首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of E. coli's integration Host Factor (IHF) with fragments of lambda DNA containing the cos site has been studied by gel-mobility retardation and electron microscopy. The cos fragment used in the mobility assays is 398 bp and spans a region from 48,298 to 194 on the lambda chromosome. Several different complexes of IHF with this fragment can be distinguished by their differential mobility on polyacrylamide gels. Relative band intensities indicate that the formation of a complex between IHF and this DNA fragment has an equilibrium binding constant of the same magnitude as DNA fragments containing lambda's attP site. Gel-mobility retardation and electron microscopy have been employed to show that IHF sharply bends DNA near cos and to map the bending site. The protein-induced bend is near an intrinsic bend due to DNA sequence. The position of the bend suggests that IHF's role in lambda DNA packaging may be the enhancement of terminase binding/cos cutting by manipulating DNA structure.  相似文献   

2.
Bacterial conjugation is the process by which a single strand of a conjugative plasmid is transferred from donor to recipient. For F plasmid, TraI, a relaxase or nickase, binds a single plasmid DNA strand at its specific origin of transfer (oriT) binding site, sbi, and cleaves at a site called nic. In vitro studies suggest TraI is recruited to sbi by its accessory proteins, TraY and integration host factor (IHF). TraY and IHF bind conserved oriT sites sbyA and ihfA, respectively, and bend DNA. The resulting conformational changes may propagate to nic, generating the single-stranded region that TraI can bind. Previous deletion studies performed by others showed transfer efficiency of a plasmid containing F oriT decreased progressively as increasingly longer segments, ultimately containing both sbyA and ihfA, were deleted. Here we describe our efforts to more precisely define the role of sbyA and ihfA by examining the effects of multiple base substitutions at sbyA and ihfA on binding and plasmid mobilization. While we observed significant decreases in in vitro DNA-binding affinities, we saw little effect on plasmid mobilization even when sbyA and ihfA variants were combined. In contrast, when half or full helical turns were inserted between the relaxosome protein-binding sites, mobilization was dramatically reduced, in some cases below the detectable limit of the assay. These results are consistent with TraY and IHF recognizing sbyA and ihfA with limited sequence specificity and with relaxosome proteins requiring proper spacing and orientation with respect to each other.  相似文献   

3.
4.
Deletion analysis of the F plasmid oriT locus.   总被引:8,自引:2,他引:6       下载免费PDF全文
Functional domains of the Escherichia coli F plasmid oriT locus were identified by deletion analysis. DNA sequences required for nicking or transfer were revealed by cloning deleted segments of oriT into otherwise nonmobilizable pUC8 vectors and testing for their ability to promote transfer or to be nicked when tra operon functions were provided in trans. Removal of DNA sequences to the right of the central A + T-rich region (i.e., from the direction of traM) did not affect the susceptibility of oriT to nicking functions; however, transfer efficiency for oriT segments deleted from the right was progressively reduced over an 80- to 100-bp interval. Deletions extending toward the oriT nick site from the left did not affect the frequency of transfer if deletion endpoints lay at least 22 bp away from the nick site. Deletions or insertions in the central, A + T-rich region caused periodic variation in transfer efficiency, indicating that phase relationships between nicking and transfer domains of oriT must be preserved for full oriT function. These data show that the F oriT locus is extensive, with domains that individually contribute to transfer, nicking, and overall structure.  相似文献   

5.
6.
T Abo  E Ohtsubo 《Journal of bacteriology》1995,177(15):4350-4355
We have previously identified three sites, named sbi, ihfA, and sbyA, specifically recognized or bound by the TraI, IHF, and TraY proteins, respectively; these sites are involved in nicking at the origin of transfer, oriT, of plasmid R100. In the region next to these sites, there exists the sbm region, which consists of four sites, sbmA, sbmB, sbmC, and sbmD; this region is specifically bound by the TraM protein, which is required for DNA transfer. Between sbmB and sbmC in this region, there exists another IHF-binding site, ihfB. The region containing all of these sites is located in the proximity of the tra region and is referred to as the oriT region. To determine whether these sites are important for DNA transfer in vivo, we constructed plasmids with various mutations in the oriT region and tested their mobilization in the presence of R100-1, a transfer-proficient mutant of R100. Plasmids with either deletions in the sbi-ihfA-sbyA region or substitution mutations introduced into each specific site in this region were mobilized at a greatly reduced frequency, showing that all of these sites are essential for DNA transfer. By binding to ihfA, IHF, which is known to bend DNA, may be involved in the formation of a complex (which may be called oriT-some) consisting of TraI, IHF, and TraY that efficiently introduces a nick at oriT. Plasmids with either deletions in the sbm-ihfB region or substitution mutations introduced into each specific site in this region were mobilized at a reduced frequency, showing that this region is also important for DNA transfer. By binding to ihfB, IHF may also be involved in the formation of another complex (which may be called the TraM-IHF complex) consisting of TraM and IHF that ensures DNA transfer with a high level of efficiency. Several-base-pair insertions into the positions between sbyA and sbmA affected the frequency of transfer in a manner dependent upon the number of base pairs, indicating that the phasing between sbyA and sbmA is important. This in turn suggests that both oriT-some and the TraM-IHF complex should be in an appropriate position spatially to facilitate DNA transfer.  相似文献   

