首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclooxygenase (COX)-2 oxygenates arachidonic acid (AA) and 2-arachidonylglycerol (2-AG) to endoperoxides, which are subsequently transformed to prostaglandins (PGs) and glycerylprostaglandins (PG-Gs). PG-G formation has not been demonstrated in intact cells treated with a physiological agonist. Resident peritoneal macrophages, which express COX-1, were pretreated with lipopolysaccharide to induce COX-2. Addition of zymosan caused release of 2-AG and production of the glyceryl esters of PGE2 and PGI2 over 60 min. The total quantity of PG-Gs (16 +/- 6 pmol/10(7) cells) was much lower than that of the corresponding PGs produced from AA (21,000 +/- 7,000 pmol/10(7) cells). The differences in PG-G and PG production were partially explained by differences in the amounts of 2-AG and AA released in response to zymosan. The selective COX-2 inhibitor, SC236, reduced PG-G and PG production by 49 and 17%, respectively, indicating a significant role for COX-1 in PG-G and especially PG synthesis. Time course studies indicated that COX-2-dependent oxygenation rapidly declined 20 min after zymosan addition. When exogenous 2-AG was added to macrophages, a substantial portion was hydrolyzed to AA and converted to PGs; 1 microm 2-AG yielded 820 +/- 200 pmol of PGs/10(7) cells and 78 +/- 41 pmol of PG-Gs/10(7) cells. SC236 reduced PG-G and PG production from exogenous 2-AG by 88 and 76%, respectively, indicating a more significant role for COX-2 in the utilization of exogenous substrate. In conclusion, lipopolysaccharide-pretreated macrophages produce PG-Gs from endogenous 2-AG during zymosan phagocytosis, but PG-G formation is limited by substrate hydrolysis and inactivation of COX-2.  相似文献   

2.
COX [cyclo-oxygenase; PG (prostaglandin) G/H synthase] oxygenates AA (arachidonic acid) and 2-AG (2-arachidonylglycerol) to endoperoxides that are converted into PGs and PG-Gs (glycerylprostaglandins) respectively. In vitro, 2-AG is a selective substrate for COX-2, but in zymosan-stimulated peritoneal macrophages, PG-G synthesis is not sensitive to selective COX-2 inhibition. This suggests that COX-1 oxygenates 2-AG, so studies were carried out to identify enzymes involved in zymosan-dependent PG-G and PG synthesis. When macrophages from COX-1-/- or COX-2-/- mice were treated with zymosan, 20-25% and 10-15% of the PG and PG-G synthesis observed in wild-type cells respectively was COX-2 dependent. When exogenous AA and 2-AG were supplied to COX-2-/- macrophages, PG and PG-G synthesis was reduced as compared with wild-type cells. In contrast, when exogenous substrates were provided to COX-1-/- macrophages, PG-G but not PG synthesis was reduced. Product synthesis also was evaluated in macrophages from cPLA(2alpha) (cytosolic phospholipase A2alpha)-/- mice, in which zymosan-induced PG synthesis was markedly reduced, and PG-G synthesis was increased approx. 2-fold. These studies confirm that peritoneal macrophages synthesize PG-Gs in response to zymosan, but that this process is primarily COX-1-dependent, as is the synthesis of PGs. They also indicate that the 2-AG and AA used for PG-G and PG synthesis respectively are derived from independent pathways.  相似文献   

