  P.  Berger  M.  Mojayad  F.  Planchon  C. 《Plant and Soil》2000,223(1-2):155-162
The responses of leaf water parameters to drought were examined using three sunflower (Helianthus annuus L.) genotypes. Osmotic potential at full water saturation (π100), apoplastic water fraction (AWF) and bulk elastic modulus (BEM) were determined by pressure-volume curve analysis on well watered or on water-stressed plants (−1.0 MPa Ψ1 < −1.5 MPa) previously drought-pretreated or not. The drought-pretreated plants were subjected to a 7-day drought period (predawn leaf water potential reached −0.9 MPa) followed by 8 days of rewatering. In well watered plants, all genotypes in response to drought acclimation displayed a significantly decreased π100 associated with a decrease in the leaf water potential at the turgor-loss point (decrease in Ψtlp was between 0.15 and 0.21 MPa, depending on the genotype). In two genotypes, drought acclimation affected the partitioning of water between the apoplastic and symplastic fractions without any effect on the total amount of water in the leaves. As a third genotype displayed no modification of AWF and BEM after drought acclimation, the decreased π100 was only due to the net accumulation of solutes and was consistent with the adjustment of the photochemical efficiency observed previously in this genotype in response to drought acclimation. In water-stressed plants, the osmotic adjustment (OA) can increase further beyond that observed in response to the drought pretreatment. However, the maintenance of photosynthetic rate and stomatal conductance at low leaf water potentials not only depends on the extent of osmotic adjustment, but also on the interaction between OA and AWF or BEM. Adaptative responses of leaf water parameters to drought are thus quite contrasted in sunflower genotypes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Early signals potentially regulating leaf growth and stomatal aperture in field-grown maize (Zea mays L.) subjected to drought were investigated. Plants grown in a field lysimeter on two soil types were subjected to progressive drought during vegetative growth. Leaf ABA content, water status, extension rate, conductance, photosynthesis, nitrogen content, and xylem sap composition were measured daily. Maize responded similarly to progressive drought on both soil types. Effects on loam were less pronounced than on sand. Relative to fully-watered controls, xylem pH increased by about 0.2 units one day after withholding irrigation (DAWI) and conductivity decreased by about 0.25 mS cm(-1) 1-3 DAWI. Xylem nitrate, ammonium, and phosphate concentrations decreased by about 50% at 1-5 DAWI and potassium concentration decreased by about 50% at 7-8 DAWI. Xylem ABA concentration consistently increased by 45-70 pmol ml(-1) at 7 DAWI. Leaf extension rate decreased 5 DAWI, after the changes in xylem chemical composition had occurred. Leaf nitrogen significantly decreased 8-16 DAWI in droughted plants. Midday leaf water potential and photosynthesis were significantly decreased in droughted plants late in the drying period. Xylem nitrate concentration was the only ionic xylem sap component significantly correlated to increasing soil moisture deficit and decreasing leaf nitrogen concentration. Predawn leaf ABA content in droughted plants increased by 100-200 ng g(-1) dry weight at 7 DAWI coinciding with a decrease in stomatal conductance before any significant decrease in midday leaf water potential was observed. Based on the observed sequence, a chain of signal events is suggested eventually leading to stomatal closure and leaf surface reduction through interactive effects of reduced nitrogen supply and plant growth regulators under drought.  相似文献   

14.
To evaluate whether abscisic acid (ABA) in the xylem sap playsan important role in controlling stomatal aperture of field-grownPrunus persica trees under drought conditions, stomatal conductance(g) and xylem ABA concentrations were monitored both in irrigatedand non-irrigated trees, on two consecutive summer days (threetimes a day). Stomata1 conductance of non-irrigated trees hada morning maximum and declined afterwards. The changes in gduring the day, rather than resulting from variations in theconcentrations of ABA in the xylem sap or the delivery rateof this compound to the leaves, were associated with changesin the relationship between g and xylem ABA. The stomata ofwater-stressed trees opened during the first hours of the day,despite the occurrence of a high concentration of ABA in thexylem sap. However, stomatal responsiveness to ABA in the xylemwas enhanced throughout the day. As a result, a tight inverserelationship between g and the logarithm of xylem ABA concentrationwas found both at midday and in the afternoon. A similar relationshipbetween g and ABA was found when exogenous ABA was fed to leavesdetached from well-watered trees. These results indicate thatABA derived from the xylem may account for the differences ing observed between field-grown peach trees growing with differentsoil water availabilities. Several possible explanations forthe apparent low stomatal sensitivity to xylem ABA in the morning,are discussed, such as high leaf water potential, low temperatureand high cytokinin activity. Key words: Prunus persica L., stomata, xylem ABA, water deficits, root-to-shoot communication  相似文献   

