首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was carried out to investigate development of recipient chicken embryonic reproductive tracts which are transferred chicken primordial germ cells (PGCs). It is thought that differentiation of PGCs is affected by the gonadal somatic cells. When female PGCs are transferred to male embryos, it is possible that they differentiate to W-spermatogonia. However, the relationship development between PGCs and gonads has not been investigated. At stage 12–15 of incubation of fertilized eggs, donor PGCs, which were taken from the blood vessels of donor embryos, were injected into the blood vessels of recipient embryos. The gonads were removed from embryos that died after 16 days of incubation and from newly hatched chickens and organs were examined for morphological and histological features. The survival rate of the treated embryos was 13.6% for homo-sexual transfer of PGCs (male PGCs to male embryo or female PGCs to female embryo) and 28.9% for hetero-sexual transfer PGCs (male PGCs to female embryo or female PGCs to male embryo) when determined at 15 days of incubation. The gonads of embryos arising from homo-sexual transfer appeared to develop normally. In contrast, embryos derived from hetero-sexual transfer of PGCs had abnormal gonads as assessed by histological observation. These results suggest that hetero-sexual transfer of PGCs may influence gonadal development early-stage embryos.  相似文献   

2.
SSEA-1 is a carbohydrate epitope associated with cell adhesion, migration and differentiation. In the present study, SSEA-1 expression was characterized during turkey embryogenesis with an emphasis on its role in primordial germ cell development. During hypoblast formation, SSEA-1 positive cells were identified in the blastocoel and hypoblast and later in the germinal crescent. Based on location and morphology, these cells were identified, as PGCs. Germ cells circulating through embryonic blood vessels were also SSEA-1 positive. During the active phase of migration, PGCs in the dorsal mesentery and gonad could no longer be identified using the SSEA-1 antibody. The presence of PGCs at corresponding stages was verified using periodic acid Schiff stain. Pretreatment of PGCs with trypsin, alpha-galactosidase and neuraminidase did not restore immunoreactivity to SSEA-1. In general, expression was not limited to the germ cell lineage. SSEA-1 was also detected on the ectoderm, yolk sac endoderm, gut and mesonephric tubules. During neural tube closure, SSEA-1 was expressed by the neural epithelium of the fusing neural folds. Later SSEA-1 was detected in regions of the developing spinal cord. Enzyme pretreatment unmasked the epitope on some neural crest cells and cells in the sympathetic ganglion. The temporal and spatial distribution of SSEA-1 in the turkey embryo suggests a role in early germ cell and neural cell development. The absence of SSEA-1 on turkey gonadal germ cells was different from that observed for the chick. Therefore, while features of avian germ cell development appear to be conserved, expression of SSEA-1 can vary with the species.  相似文献   

3.
Primordial germ cells (PGCs) are the progenitor cells for the gametes. Avian PGCs are located in the central region of the area pellucida at the blastoderm stage. Shortly after further incubation, they migrate to the extra-embryonic germinal crescent, and then as soon as the blood vessels form, they enter the circulation and finally settle in the gonadal primordium. We have developed a simple method using soft X-ray irradiation (18 kV power, 20 cm distance) to reduce the number of PGCs in Japanese quail embryos, which should be useful in preparing recipient embryos for PGC-transfer studies. When embryos were exposed to the soft X-rays for 40 s before incubation, the concentration of circulating PGCs was less than one-fifth that in controls after 2 days of incubation. Embryos at day 6 of incubation contained approximately half the number of PGCs compared to controls when they were exposed before or at day 2 of incubation. Irradiation for 40 s is recommended taking into consideration the restriction of proliferation of PGCs, and viability and hatchability.  相似文献   

4.
Summary In many organisms, the germinal dense bodies (GDBs) are known to be organelles unique to the cells of germ-line. In the present study, GDBs in primordial germ cells (PGCs) of the teleost, Oryzias latipes, were examined by electron microscopy. An obvious change was noticed in the morphology of GDBs. In PGCs situated in the endoderm, GDBs consisted of a loosely woven strand-like structure, whereas, GDBs in PGCs in the gonadal anlage, which were amorphous bodies of various sizes and shapes, were composed of electron-dense fine fibrils. The changes in the morphology of GDBs proceeded gradually according to the progress of the stages in migration of the PGCs. GDBs of intermediate morphology were found. The change in the morphology of the GDBs began at the stage of movement of the PGCs from endoderm to mesoderm. It is suggested that the differentiation of PGCs proceeds during their migratory stages under the influence of surrounding somatic cells.  相似文献   