3.
4.
Non-redundant functions of cyclooxygenases: oxygenation of endocannabinoids   总被引:1,自引:0,他引:1  
The two cyclooxygenase (COX) enzymes catalyze the oxygenation of arachidonic acid to prostaglandin endoperoxides, which are the common intermediates in the biosynthesis of the bioactive lipids prostaglandins and thromboxane. COX-1 and COX-2 are approximately 60% identical in amino acid sequence, exhibit highly homologous three-dimensional structures, and appear functionally similar at the biochemical level. Recent work has uncovered a subtle functional difference between the two enzymes, namely the ability of COX-2 to efficiently utilize neutral derivatives (esters and amides) of arachidonic acid as substrates. Foremost among these neutral substrates are the endocannabinoids 2-arachidonoylglycerol and arachidonoylethanolamide. This raises the possibility that COX-2 oxygenation plays a role in a novel signaling pathway dependent on agonist-induced release of endocannabinoids and their selective oxygenation by COX-2. Among the products of COX-2 oxygenation of endocannabinoids are glyceryl prostaglandins, some of which (e.g. glyceryl prostaglandin E(2) and glyceryl prostaglandin I(2)) exhibit interesting biological activities in inflammatory, neurological, and vascular systems. These compounds are produced in intact cells stimulated with physiological agonists and have been isolated from in vivo sources. Important concepts relevant to the hypothesis of a COX-2-selective signaling pathway are presented.  相似文献   

5.
The endocannabinoid, 2-arachidonoylglycerol (2-AG), is a selective substrate for the inducible isoform of prostaglandin H synthase (PGHS), PGHS-2. Its turnover leads to the formation of glyceryl esters of prostaglandins (PG-Gs), a subset of which elicits agonism at unique, as yet unidentified, receptors. The kcat/Km values for oxygenation of arachidonic acid (AA) and 2-AG by PGHS-2 are very similar, but the sensitivities of the two substrates to peroxide-dependent activation have not been compared. 15-Hydroperoxy derivatives of AA and 2-AG were found to be comparable in their ability to serve as substrates for the peroxidase activities of PGHS-2, PGHS-1, and glutathione peroxidase (GPx). They also were comparable in the activation of AA oxygenation by cyanide-inhibited PGHS-2. However, oxygenation of 2-AG was significantly suppressed relative to AA by the presence of GPx and GSH. Furthermore, 2-AG oxygenation by peroxidase-deficient H388YmPGHS-2 was much less efficient than AA oxygenation. Wild-type rates of 2-AG oxygenation were restored by treatment of H388YmPGHS-2 with hydroperoxide derivatives of AA or 2-AG. RNAi silencing of phospholipid hydroperoxide-specific GPx (GPx4) in NIH/3T3 cells led to increases in cellular peroxidation and in the levels of the isoprostane product, 8-epi-PGF. GPx4 silencing led to 2–4-fold increases in PG-G formation but no change in PG formation. Thus, cellular peroxide tone may be an important determinant of the extent of endocannabinoid oxygenation by PGHS-2.  相似文献   

6.
Prostaglandins (PGs), the arachidonic acid (AA) metabolites of the cyclooxygenase (COX) pathway, and the cytokine TNFalpha play major roles in inflammation and they are synthesised mainly by macrophages. Their syntheses have been shown to be regulated by several factors, including nitric oxide, a further important macrophage product. Since both positive and negative regulations of PGs and TNFalpha synthesis by NO have been reported, we sought to understand the mechanisms underlying these opposite NO effects by using a recent class of NO releasing compounds, the NONOates, which have been shown to release NO in a controlled fashion. To this aim, we analysed the effect of NO released from PAPA/NO (t1/2 15 min) and DETA/NO (t1/2 20 h) in RAW 264.7 cells. Both NONOates were used at the same concentrations allowing the cell cultures to be exposed either at high levels of NO for brief time (PAPA/NO) or at low levels of NO for long time (DETA/NO). We found that the two NONOates had opposite effect on basal TNFalpha release, being increased by PAPA/NO and decreased by DETA/NO, while they did not affect the release stimulated by LPS. At variance, both NONOates increased the basal PGE(2) production, while the LPS-stimulated production was slightly increased only by PAPA/NO. The modulation of PGE(2) synthesis was the result of the distinct effects of the two NO-donors on either arachidonic acid (AA) release or cyclooxygense-2 (COX-2) expression, the precursor and synthetic enzyme of PGs, respectively. Indeed, in resting cultures AA release was enhanced only by PAPA/NO whereas COX-2 expression was moderately upregulated by both donors. In LPS activated cells, both NONOates induced AA release, although with different kinetics and potencies, but only DETA/NO significantly increased COX-2 expression. In conclusion, by comparing the activities of these two NONOates, our observations indicate that level and time of exposure to NO are both crucial in determining the molecular target and the final result of the interactions between NO and inflammatory molecules.  相似文献   

