首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The effects of chromosomal rearrangements pn2, pn3, TE100 and TE101 on variegation of the gene Pgd, which controls the synthesis of 6-phosphogluconate dehydrogenase (PGD), were studied in Drosophila melanogaster. The electrophoretic patterns of PGD activity were first examined at different developmental stages. The degree of variegation of Pgd caused by pn2 and pn3 was higher in adult flies (the calculated percentage of cells with inactive Pgd was 70%–80%) as compared with larvae (about 50%). This difference can be explained by the tissue-specific mosaicism of Pgd expression; variegation was high in the neural ganglia, imaginal discs, and posterior gut but relatively low in the salivary glands, fat bodies and Malpighian tubes. In the case of TE100, neither tissue specificity, nor marked differences in the degree of variegation between larvae and adults were found. None of the rearrangements examined had an effect on the expression of Pgd in the ovary cells, but repression was seen in some cells of the male gonads. The data obtained suggest that the timing of clonal initiation is influenced by the rearrangements studied. The possible mechanisms preventing changes in the expression of the Pgd gene in the nurse cells caused by these rearrangements are discussed.  相似文献   

2.
3.
Using a heterologous rat cDNA probe, we have identified a 14.7 kbp Drosophila melanogaster genomic clone containing the X-linked gene Pgd+, which encodes the enzyme 6-phosphogluconate dehydrogenase (6PGD). We used in situ hybridization to larval polytene chromosomes, a somatic transient expression assay for enzyme activity, and the rescue of the lethal Pgd- phenotype by germline transformation to verify the identity of the gene. A 7.4 kbp fragment including the gene and approximately 1.2 kbp of upstream and 1.8 kbp of downstream sequences was relocated to autosomal ectopic sites by germline transformation; this transduced gene exhibits levels of enhanced activity in males comparable to those of the indigenous gene at its normal X chromosome locus. We conclude that the sequences responsible for dosage compensation of Pgd+ are included in this fragment.  相似文献   

4.
We studied the maternal effect for two enzymes of the pentose cycle, 6-phosphogluconate dehydrogenase (6PGD) and glucose-6-phosphate dehydrogenase (G6PD), using a genetic system based on the interaction of Pgd? and Zw? alleles, which inactivate 6PGD and G6PD, respectively. The presence and formation of the enzymes was investigated in those individuals that had not received the corresponding genes from the mother. We revealed maternal forms of the enzymes, detectable up to the pupal stage. The activities of “maternal” 6PGD and G6PD per individual increased 20-fold to 30-fold from the egg stage to the 3rd larval instar even in the absence of normal Pgd and Zw genes. Immunologic studies have shown that the increase in 6PGD activity is due to an accumulation of the maternal form of the enzyme molecules. We revealed a hybrid isozyme resulting from an aggregation of the subunits of isozymes controlled by the genes of the mother and embryo itself. These results indicate that the maternal effect in the case of 6PGD is due to a long-lived stable mRNA transmitted with the egg cytoplasm and translated during the development of Drosophila melanogaster.  相似文献   

5.
6.
Using a double mutant strain, Pgdn Zwn, we have developed an assay for 6-phosphogluconolactonase activity and have demonstrated its occurrence in adult Drosophila melanogaster.  相似文献   

7.
Summary X-ray mutagenesis has produced a series of deficiencies in a duplication of part of the third chromosome containing the acid phosphatase gene (Acph-1) in Drosophila melanogaster. In one of these deficiencies, Acph-1 is shown to be undergoing position effect variegation. Naturally occurring electrophoretic variants of the enzyme were used to visualize and determine quantitatively the extent of variegation of the allele which is cis to the heterochromatic breakpoint. Alteration of genotypic background and temperature provided further evidence for position effect. Rocket immunoelectrophoresis was used to correlate the levels of acid phosphatase activity and protein in flies containing the deficiency. A novel result indicates that the variegation is not the consequence of an averaging of active and inactive cells, but rather due to a quantitative alteration of gene activity within at least some individual cells.  相似文献   