5.
This study explores the origin of primordial germ cells (PGCs) of the mouse and examines their morphology and associations with other cells during early development. PGCs have been selectively stained by the alkaline phosphatase histochemical reaction and viewed by light and electron microscopy from the time they are first detectable in the yolk sac endoderm until they enter the gonadal ridges. There are conflicting reports as to whether the PGCs originate from endodermal cells or whether they originate elsewhere and subsequently enter the endoderm. The observations in the present study favor the premise that PGCs of the mouse do not originate in the endoderm. Furthermore, it was observed that PGCs undergo specific changes in morphology during the developmental period studied and this was interpreted to mean that, although PGCs are set aside early in development as a distinct cell line, they also continue to become more specialized within time. The germ cell line is rather unusual in that it does not exist as a discrete tissue but, instead, resides within various other tissues during its life history. This apparent dependence upon somatic cells is maintained even in adult animals and may be important in serving to maintain or modify the environment of the germ cells.  相似文献   

6.
Primordial germ cells (PGCs) in the turtle embryo ( Caretta caretta ) were observed with light and transmission electron microscopes. Identification of the PGCs for light microscopy was made by the periodic acid-Schiff (PAS) technique. PGCs were first found in the yolk-sac endoderm through the 5th to 6th day of development. PGCs freed from the endoderm then migrated to the root area of the dorsal mesentery and the coelomic angle between the 7th and the 11th day of development, and finally settled down in the gonadal anlage by the 14th day. Turtle PGCs were characterized by a large size (16 μm in diameter) and large nuclei with distinct nucleoli, and by the presence of large numbers of lipid droplets, yolk platelets and glycogen particles in the cytoplasm. Cell organelles were well-developed in PGCs at later stages. Amoeboid features of the PGCs were observed in the mesenchyme, indicating active locomotion. PGCs were usually surrounded or encircled by neighboring somatic cells. No intravascular PGCs were detected at any stage of development examined.  相似文献   

7.
Kim JN  Lee YM  Park TS  Jung JG  Cho BW  Lim JM  Han JY 《Theriogenology》2005,63(4):1038-1049
The developmental similarity between the chicken and pheasant (Phasianus colchicus) allows the novel biotechnologies developed in the chicken to be applied to the production of transgenic pheasants and interspecies germline chimeras. To detect pheasant primordial germ cells (PGCs) efficiently, which is important for inducing germline transmission, the ultrastructure of PGCs and their reactivity to several antibodies (2C9, QB2, anti-SSEA-1, and QCR1) and periodic acid-Schiff's solution (PAS) were examined. To obtain PGCs, blood was taken from embryos incubated for 62-72 h or from gonads from embryos incubated for 156-216 h. The PGCs collected from both sources had the typical ultrastructure of pluripotent cells: a large nucleus with a distinct nucleolus, a high ratio of nuclear to cytoplasmic volume, and a distinct cytoplasmic membrane. In comparing the morphology of PGCs collected from different sites, more mitochondria and better-developed membrane microvilli were found in gonadal PGCs than in circulating PGCs. The nucleus of gonadal PGCs was flattened and had a large eccentrically positioned nucleolus. Of the antibodies tested, only QCR1 antibody reacted with an epitope in pheasant PGCs, and no specific signal was detected to other antibodies. The temporal change in the PGC populations in the blood and gonads of embryos was examined. In blood, the population was greater (P < 0.0001) in embryos incubated for 64 h than in embryos incubated for 62 or 66-72 h (31.4 versus 5.6-16.2 microL(-1)). In embryonic gonads, the number of PGCs increased continuously from 156 to 216 h of incubation (193-2,718 cells/embryo), although the ratio of PGCs to total gonadal cells did not change significantly (0.50-0.61%). In conclusion, pheasant PGCs have typical germ cell morphology and possess the QCR1 epitope. Circulating blood and the gonads of embryos incubated for 64 and 216 h, respectively, are good sources of PGCs.  相似文献   