7.
Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid (AA) and the endocannabinoids 2-arachidonoylglycerol (2-AG) and arachidonylethanolamide to prostaglandins, prostaglandin glyceryl esters, and prostaglandin ethanolamides, respectively. A structural homodimer, COX-2 acts as a conformational heterodimer with a catalytic and an allosteric monomer. Prior studies have demonstrated substrate-selective negative allosteric regulation of 2-AG oxygenation. Here we describe AM-8138 (13(S)-methylarachidonic acid), a substrate-selective allosteric potentiator that augments 2-AG oxygenation by up to 3.5-fold with no effect on AA oxygenation. In the crystal structure of an AM-8138·COX-2 complex, AM-8138 adopts a conformation similar to the unproductive conformation of AA in the substrate binding site. Kinetic analysis suggests that binding of AM-8138 to the allosteric monomer of COX-2 increases 2-AG oxygenation by increasing kcat and preventing inhibitory binding of 2-AG. AM-8138 restored the activity of COX-2 mutants that exhibited very poor 2-AG oxygenating activity and increased the activity of COX-1 toward 2-AG. Competition of AM-8138 for the allosteric site prevented the inhibition of COX-2-dependent 2-AG oxygenation by substrate-selective inhibitors and blocked the inhibition of AA or 2-AG oxygenation by nonselective time-dependent inhibitors. AM-8138 selectively enhanced 2-AG oxygenation in intact RAW264.7 macrophage-like cells. Thus, AM-8138 is an important new tool compound for the exploration of allosteric modulation of COX enzymes and their role in endocannabinoid metabolism.  相似文献   

8.
The cyclooxygenases (COX-1 and COX-2) generate prostaglandin H(2) from arachidonic acid (AA). In its catalytically productive conformation, AA binds within the cyclooxygenase channel with its carboxylate near Arg-120 and Tyr-355 and ω-end located within a hydrophobic groove above Ser-530. Although AA is the preferred substrate for both isoforms, COX-2 can oxygenate a broad spectrum of substrates. Mutational analyses have established that an interaction of the carboxylate of AA with Arg-120 is required for high affinity binding by COX-1 but not COX-2, suggesting that hydrophobic interactions between the ω-end of substrates and cyclooxygenase channel residues play a significant role in COX-2-mediated oxygenation. We used structure-function analyses to investigate the role that Arg-120 and residues lining the hydrophobic groove play in the binding and oxygenation of substrates by murine (mu) COX-2. Mutations to individual amino acids within the hydrophobic groove exhibited decreased rates of oxygenation toward AA with little effect on binding. R120A muCOX-2 oxygenated 18-carbon ω-6 and ω-3 substrates albeit at reduced rates, indicating that an interaction with Arg-120 is not required for catalysis. Structural determinations of Co(3+)-protoporphyrin IX-reconstituted muCOX-2 with α-linolenic acid and G533V muCOX-2 with AA indicate that proper bisallylic carbon alignment is the major determinant for efficient substrate oxygenation by COX-2. Overall, these findings implicate Arg-120 and hydrophobic groove residues as determinants that govern proper alignment of the bisallylic carbon below Tyr-385 for catalysis in COX-2 and confirm nuances between COX isoforms that explain substrate promiscuity.  相似文献   