8.
9.
10.
Lloyd VK  Sinclair DA  Grigliatti TA 《Genetics》1999,151(4):1503-1516
Genomic imprinting is a phenomenon in which the expression of a gene or chromosomal region depends on the sex of the individual transmitting it. The term imprinting was first coined to describe parent-specific chromosome behavior in the dipteran insect Sciara and has since been described in many organisms, including other insects, plants, fish, and mammals. In this article we describe a mini-X chromosome in Drosophila melanogaster that shows genomic imprinting of at least three closely linked genes. The imprinting of these genes is observed as mosaic silencing when the genes are transmitted by the male parent, in contrast to essentially wild-type expression when the same genes are maternally transmitted. We show that the imprint is due to the sex of the parent rather than to a conventional maternal effect, differential mitotic instability of the mini-X chromosome, or an allele-specific effect. Finally, we have examined the effects of classical modifiers of position-effect variegation on the maintenance and the establishment of the imprint. Factors that modify position-effect variegation alter the somatic expression but not the establishment of the imprint. This suggests that chromatin structure is important in maintenance of the imprint, but a separate mechanism may be responsible for its initiation.  相似文献   

11.
12.
Summary The strain of Drosophila melanogaster carrying the inversion In(1)w m4, which juxtaposes the normal w + gene to the centromeric heterochromatin, variegates for pigmentation in the eye. This strain was treated with various concentrations of n-butyrate and n-proprionate during the embryonic and larval stages. Concentrations as low as 70mM markedly suppress the variegated eye phenotype. This suggests that non-acetylated histones play a major role in the phenomenon of position-effect variegation.This research was supported by Natural Sciences and Engineering Research Council Canada team grant A-1764 to T.A.G. and D.T. Suzuki, and Natural, Applied & Health Sciences grant 9704 to T.A.G.  相似文献   

13.
Carnitine is a well-known naturally occurring compound, very similar to butyrate, with an essential role in intermediary metabolism mainly at the mitochondrial level. Since butyrate inhibits the enzyme histone deacetylase and is capable of suppressing position-effect variegation in Drosophila melanogaster, we tested a further possible function of carnitine in the nucleus, using an assay for the suppression of position-effect variegation. We tested three physiological forms of carnitine (l-carnitine, l-propionylcarnitine, l-acetylcarnitine) for the ability to suppress two different chromosomal rearrangements, inducing variegation of the white + and brown + genes. The results show that the carnitine derivatives are capable of suppressing the position-effect variegation, albeit with different efficiencies. The carnitine derivatives interact lethally with Su-var(2)1 01, a mutation that induces hyperacetylation of histones, whilst hyperacetylated histories accumulated in both the nuclei of HeLa cells and Drosophila polytene chromosomes treated with the same compounds. These results strongly suggest that the carnitine derivatives suppress position-effect variegation by a mechanism similar to that of butyrate. It is suggested that carnitines may have a functional role in the nucleus, probably at the chromatin level.  相似文献   

14.
Summary The molecular nature of lethal and semilethal mutations in the Pgd locus of D. melanogaster coding for 6-phosphogluconate dehydrogenase (6PGD) was studied. All the 11 mutations affect the structural gene of the Pgd locus: 3 semilethal mutations resulted in altered 6PGD molecules with decreased catalytic activities; the rest 8 lethals were null alleles characterized by mutant polypeptides capable of reacting with antisera against highly purified 6PGD.Null or low activity alleles for glucose-6-phosphate dehydrogenase induced by ethyl methanesulfonate were shown to be suppressors for the lethal mutations in the Pgd locus.A monocistronic type of organization of the Pgd locus is suggested taking into account the biochemical mechanism of suppression of the Pgd-lethals and their location in the structural gene coding for 6PGD.  相似文献   