15.
Two tropical tree species, Acacia confusa and Leucaena leucocephala, were used to study the relationships among stomatal conductance, xylem ABA concentration and leaf water potential during a soil drying and rewatering cycle. Stomatal conductance of both A. confusa and L. leucocephala steadily decreased with the decreases in soil water content and pre-dawn leaf water potential. Upon rewatering, soil water content and pre-dawn leaf water potential rapidly returned to the control levels, whereas the reopening of stomata showed an obvious lag time. The length of this lag time was highly dependent not only upon the degree of water stress but also on plant species. The more severe the water stress, the longer the lag time. When A. confusa and L. leucocephala plants were exposed to the same degree of water stress (around –2.0 MPa in pre-dawn leaf water potential), the stomata of A. confusa reopened to the control level 6 days after rewatering. However, it took L. leucocephala about 14 days to reopen fully. A very similar response of leaf photosynthesis to soil water deficit was also observed for both species. Soil drying resulted in a significant increase in leaf and xylem ABA concentrations in both species. The more severe the water stress, the higher the leaf and xylem ABA concentrations. Both leaf ABA and xylem ABA returned to the control level following relief from water deficit and preceded the full recovery of stomata, suggesting that the lag phase of stomatal reopening was not controlled by leaf and/or xylem ABA. In contrast to drying the whole root system, drying half of the root system did not change the leaf water relations, but caused a significant increase in xylem ABA concentration, which could fully explain the decrease of stomatal conductance. After rewatering, the stomatal conductance of plants in which half of the roots were dried recovered more rapidly than those of whole-root dried plants, indicating that the leaf water deficit that occurred during the drying period was related to the post-stress stomatal inhibition. These results indicated that the decrease in stomatal conductance caused by water deficit was closely related to the increase in xylem ABA, but xylem ABA could not fully explain the reopening of stomata after relief of water stress, neither did the leaf ABA. Some unknown physiological and/or morphological processes in the guard cells may be related to the recovery process.  相似文献   

16.
The relationships between the vulnerability of stem xylem to cavitation, stomatal conductance, stomatal density, and leaf and stem water potential were examined in six hybrid poplar (P38P38, Walker, Okanese, Northwest, Assiniboine and Berlin) and balsam poplar (Populus balsamifera) clones. Stem xylem cavitation resistance was examined with the Cavitron technique in well-watered plants grown in the greenhouse. To investigate stomatal responses to drought, plants were subjected to drought stress by withholding watering for 5 (mild drought) and 7 (severe drought) days and to stress recovery by rewatering severely stressed plants for 30 min and 2 days. The clones varied in stomatal sensitivity to drought and vulnerability to stem xylem cavitation. P38P38 reduced stomatal conductance in response to mild stress while the balsam poplar clone maintained high leaf stomatal conductance under more severe drought stress conditions. Differences between the severely stressed clones were also observed in leaf water potentials with no or relatively small decreases in Assiniboine, P38P38, Okanese and Walker. Vulnerability to drought-induced stem xylem embolism revealed that balsam poplar and Northwest clones reached loss of conductivity at lower stem water potentials compared with the remaining clones. There was a strong link between stem xylem resistance to cavitation and stomatal responsiveness to drought stress in balsam poplar and P38P38. However, the differences in stomatal responsiveness to mild drought suggest that other drought-resistant strategies may also play a key role in some clones of poplars exposed to drought stress.  相似文献   