8.
In all vertebrate groups, the progenitors of the germ line, the primordial germ cells (PGCs) arise extragonadally and move to the developing gonad early in embryonic development. We have examined the behavior of isolated pregonadal and gonadal PGCs in vitro on feeder layers of an embryo-derived cell line. Histochemically and serologically identified pregonadal germ cells are found to be actively motile in vitro and, furthermore, show behavior characteristic of invasive cells. PGCs isolated from the developing gonad, however, show little locomotory activity and are not invasive on the same cellular substrate. These observations suggest that PGCs undergo a major change in phenotype at the time of their entry into the gonad anlagen.  相似文献   

9.
ULTRASTRUCTURE OF THE 'GERMINAL PLASM' IN XENOPUS EMBRYOS AFTER CLEAVAGE   总被引:8,自引:8,他引:0  
The endodermal location of 'germinal plasm'-bearing cells (GPBCs) and the ultrastructure of the 'germinal plasm' were studied in Xenopus laevis embryos at gastrula, neurula, tailbud and younger tadpole stages. Primordial germ cells (PGCs) of feeding tadpoles were also observed ultrastructurally.
GPBCs were found in the inner endoderm and in the yolk plug region at the late gastrula stage, in the middle and in the dorsal part of the endoderm cell mass at the late neurula and late tailbud stages, respectively. At the younger tadpole stage they were observed in the uppermost dorsal part of the endoderm. Germinal granules were always present in GPBCs at all stages examined but were not found in PGCs of feeding tadpoles. Irregularly shaped-stringlike bodies (ISBs) which seemed to have changed from germinal granules were first noticed in GPBCs at the late neurula stage, and were still present in PGCs of tadpoles, while 'granular materials' were not seen in GPBCs until the feeding tadpole stages. These facts and ultrastructural similarities shared by these organelles lead us to conclude that the change of the germinal granule through ISB, to the 'granular material' takes place during the differentiation of GPBCs into PGCs.  相似文献   

10.
3H-Thymidine incorporation experiments in Barbus conchonius showed that presumptive primordial germ cells (PGCs) terminated their mitotic activity between midepibolys, and late epiboly. At the ten-somite stage, shortly after labeling of PGCs by uptake of 3H-thymidine became arrested, they could be recognized by their relatively large size and large nucleus. They were located in two longitudinal rows of cells between mesoderm and periblast, always at the same distance to the left and right of the notochord. Contact with the endoderm was not observed before the 16- to 23-somite stage. The numbers of PGCs were small (mean number, 18–19) and remained small for nearly 3 weeks. Mitotic activity was not observed in PGCs during that period; thereafter, rapid proliferation began. There is no evidence for active migration of PGCs; it is assumed that they are merely translocated passively together with their surrounding tissues. No specific constituents were detected with histochemical methods for glycogen, alkaline phosphatase, and RNA. Electron microscopy revealed the presence of “nuage” around the nucleus of PGCs. This material corresponded with perinuclear dense bodies as seen with light microscopy from the 19-somite stage onward. It is concluded that presumptive PGCs segregate from the somatic cells between midepiboly and late epiboly, before the three germ layers have been formed, and that locations of PGCs in the endodermal or mesodermal layer may be merely transitory stages during their translocation toward the gonadal primordia.  相似文献   

11.
During mouse gastrulation, primordial germ cells (PGCs) become clustered at the base of the allantois and move caudally into the hindgut endoderm before entering the genital ridges. The precise roles of endoderm tissues in PGC migration, however, remain unclear. By using Sox17 mutants with a specific endoderm deficiency, we provide direct evidence for the crucial role of hindgut expansion in directing proper PGC migration. In Sox17-null embryos, PGCs normally colonize in the allantois and then a small front-row population of PGCs moves properly into the most posterior gut endoderm. Defective hindgut expansion, however, causes the failure of further lateral PGC movement, resulting in the immobilization of PGCs in the hindgut entrance at the later stages. In contrast, the majority of the remaining PGCs moves into the visceral endoderm layer, but relocate outside of the embryonic gut domain. This leads to a scattering of PGCs in the extraembryonic yolk sac endoderm. This aberrant migration of Sox17-null PGCs can be rescued by the supply of wildtype hindgut cells in chimeric embryos. Therefore, these data indicate that hindgut morphogenic movement is crucial for directing PGC movement toward the embryonic gut side, but not for their relocation from the mesoderm into the endoderm.  相似文献   