7.
Cloning, mutation, and location of the F origin of conjugal transfer.   总被引:10,自引:2,他引:8       下载免费PDF全文
pED806 , a pBR322 derivative carrying the origin of transfer ( oriT ) of F, was rapidly lost from cells carrying an F tra+ plasmid. Instability was increased in a RecA- host, and depended in particular upon the Ftra YZ genes that produce the nick at oriT at which transfer is initiated. Instability was also correlated with the orientation of the oriT fragment in the vector plasmid. Mutants of pED806 selected as being stable in the presence of Flac proved to carry cis-dominant oriT mutations. The oriT site was subcloned from pED806 on a HaeII fragment including a HaeII-Bg/II segment of F DNA approximately 385 base pair (bp) long into the 2.25 kilobase (kb) vector plasmid pED825 , giving pED822 . pED822 was fully proficient for oriT function, and recircularised in recipient cells by a recA- and tra-independent oriT -specific ligation/recombination event. ' Phasmids ' constructed by cloning pED806 or an oriT - mutant into a lambda vector were used to confirm that the nick site in lambda oriT phages grown in the presence of Flac tra+ is indeed at oriT . The nick site in a further lambda oriT phage (ED lambda 102) was then located 140 +/- 20 bp from the Bg/II site forming one terminus of the F fragment cloned in pED806 and pED822 .  相似文献   

8.
Bending of DNA is a prerequisite of site-specific recombination and gene expression in many regulatory systems involving the assembly of specific nucleoprotein complexes. We have investigated how the uniquely clustered Dam methylase sites, GATCs, in the origin of Escherichia coli replication ( oriC  ) and their methylation status modulate the geometry of oriC and its interaction with architectural proteins, such as integration host factor (IHF), factor for inversion stimulation (Fis) and DnaA initiator protein. We note that 3 of the 11 GATC sites at oriC are strategically positioned within the IHF protected region. Methylation of the GATCs enhances IHF binding and alters the IHF-induced bend at oriC . GATC motifs also contribute to intrinsic DNA curvature at oriC and the degree of bending is modulated by methylation. The IHF-induced bend at oriC is further modified by Fis protein and IHF affinity for its binding site may be impaired by protein(s) binding to GATCs within the IHF site. Thus, GATC sites at oriC affect the DNA conformation and GATCs, in conjunction with the protein-induced bends, are critical cis -acting elements in specifying proper juxtapositioning of initiation factors in the early steps of DNA replication.  相似文献   

9.
10.
Formation of delta tra F' plasmids: specific recombination at oriT   总被引:6,自引:0,他引:6  
Delta tra F' plasmids can be isolated from matings between Hfr donors and recA- recipients, with selection for transfer of proximal chromosomal genes. Previous experiments indicate that F DNA from the neighborhood of the transfer origin up to the proximal junction with the chromosomal DNA is present on these plasmids, together with chromosomal segments, some of which belong to distinct size classes. We have sequenced across the novel joints contained in five delta tra FproA+ plasmids and in five delta tra FpurE+ plasmids, and we have compared these with the F sequence near oriT and with a chromosomal site near purE. The previously reported specificity in formation of some of these classes is confirmed at the nucleotide sequence level. The F DNA in nine of these novel joints extended beyond the nicking sites identified by others in lambda oriT+ bacteriophages up to a position between two sequenced oriT- mutations. Small plasmids containing these novel joints are mobilized in trans by pOX38 at frequencies less than 5 X 10(-7) times the mobilization frequencies for similar plasmids that contain oriT. The relations of these findings to the location of the nicking site at oriT are discussed.  相似文献   

11.
Relaxosomes are specific nucleoprotein structures involved in DNA-processing reactions during bacterial conjugation. In this work, we present evidence indicating that plasmid R388 relaxosomes are composed of origin of transfer (oriT) DNA plus three proteins TrwC relaxase, TrwA nic-cleavage accessory protein and integration host factor (IHF), which acts as a regulatory protein. Protein IHF bound to two sites (ihfA and ihfB) in R388 oriT, as shown by gel retardation and DNase I footprinting analysis. IHF binding in vitro was found to inhibit nic-cleavage, but not TrwC binding to supercoiled DNA. However, no differences in the frequency of R388 conjugation were found between IHF- and IHF+ donor strains. In contrast, examination of plasmid DNA obtained from IHF- strains revealed that R388 was obtained mostly in relaxed form from these strains, whereas it was mostly supercoiled in IHF+ strains. Thus, IHF could have an inhibitory role in the nic-cleavage reaction in vivo. It can be speculated that triggering of conjugative DNA processing during R388 conjugation can be mediated by IHF release from oriT.  相似文献   