9.
Distinct functional coupling between cyclooxygenases (COXs) and specific terminal prostanoid synthases leads to phase-specific production of particular prostaglandins (PGs). In this study, we examined the coupling between COX isozymes and PGF synthase (PGFS). Co-transfection of COXs with PGFS-I belonging to the aldo-keto reductase family into HEK293 cells resulted in increased production of PGF(2alpha) only when a high concentration of exogenous arachidonic acid (AA) was supplied. However, this enzyme failed to produce PGF(2alpha) from endogenous AA, even though significant increase in PGF(2alpha) production occurred in cells transfected with COX-2 alone. This poor COX/PGFS-I coupling was likely to arise from their distinct subcellular localization. Measurement of PGF(2alpha)-synthetic enzyme activity in homogenates of several cells revealed another type of PGFS activity that was membrane-bound, glutathione (GSH)-activated, and stimulus-inducible. In vivo, membrane-bound PGFS activity was elevated in the lung of lipopolysaccharide-treated mice. Taken together, our results suggest the presence of a novel, membrane-associated form of PGFS that is stimulus-inducible and is likely to be preferentially coupled with COX-2.  相似文献   

10.
Like arachidonic acid (AA), dihomo-γ-linolenic acid (DGLA) is a 20-carbon ω-6 polyunsaturated fatty acid and a substrate of cyclooxygenase (COX). Through free radical reactions, COX metabolizes DGLA and AA to form well-known bioactive metabolites, namely, the 1 and 2 series of prostaglandins (PGs1 and PGs2), respectively. Unlike PGs2, which are viewed as proinflammatory, PGs1 possess anti-inflammatory and anticancer activities. However, the mechanisms linking the PGs to their bioactivities are still unclear, and radicals generated in COX-DGLA have not been detected. To better understand PG biology and determine whether different reactions occur in COX-DGLA and COX-AA, we have used LC/ESR/MS with a spin trap, α-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (POBN), to characterize the carbon-centered radicals formed from COX-DGLA in vitro, including cellular peroxidation. A total of five types of DGLA-derived radicals were characterized as POBN adducts: m/z 266, m/z 296, and m/z 550 (same as or similar to COX-AA) and m/z 324 and m/z 354 (exclusively from COX-DGLA). Our results suggest that C-15 oxygenation to form PGGs occurs in both COX-DGLA and COX-AA; however, C-8 oxygenation occurs exclusively in COX-DGLA. This new finding will be further investigated for its association with various bioactivities of PGs, with potential implications for inflammatory diseases.  相似文献   

11.
Distinct functional coupling between cyclooxygenases (COXs) and specific terminal prostanoid synthases leads to phase-specific production of particular prostaglandins (PGs). In this study, we examined the coupling between COX isozymes and PGF synthase (PGFS). Co-transfection of COXs with PGFS-I belonging to the aldo-keto reductase family into HEK293 cells resulted in increased production of PGF only when a high concentration of exogenous arachidonic acid (AA) was supplied. However, this enzyme failed to produce PGF from endogenous AA, even though significant increase in PGF production occurred in cells transfected with COX-2 alone. This poor COX/PGFS-I coupling was likely to arise from their distinct subcellular localization. Measurement of PGF-synthetic enzyme activity in homogenates of several cells revealed another type of PGFS activity that was membrane-bound, glutathione (GSH)-activated, and stimulus-inducible. In vivo, membrane-bound PGFS activity was elevated in the lung of lipopolysaccharide-treated mice. Taken together, our results suggest the presence of a novel, membrane-associated form of PGFS that is stimulus-inducible and is likely to be preferentially coupled with COX-2.  相似文献   