12.
A novel method was developed to isolate chick primordial germ cells (PGCs) from circulating embryonic blood. This is a very simple and rapid method for the isolation of circulating PGCs (cPGCs) using an ammonium chloride-potassium (ACK) buffer for lysis of the red blood cells. The PGCs were purified as in vitro culture proceeded. Most of the initial red blood cells were removed in the first step using the ACK lysis buffer. The purity of the cPGCs after ACK treatment was 57.1%, and the recovery rate of cPGCs from whole blood was 90.3%. The ACK process removed only red blood cells and it did not affect cPGC morphology. In the second step, the red blood cells disappeared as the culture progressed. At 7 days of in vitro culture, the purity of the PGCs was 92.9%. Most of these cells expressed germline-specific antibodies, such as those against chicken vasa homolog (CVH). The cultured PGCs expressed the Cvh and Dazl genes. Chimeric chickens were produced from these cultured PGCs, and the donor cells were detected in the gonads, suggesting that the PGCs had biological function. In conclusion, this novel isolation system for PGCs should be easier to use than previous methods. The results of the present study suggest that this novel method will become a powerful tool for germline manipulation in the chicken.  相似文献   

13.
Migratory mechanisms of chick primordial germ cells toward gonadal anlage.   总被引:6,自引:0,他引:6  
After appearing at the germinal crescent region, chick primordial germ cells (PGCs) migrate toward the presumptive gonads (pG) till stage 19 (Hamburger and Hamilton, 1951). This study seeks to elucidate the roles of passive and active factors in the PGC-migration, physical trapping of circulating PGCs by the capillary network and PGC attraction by chemotactic factor from presumptive gonads. Firstly, latex beads/pollens (the same size or larger than PGCs) were injected into the embryonic bloodstream at stage 13-19 (when PGCs are in the migrating and settlement phase to the presumptive gonad) in ovo in order to determine whether the PGCs passively reach pG. Most of such particles accumulated in the head region (60%), whereas the remainder did the same in the gonadal region (23% at the peak) at stage 16 when both the head and gonadal regions are rich in capillary plexus. After 3 days, most particles in the gonadal region were located at the angles of dorsal mesentery near the developing gonads where many extra-gonadal PGCs had been located, and a few particles were detected close to the gonad. These results suggest that one of the mechanisms of PGC-migration to the developing gonads is an autonomous trapping of PGCs by the capillary network quite close to the germinal epithelium (GE) and passive translocation by morphogenetic movement. Secondly, the attraction for PGCs by the gonadal anlage proper was examined in ovo using chick and quail embryos. Grafts of quail gonadal anlage containing gonadal epithelium and neighbouring mesenchymal tissue were excised from the quail embryo at stages 12 to 16 (staging by Zacchei, 1961). With the aims of eliminating the influence of surrounding tissue, the quail graft was ectopically transplanted into the posterior to the optic vesicle of 8 to 17 somite chick embryo from the point of a posterior region to the auditory vesicle by a fine tungsten needle under the illumination by the method of Hara (1971). Then the region posterior to the level of presumptive vitelline arteries was surgically excised in ovo. After a 48 hrs.-incubation, the host PGCs which lost their own gonadal anlage as a target organ accumulated in the transplanted quail gonadal anlage originating from the embryo at PGC-migrating periods. This result strongly suggested the presence of some attractive factor that may be emitted from the gonadal anlage proper. Furthermore, it was demonstrated that the PGCs in vitro showed no contact inhibition in relation to other PGCs or fibroblasts in their moving pathway.  相似文献   

14.
15.
PR domain zinc finger protein 14 (PRDM14) plays an essential role in the development of primordial germ cells (PGCs) in mice. However, its functions in avian species remain unclear. In the present study, we used CRISPR/Cas9 to edit the PRDM14 locus in chickens in order to demonstrate its importance in development. The eGFP gene was introduced into the PRDM14 locus of cultured chicken PGCs to knockout PRDM14 and label PGCs. Chimeric chickens were established by a direct injection of eGFP knocked‐in (gene‐trapped) PGCs into the blood vessels of Hamburger–Hamilton stages (HH‐stages) 13–16 chicken embryos. Gene‐trapped chickens were established by crossing a chimeric chicken with a wild‐type hen with very high efficiency. Heterozygous gene‐trapped chickens grew normally and SSEA‐1‐positive cells expressed eGFP during HH‐stages 13–30. These results indicated the specific expression of eGFP within circulating PGCs and gonadal PGCs. At the blastodermal stage, the ratio of homozygous gene‐trapped embryos obtained by crossing heterozygous gene‐trapped roosters and hens was almost normal; however, all embryos died soon afterward, suggesting the important roles of PRDM14 in chicken early development.  相似文献   