12.
13.
14.
The DNA sequence of the F plasmid origin of conjugal DNA transfer, oriT , has been determined. The origin lies in an intercistronic region which contains several inverted repeat sequences and a long AT-rich tract. Introduction of a nick into one of the DNA strands in the oriT region precedes the initiation of conjugal DNA replication, and the position of the strand-specific nicks acquired by a lambda oriT genome upon propagation in Flac-carrying cells has been determined. The nicks were not uniquely positioned, rather there was a cluster of three major and up to 20 minor sites: the biological significance of this observation is not yet fully clear. Nine independent point mutations which inactivate oriT function have been sequenced and found to alter one or other of two nucleotide positions which lie 14 and 19 bp to one side of the rightmost (as drawn) major nick site. These key nucleotides may lie in a recognition sequence for the oriT endonuclease, since mutations at these sites prevent nicking at oriT .  相似文献   

15.
16.
Conjugative DNA transfer is a highly conserved process for the direct transfer of DNA from a donor to a recipient. The conjugative initiator proteins are key players in the DNA processing reactions that initiate DNA transfer - they introduce a site- and strand-specific break in the DNA backbone via a transesterification that leaves the initiator protein covalently bound on the 5'-end of the cleaved DNA strand. The action of the initiator protein at the origin of transfer (oriT) is governed by auxiliary proteins that alter the architecture of the DNA molecule, allowing binding of the initiator protein. In the F plasmid system, two auxiliary proteins have roles in establishing the relaxosome: the host-encoded IHF and the plasmid-encoded TraY. Together, these proteins direct the loading of TraI which contains the catalytic centre for the transesterification. The F-oriT sequence includes a binding site for another plasmid-encoded protein, TraM, which is required for DNA transfer. Here the impact of TraM protein on the formation and activity of the F plasmid relaxosome has been examined. Purified TraM stimulates the formation of relaxed DNA in a reaction that requires the minimal components of the relaxosome, TraI, TraY and IHF. Unlike TraY and IHF, TraM is not essential for the formation of the relaxosome in vitro and TraM cannot substitute for either TraY or IHF in this process. The TraM binding site sbmC, along with both IHF binding sites, is essential for stimulation of the relaxase reaction. In addition, stimulation of transesterification appears to require the C-terminal domain of TraI suggesting that TraM and TraI may interact through this domain on TraI. Taken together, these results provide additional evidence of a role for TraM as a component of the relaxosome, suggest a previously unknown interaction between TraI and TraM, and allow us to propose a molecular role for the C-terminal domain of TraI.  相似文献   

17.
18.
Interaction of integration host factor (IHF) with linear DNA fragments containing the narG promoter region induced an apparent sharp bend in the DNA centered at the IHF-binding site. Binding of NARL-P to two sites adjacent to the IHF site did not induce bending or modify the apparent bending induced by IHF.  相似文献   

19.
The P1 ParB protein is required for active partition and thus stable inheritance of the plasmid prophage. ParB and the Escherichia coli protein integration host factor (IHF) participate in the assembly of a partition complex at the centromere-like site parS. In this report the role of IHF in the formation of the partition complex has been explored. First, ParB protein was purified for these studies, which revealed that ParB forms a dimer in solution. Next, the IHF binding site was mapped to a 29-base pair region within parS, including the sequence TAACTGACTGTTT (which differs from the IHF consensus in two positions). IHF induced a strong bend in the DNA at its binding site. Versions of parS which have lost or damaged the IHF binding site bound ParB with greatly reduced affinity in vitro and in vivo. Measurements of binding constants showed that IHF increased ParB affinity for the wild-type parS site by about 10,000-fold. Finally, DNA supercoiling improved ParB binding in the presence of IHF but not in its absence. These observations led to the proposal that IHF and superhelicity assist ParB by promoting its precise positioning at parS, a spatial arrangement that results in a high affinity of ParB for parS.  相似文献   

20.
The traY gene product (TraYp) from the Escherichia coli F factor has previously been purified and shown to bind a DNA fragment containing the F plasmid oriT region (E. E. Lahue and S. W. Matson, J. Bacteriol. 172:1385-1391, 1990). To determine the precise nucleotide sequence bound by TraYp, DNase I footprinting was performed. The TraYp-binding site is near, but not coincident with, the site that is nicked to initiate conjugative DNA transfer. In addition, a second TraYp binding site, which is coincident with the mRNA start site at the traYI promoter, is described. The Kd for each binding site was determined by a gel mobility shift assay. TraYp exhibits a fivefold higher affinity for the oriT binding site compared with the traYI promoter binding site. Hydrodynamic studies were performed to show that TraYp is a monomer in solution under the conditions used in DNA binding assays. Early genetic experiments implicated the traY gene product in the site- and strand-specific endonuclease activity that nicks at oriT (R. Everett and N. Willetts, J. Mol. Biol. 136:129-150, 1980; S. McIntire and N. Willetts, Mol. Gen. Genet. 178:165-172, 1980). As this activity has recently been ascribed to helicase I, it was of interest to see whether TraYp had any effect on this reaction. Addition of TraYp to nicking reactions catalyzed by helicase I showed no effect on the rate or efficiency of oriT nicking. Roles for TraYp in conjugative DNA transfer and a possible mode of binding to DNA are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号