12.
We examined the involvement of cyclooxygenase (COX)-1 and COX-2 on mechanical scratching-induced prostaglandins (PGs) production in the skin of mice. The dorsal regions of mice were scratched using a stainless brush. COXs expressions in the skin were analyzed using real-time PCR and Western blotting. The effect of acetylsalicylic acid (ASA) on the ability of PGs production were determined based on skin PGs level induced by arachidonic acid (AA) application. Mechanical scratching increased PGD2, PGE2, PGI2 and PGF(2 alpha). COX-1 was constitutively expressed and COX-2 expression was enhanced by scratching. Intravenous administration of ASA inhibited PGs biosynthesis in the normal skin. PGs levels of the skin 6h after ASA administration (ASA 6 h) were almost equal to those of the skin 10 min after ASA administration (ASA 10 min). In the scratched skin, AA-induced PGE2 and PGI2 of ASA 6 h were significantly higher than those of ASA 10 min. The skin PGD2 and PGF(2 alpha) of ASA 10 min were almost same to those of ASA 6 h. In the normal skin of COX-1-deficient mice, skin PGD2 level was lower than that of wild-type mice, although PGE2, PGI2 and PGF(2 alpha) levels were almost equal to those of wild type. In the scratched skin of COX-1-deficient mice, PGD2, PGE2, PGI2 and PGF(2 alpha) levels were lower than those of wild-type mice. These results suggested that cutaneous PGD2 could be mainly produced by COX-1, and PGE2 and PGI2 could be produced by COX-1 and COX-2, respectively, in mice.  相似文献   

13.
Cyclooxygenase-2 (COX-2) can oxygenate the endocannabinoids, arachidonyl ethanolamide (AEA) and 2-arachidonylglycerol (2-AG), to prostaglandin-H2-ethanolamide (PGH2-EA) and -glycerol ester (PGH2-G), respectively. Further metabolism of PGH2-EA and PGH2-G by prostaglandin synthases produces a variety of prostaglandin-EA's and prostaglandin-G's nearly as diverse as those derived from arachidonic acid. Thus, COX-2 may regulate endocannabinoid levels in neurons during retrograde signaling or produce novel endocannabinoid metabolites for receptor activation. Endocannabinoid-metabolizing enzymes are important regulators of their action, so we tested whether PG-G levels may be regulated by monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH). We found that PG-Gs are poor substrates for purified MGL and FAAH compared to 2-AG and/or AEA. Determination of substrate specificity demonstrates a 30-100- and 150-200-fold preference of MGL and FAAH for 2-AG over PG-Gs, respectively. The substrate specificity of AEA compared to those of PG-Gs was approximately 200-300 fold higher for FAAH. Thus, PG-Gs are poor substrates for the major endocannabinoid-degrading enzymes, MGL and FAAH.  相似文献   

14.
A high-performance liquid chromatography (HPLC) positive-ion electrospray ionization tandem mass spectrometry method for the quantification of prostaglandin glyceryl esters (PG-Gs), a newly discovered class of eicosanoids, is described. All four PG-Gs (PGE(2)-G, PGD(2)-G, PGF(2alpha)-G, and 6-keto-PGF(1alpha)-G) and the prostaglandins (PGs) that are formed by their hydrolysis are simultaneously quantified. Analytes were purified via reverse-phase solid-phase extraction, separated by reverse-phase HPLC, and quantified on a triple-quadrupole mass spectrometer using selected reaction monitoring. Quantification was achieved by stable isotope dilution employing penta-deuterated (PG-Gs) or tetra-deuterated (PGs) analogs. Analyte recovery from cell culture medium was >43% for all analytes at four different concentration levels. The limit of quantification is in the range of 25fmol on-column for each analyte and the analytes exhibit a linear response over approximately a 500-fold range. This method allows simultaneous profiling of several PG-Gs and PGs without multistep sample purification or derivatization.  相似文献   

15.
Cyclooxygenases (COX) play an important role in lipid signaling by oxygenating arachidonic acid to endoperoxide precursors of prostaglandins and thromboxane. Two cyclooxygenases exist which differ in tissue distribution and regulation but otherwise carry out identical chemical functions. The neutral arachidonate derivative, 2-arachidonylglycerol (2-AG), is one of two described endocannabinoids and appears to be a ligand for both the central (CB1) and peripheral (CB2) cannabinoid receptors. Here we report that 2-AG is a substrate for COX-2 and that it is metabolized as effectively as arachidonic acid. COX-2-mediated 2-AG oxygenation provides the novel lipid, prostaglandin H(2) glycerol ester (PGH(2)-G), in vitro and in cultured macrophages. PGH(2)-G produced by macrophages is a substrate for cellular PGD synthase, affording PGD(2)-G. Pharmacological studies reveal that macrophage production of PGD(2)-G from endogenous sources of 2-AG is calcium-dependent and mediated by diacylglycerol lipase and COX-2. These results identify a distinct function for COX-2 in endocannabinoid metabolism and in the generation of a new family of prostaglandins derived from diacylglycerol and 2-AG.  相似文献   