16.
An antiserum against quail 7 day gonadal germ cells was found to react specifically with gonadal germ cells of both sexes. Transverse sections from a range of early quail developmental stages were submitted to the antibody PAP reaction. Blastodiscs from the earliest uterine stages (II to X E.G. & K) reacted very strongly, while the overall reaction gradually decreased in older blastoderms. At stage XIII both epiblast and hypoblast were weakly stained, but some large, PGC-like cells stained intensively. During gastrulation (PS formation) the reaction of the epiblast disappears quicker than that of the hypoblast. The newly formed mesoderm and entoderm do not react at all and the reaction gradually becomes limited mainly to the PGCs and somewhat to the primary hypoblast which is moving into the germinal crescent. The widely spread reaction at the early stages is thus gradually being restricted to the PGCs.  相似文献   

17.
During embryogenesis, primordial germ cells (PGCs) have the potential to enter either spermatogenesis or oogenesis. In a female genital ridge, or in a non-gonadal environment, PGCs develop as meiotic oocytes. However, male gonadal somatic cells inhibit PGCs from entering meiosis and direct them to a spermatogenic fate. We have examined the ability of PGCs from male and female embryos to respond to the masculinising environment of the male genital ridge, defining a temporal window during which PGCs retain a bipotential fate. To help understand how PGCs respond to the male gonadal environment, we have identified molecular differences between male PGCs that are committed to spermatogenesis and bipotential female PGCs. Our results suggest that one way in which PGCs respond to this masculinising environment is to synthesise prostaglandin D(2). We show that this signalling molecule can partially masculinise female embryonic gonads in culture, probably by inducing female supporting cells to differentiate into Sertoli cells. In the developing testis, prostaglandin D(2) may act as a paracrine factor to induce Sertoli cell differentiation. Thus part of the response of PGCs to the male gonadal environment is to generate a masculinising feedback loop to ensure male differentiation of the surrounding gonadal somatic cells.  相似文献   

18.
Peanut agglutinin was previously shown to have a specific affinity for primordial germ cells (PGCs) from anuran amphibian embryos. For separation of these cells from endoblastic ones, suspensions of dissociated cells from the endoblastic masses of Xenopus laevis and Rana dalmatina embryos were treated with peanut agglutinin. This treatment resulted in agglutination of a small number of cells, and these aggregates were separated from unaggregated single cells by gravity in 50% calf serum medium. Histological and ultrastructural analysis of numerous sections of the aggregated cells showed that they contained the germinal plasm characteristic of PGCs. The specificity of the PGCs agglutination was confirmed by disocciation of the aggregates with 0, 2 M D-galactose solution.
This embryonic cellular population of PGCs should be useful in further in vitro experiments.  相似文献   

19.
革胡子鲇卵巢在第一次性周期内分化与发育的研究   总被引:11,自引:2,他引:11  
用光镜和电镜研究了革胡子鲇(Clariaslazera)原生殖细胞的起源迁移,卵巢在第1次性周期内的分化与发育以及各发育时期卵母细胞的超微结构。原生殖细胞起源于内胚层,有固定的迁移路线,进入生殖嵴后,生殖嵴进一步分化,出现卵巢腔分化成卵巢,卵母细胞在第1次性周期内的发育可分成6个时相,描述了各时相卵母细胞的显微结构与超微结构。同时,叙述了卵母细胞中卵黄发生的形态形成。  相似文献   

20.
Two isoforms of vasa mRNA and protein are present in a teleost fish, tilapia. One (vas-s) lacks a part of the N-terminal region found in the other isoform (vas). Both isoforms are expressed in oocytes through the embryonic stage when primordial germ cells (PGCs) localize in the lateral plate mesoderm. After PGC localization in the gonadal anlagen, vas-s expression increased and vas expression became undetectable. Expression of both isoforms was observed again after morphological gonadal sex differentiation, irrespective of genotypic sex. In ovary, compared with vas expression vas-s expression predominated throughout oogenesis. In testis, vas expression was predominant compared with vas-s during spermatogenesis. These results indicate that relative expression of two vasa isoforms is dependent upon germ cell differentiation and sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号