15.
Summary The phenomenon of dosage compensation in Drosophila melanogaster which consists in doubling of the activity of the X-chromosome genes in males as compared to those in females was studied.The specific activities of 6-phosphogluconate dehydrogenase (6PGD) and glucose-6-phosphate dehydrogenase (G6PD) determined by the sex-linked structural genes Pgd and Zw respectively were studied in flies carrying duplications for different regions of the X-chromosome. The increase in dose of Pgd and Zw in females resulting from the addition of an extra X-chromosome or X-fragments leads to a proportional rise in the specific activities of 6PGD and G6PD. On the other had the addition to females of the X-chromosome carrying no Pgd gene or X-fragments lacking Pgd and Zw has no effect on the enzyme activities. Thus we failed to reveal in the X-chromosome any compensatory genes envisaged by Muller, which would repress sex-linked structural genes proportional to their dose.The 6PGD and G6PD levels in phenotypically male-like intersexes carrying two X-chromosomes and three autosome sets (2X3A) is 30% higher than in diploid (2X2A) or triploid (3X3A) females. However the specific activities of the enzymes in female-like intersexes are the same as in regular females. The levels of 6PGD and G6PD per one X-chromosome are 1.5–2.0 times higher in the intersexes than in the normal females and metafemales (3X2A). The results indicate that the level of expression of the X-chromosome is determined by the X:A ratio. It is suggested that the decreased X:A ratio in males is responsible for the hyperactivation of their X-chromosomes.  相似文献   

16.
Position-effect variegation in Drosophila melanogaster is accompanied by compaction of the corresponding chromosomal regions. The compaction can be continuous, so that bands and interbands located distal to the eu-heterochromatic junction fuse into one dense block, or discontinuous, when two or more zones of compaction are separated by morphologically and functionally normal regions. In this work it was found that in both continuous and discontinuous compaction the blocks of dense material contain the immunochemically detectable protein HP1, which has previously been characterized as specific for heterochromatin. The regions undergoing compaction do not contain HP1 when they have a normal banding pattern. Thus, it may be proposed that HP1 is one of the factors involved in compaction. If two different or two identical rearrangements are combined in the same nucleus, they variegate independently. The frequency of compaction of the two rearrangements in the same nucleus corresponds to the product of the frequencies of the compact state of the individual elements. The extent of compaction (i.e. the number of bands involved in heterochromatization) of each rearrangement does not depend on the compaction pattern of the other rearranged element.  相似文献   

17.
18.
19.
A mutant gene, which we have designated AdhnB, codes for a defective form of the enzyme alcohol dehydrogenase in Drosophila melanogaster. We show that the polypeptide encoded by AdhnB is approximately 2000 Mr smaller than the protein synthesized under the direction of the wild-type alcohol dehydrogenase gene. In contrast, the alcohol dehydrogenase mRNA produced by both genes is the same size. We cloned and sequenced a portion of the protein-coding region of AdhnB and compared it to the same region in the wild-type gene. We found a single base substitution: a change of the TGG tryptophan codon at amino acid 235 to a TGA termination codon. This nonsense mutation accounts for the observed reduction in size of the alcohol dehydrogenase polypeptide. In further studies, we found that the steady-state levels of alcohol dehydrogenase mRNA in flies carrying the AdhnB gene and the wild-type alcohol dehydrogenase gene were indistinguishable. However, the steady-state level of alcohol dehydrogenase polypeptide was reduced to 1% of wild-type levels in flies with the AdhnB gene. Moreover, the rate of alcohol dehydrogenase synthesis in mutant flies was reduced to 50% of that found in wild type. The aberration in AdhnB thus affects both the rate of synthesis and the rate of degradation of the alcohol dehydrogenase peptide. AdhnB is the first reported nonsense mutant in Drosophila.  相似文献   

20.
Summary Several mutants that enhance the gene inactivation associated with position-effect variegation [E(var) mutants] have been characterized. These include three ethyl methanesulfonate (EMS)-induced lesions and a second chromosome duplication. Each of the EMS mutations maps to a discrete euchromatic site on the third chromosome. One is located within the chromosomal region occupied by a cluster of Su(var) mutations. All four E(var) mutants enhance the inactivation of several different variegators and therefore they appear to influence position-effect variegation generally. However, the enhancement caused by the single site E(var) mutations is less striking than that caused by the duplication or by loss of the Y chromosome. The interaction between the E(var) mutants and selected Su(var) mutations, as well as the effects of extra Y heterochromatin on E(var) expression, have also been investigated. Based on the results of these studies, various hypothetical functions of the E(var) + products are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号