16.
We have recently reported that cyclooxygenase (COX)-2-deficiency affects brain upstream and downstream enzymes in the arachidonic acid (AA) metabolic pathway to prostaglandin E2 (PGE2), as well as enzyme activity, protein and mRNA levels of the reciprocal isozyme, COX-1. To gain a better insight into the specific roles of COX isoforms and characterize the interactions between upstream and downstream enzymes in brain AA cascade, we examined the expression and activity of COX-2 and phospholipase A2 enzymes (cPLA2 and sPLA2), as well as the expression of terminal prostaglandin E synthases (cPGES, mPGES-1, and - 2) in wild type and COX-1(-/-) mice. We found that brain PGE2 concentration was significantly increased, whereas thromboxane B2 (TXB2) concentration was decreased in COX-1(-/-) mice. There was a compensatory up-regulation of COX-2, accompanied by the activation of the NF-kappaB pathway, and also an increase in the upstream cPLA2 and sPLA2 enzymes. The mechanism of NF-kappaB activation in the COX-1(-/-) mice involved the up-regulation of protein expression of the p50 and p65 subunits of NF-kappaB, as well as the increased protein levels of phosphorylated IkappaBalpha and of phosphorylated IKKalpha/beta. Overall, our data suggest that COX-1 and COX-2 play a distinct role in brain PG biosynthesis, with basal PGE2 production being metabolically coupled with COX-2 and TXB2 production being preferentially linked to COX-1. Additionally, COX-1 deficiency can affect the expression of reciprocal and coupled enzymes, COX-2, Ca2+ -dependent PLA2, and terminal mPGES-2, to overcome defects in brain AA cascade.  相似文献   

17.
Prostaglandin endoperoxide synthases (PTGS), commonly referred to as cyclooxygenases (COX-1 and COX-2), catalyze the key step in the synthesis of biologically active prostaglandins (PGs), the conversion of arachidonic acid (AA) into prostaglandin H2 (PGH2). Although COX and prostaglandins have been implicated in a wide variety of physiologic processes, an evaluation of the role of prostaglandins in early mammalian development has been difficult due to the maternal contribution of prostaglandins from the uterus: COX null mouse embryos develop normally during embryogenesis. Here, we verify that inhibition of COX-1 results in zebrafish gastrulation arrest and shows that COX-1 expression becomes restricted to the posterior mesoderm during somitogenesis and to posterior mesoderm organs at pharyngula stage. Inhibition of COX-1 signaling after gastrulation results in defective vascular tube formation and shortened intersomitic vessels in the posterior body region. These defects are rescued completely by PGE(2) treatment or, to a lesser extent, by PGF(2alpha), but not by other prostaglandins, such as PGI(2), TxB(2), or PGD(2). Functional knockdown of COX-1 using antisense morpholino oligonucleotide translation interference also results in posterior vessel defect in addition to enlarged posterior nephric duct, phenocopying the defects caused by inhibition of COX-1 activity. Together, we provide the first evidence that COX-1 signaling is required for development of posterior mesoderm organs, specifically in the vascular tube formation and posterior nephric duct development.  相似文献   