17.
When pea plants (Pisum sativum L.) were subjected to flooding,abscisic acid (ABA) content in shoots and roots increased upto 8-fold in the following days and stomatal conductance significantlydecreased. Although young leaves of flooded plants had a slightlyhigher water potential than those of the unflooded plants, oldleaves had lower water potential and lost turgor at the timewhen a substantial ABA increase was detected. In plants wherethe old leaves were clipped off, flooding did not cause anyABA increase during 7 d of the experimental period, except underconditions of higher transpiration demand, when the increasein ABA content was both delayed and small in scale (only I-fold).When intact plants were flooded and ABA was assayed separatelyin both old and young leaves, the ABA increase in old leavespreceded that in young leaves. Evidence here suggests that theflooding-induced ABA increase mainly results from the wiltingof old leaves. This suggests that young leaves may be protectedfrom wilting by ABA originating in old leaves under unfavourableenvironmental conditions. Key words: Waterlogging, soil flooding, ABA, leaf water relations, pea, Pisum sativum  相似文献   

18.
Circadian resonance, whereby a plant's endogenous rhythms are tuned to match environmental cues, has been repeatedly shown to be adaptive, although the underlying mechanisms remain elusive. Concomitantly, the adaptive value of nocturnal transpiration in C3 plants remains unknown because it occurs without carbon assimilation. These seemingly unrelated processes are interconnected because circadian regulation drives temporal patterns in nocturnal stomatal conductance, with maximum values occurring immediately before dawn for many species. We grew individuals of six Eucalyptus camaldulensis genotypes in naturally lit glasshouses and measured sunset, predawn and midday leaf gas exchange and whole‐plant biomass production. We tested whether sunrise anticipation by the circadian clock and subsequent increases in genotype predawn stomatal conductance led to rapid stomatal opening upon illumination, ultimately affecting genotype differences in carbon assimilation and growth. We observed faster stomatal responses to light inputs at sunrise in genotypes with higher predawn stomatal conductance. Moreover, early morning and midday stomatal conductance and carbon assimilation, leaf area and total plant biomass were all positively correlated with predawn stomatal conductance across genotypes. Our results lead to the novel hypothesis that genotypic variation in the circadian‐regulated capacity to anticipate sunrise could be an important factor underlying intraspecific variation in tree growth.  相似文献   

19.
SHERIFF  D. W. 《Annals of botany》1982,50(4):535-548
The hydraulic conductances of leaves of a species which exhibitsstomatal responses to humidity (Nicotiana glauca) are significantlylower than the conductances in a species which does not exhibitsuch responses (Tradescantia virginiana). This difference couldat least partly account for their difference in stomatal responseto humidity. In both species, the hydraulic conductance betweenthe leaf bulk and its epidermis is much lower than the conductancein any other part of the pathway. The apparently conflictingresults, reported in recent literature, on the hydraulic conductancesand water pathways in leaves are reinterpreted, and shown tobe due to misinterpretation of results. The recently publishedcriticisms of a technique used to measure hydraulic conductivityare commented on and refuted. An examination of the factors that influence the water potentialat the sites of evaporation from the inner walls of the epidermisnear stomatal pores showed that the water potential at thesesites is lower than the bulk epidermal water potential. Thewater potential at these sites changes in a complex way as stomatalaperture changes. As it is reduced the ratio of: ‘waterpotential at sites of evaporation on the inner walls of theepidermis near stomatal pores/bulk leaf water potential‘increases. The positive feedback effect of this phenomenon,which tends to keep stomatal water potential constant as thestomata close and therefore enhances closure, and two other‘passive’ positive feedback effects on the waterpotential at sites of evaporation near stomata that have beenreported in the literature are briefly discussed. Nicotiana glauca (Grah.), Tradescantia virginiana (L.), sub-stomatal cavities, peristomatal evaporation, stomata, humidity response, leaf hydraulic conductance, water potential  相似文献   

20.
We studied the effects of drought on leaf conductance (g), leafwater relations and on the concentration of abscisic acid (ABA)in the xylem sap of Lupinus albus L. plants. Drought was imposedby withholding watering until predawn leaf water potential (  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号