18.
Cyclooxigenase (COX) is the rate-limiting enzyme for the conversion of arachidonic acid (AA) to prostaglandins (PGs). Two isoforms of COX have been identified: COX-1 is constitutively expressed in many cells and is involved in cell homeostasis, angiogenesis and cell-cell signalling; COX-2 is not expressed in normal condition however it is strongly expressed in inflammation. The oral cavity is constantly exposed to physical and chemical trauma that could lead to mucosal reactions such as hyperplasia, dysplasia and cancer. Early diagnosis is the most important issue to address for a positive outcome of oral cancer; therefore it would be useful to identify molecular markers whose expression is associated with the various stages of oral cancer progression. Since COX enzyme has been involved, with different mechanisms, in the development and progression of malignancies we decided to investigate the expression and localization of COX-1 and COX-2 in normal human oral mucosa and three different pathologies (hyperplasia, dysplasia and carcinoma) by immunohistochemistry and RT-PCR. COX-1 mRNA and protein have been detected already in normal oral mucosa and their expression progressively increases from normal samples towards hyperplasia, dysplasia and finally carcinoma. On the contrary, COX-2 is not expressed in the normal tissue, starts to be expressed in hyperplasia, reaches the maximum activation in dysplasia and then starts to be downregulated in carcinoma.  相似文献   

19.
Prostaglandins (PGs) are known to play a variety of roles in adipocytes and precursor cells, which have the arachidonate cyclooxygenase (COX) pathway to generate several series of PGs at different stages of life cycle of adipocytes. To gain a unique insight into the specific roles of the COX isoforms during the life cycle of adipocytes, 3T3-L1 preadipocytes were stably transfected with a mammalian expression vector harboring either cDNA coding for murine COX-1 or COX-2. The cloned stable transfectants with COX-1 or COX-2 exhibited higher expression levels of their corresponding mRNA and proteins, and greater production of PGE2 upon stimulation with free arachidonic acid or A23187 than the parent cells and the transfectants with vector only. However, either type of transfectants brought about the marked reduction in the accumulation of triacylglycerols after the standard adipogenesis program. Unexpectedly, aspirin or other COX inhibitors at different phases of life cycle of adipocytes failed to reverse the reduced storage of fats. The transfectants with COX-2 were sensitive to exogenous 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2) and troglitazone as peroxisome proliferator-activated receptor γ (PPARγ) agonists during the maturation phase for restoring the adipogenesis. By contrast, the transfectants with COX-1 were much less sensitive, which was reflected by much lower gene expression levels of PPARγ and the related adipocyte-specific markers. Taken together, the results suggest that the sustained overexpression of either COX-1 or COX-2 resulted in the interference of adipogenesis program through a PG-independent mechanism with a different mode of action of COX isoforms.  相似文献   

20.
Through free radical-mediated peroxidation, cyclooxygenase (COX) can metabolize dihomo-γ-linolenic acid (DGLA) and arachidonic acid (AA) to form well-known bioactive metabolites, namely, the 1-series of prostaglandins (PGs1) and the 2-series of prostaglandins (PGs2), respectively. Unlike PGs2, which are generally viewed as proinflammatory and procarcinogenic PGs, PGs1 may possess anti-inflammatory and anti-cancer activity. Previous studies using ovine COX along with spin trapping and the LC/ESR/MS technique have shown that certain exclusive free radicals are generated from different free radical reactions in DGLA and AA peroxidation. However, it has been unclear whether the differences were associated with the contrasting bioactivity of DGLA vs AA. The aim of this study was to refine the LC/MS and spin trapping technique to make it possible for the association between free radicals and cancer cell growth to be directly tested. Using a colon cancer cell line, HCA-7 colony 29, and LC/MS along with a solid-phase extraction, we were able to characterize the reduced forms of radical adducts (hydroxylamines) as the free radicals generated from cellular COX-catalyzed peroxidation. For the first time, free radicals formed in the COX-catalyzed peroxidation of AA vs DGLA and their association with cancer cell growth were assessed (cell proliferation via MTS and cell cycle distribution via propidium iodide staining) in the same experimental setting. The exclusive free radicals formed from the COX-catalyzed peroxidation of AA and DGLA were shown to be correlated with the cell growth response. Our results indicate that free radicals generated from the distinct radical reactions in COX-catalyzed peroxidation may represent the novel metabolites of AA and DGLA that correspond to their contrasting bioactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号