首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wey S  Luo B  Lee AS 《PloS one》2012,7(6):e39047
GRP78, a master regulator of the unfolded protein response (UPR) and cell signaling, is required for inner cell mass survival during early embryonic development. However, little is known about its role in adult hematopoietic stem cells (HSCs) and hematopoiesis. Here we generated a conditional knockout mouse model that acutely deletes Grp78 in the adult hematopoietic system. Acute GRP78 ablation resulted in a significant reduction of HSCs, common lymphoid and myeloid progenitors, and lymphoid cell populations in the mutant mice. The GRP78-null induced reduction of the HSC pool could be attributed to increased apoptosis. Chimeric mice with Grp78 deletion only in the hematopoietic cells also showed a loss of HSCs and lymphopenia, suggesting a cell intrinsic effect. Analysis of GRP78 deficient bone marrow (BM) cells showed constitutive activation of all the major UPR signaling pathways, including activation of eIF2α, ATF6, xbp-1 splicing, as well as caspase activation. A multiplex cytokine assay further revealed alteration in select cytokine and chemokine serum levels in the mutant mice. Collectively, these studies demonstrate that GRP78 plays a pleiotropic role in BM cells and contributes to HSC survival and the maintenance of the lymphoid lineage.  相似文献   

2.
Bcr-Abl kinase is known to reverse apoptosis of cytokine-dependent cells due to cytokine deprivation, although it has been controversial whether chronic myeloid leukemia (CML) progenitors have the potential to survive under conditions in which there are limited amounts of cytokines. Here we demonstrate that early hematopoietic progenitors (Sca-1(+) c-Kit(+) Lin(-)) isolated from normal mice rapidly undergo apoptosis in the absence of cytokines. In these cells, the expression of Bim, a proapoptotic relative of Bcl-2 which plays a key role in the cytokine-mediated survival system, is induced. In contrast, those cells isolated from our previously established CML model mice resist apoptosis in cytokine-free medium without the induction of Bim expression, and these effects are reversed by the Abl-specific kinase inhibitor imatinib mesylate. In addition, the expression levels of Bim are uniformly low in cell lines established from patients in the blast crisis phase of CML, and imatinib induced Bim in these cells. Moreover, small interfering RNA that reduces the expression level of Bim effectively rescues CML cells from apoptosis caused by imatinib. These findings suggest that Bim plays an important role in the apoptosis of early hematopoietic progenitors and that Bcr-Abl supports cell survival in part through downregulation of this cell death activator.  相似文献   

3.
4.
Mortensen M  Watson AS  Simon AK 《Autophagy》2011,7(9):1069-1070
The regulated lysosomal degradation pathway of autophagy prevents cellular damage and thus protects from malignant transformation. Autophagy is also required for the maturation of various hematopoietic lineages, namely the erythroid and lymphoid ones, yet its role in adult hematopoietic stem cells (HSCs) remained unexplored. While normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs or early progenitors leads to leukemia. Mechanisms protecting HSCs from cellular damage are therefore essential to prevent hematopoietic malignancies. By conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system, we found that autophagy is required for the maintenance of true HSCs and therefore also of downstream hematopoietic progenitors. Loss of autophagy in HSCs leads to the expansion of a progenitor cell population in the bone marrow, giving rise to a severe, invasive myeloproliferation, which strongly resembles human acute myeloid leukemia (AML).  相似文献   

5.
《Autophagy》2013,9(9):1069-1070
The regulated lysosomal degradation pathway of autophagy prevents cellular damage and thus protects from malignant transformation. Autophagy is also required for the maturation of various hematopoietic lineages, namely the erythroid and lymphoid ones, yet its role in adult hematopoietic stem cells (HSCs) remained unexplored. While normal HSCs sustain life-long hematopoiesis, malignant transformation of HSCs or early progenitors leads to leukemia. Mechanisms protecting HSCs from cellular damage are therefore essential to prevent hematopoietic malignancies. By conditionally deleting the essential autophagy gene Atg7 in the hematopoietic system, we found that autophagy is required for the maintenance of true HSCs and therefore also of downstream hematopoietic progenitors. Loss of autophagy in HSCs leads to the expansion of a progenitor cell population in the bone marrow, giving rise to a severe, invasive myeloproliferation, which strongly resembles human acute myeloid leukemia (AML).  相似文献   

6.
Nucleophosmin (NPM) is a multifunctional protein frequently overexpressed in actively proliferating cells. Strong evidence indicates that NPM is required for embryonic development and genomic stability. Here we report that NPM enhances the proliferative potential of hematopoietic stem cells (HSCs) and increases their survival upon stress challenge. Both short term liquid culture and clonogenic progenitor cell assays show a selective expansion of NPM-overexpressing HSCs. Interestingly, HSCs infected with NPM retrovirus show significantly reduced commitment to myeloid differentiation compared with vector-transduced cells, and majority of the NPM-overexpressing cells remains primitive during a 5-day culture. Bone marrow transplantation experiments demonstrate that NPM promotes the self-renewal of long term repopulating HSCs while attenuated their commitment to myeloid differentiation. NPM overexpression induces rapid entry of HSCs into the cell cycle and suppresses the expression of several negative cell cycle regulators that are associated with G(1)-to-S transition. NPM knockdown elevates expression of these negative regulators and exacerbates stress-induced cell cycle arrest. Finally, overexpression of NPM promotes the survival and recovery of HSCs and progenitors after exposure to DNA damage, oxidative stress, and hematopoietic injury both in vivo and in vitro. DNA repair kinetics study suggests that NPM has a role in reducing the susceptibility of chromosomal DNA to damage rather than promoting DNA damage repair. Together, these results indicate that NPM plays an important role in hematopoiesis via mechanisms involving modulation of HSC/progenitor cell cycle progression and stress response.  相似文献   

7.
Type I interferons (IFNs) are potent regulators of normal hematopoiesis in vitro and in vivo, but the mechanisms by which they suppress hematopoietic progenitor cell growth and differentiation are not known. In the present study we provide evidence that IFN alpha and IFN beta induce phosphorylation of the p38 mitogen-activated protein (Map) kinase in CD34+-derived primitive human hematopoietic progenitors. Such type I IFN-inducible phosphorylation of p38 results in activation of the catalytic domain of the kinase and sequential activation of the MAPK-activated protein kinase-2 (MapKapK-2 kinase), indicating the existence of a signaling cascade, activated downstream of p38 in hematopoietic progenitors. Our data indicate that activation of this signaling cascade by the type I IFN receptor is essential for the generation of the suppressive effects of type I IFNs on normal hematopoiesis. This is shown by studies demonstrating that pharmacological inhibitors of p38 reverse the growth inhibitory effects of IFN alpha and IFN beta on myeloid (colony-forming granulocytic-macrophage) and erythroid (burst-forming unit-erythroid) progenitor colony formation. In a similar manner, transforming growth factor beta, which also exhibits inhibitory effects on normal hematopoiesis, activates p38 and MapKapK-2 in human hematopoietic progenitors, whereas pharmacological inhibitors of p38 reverse its suppressive activities on both myeloid and erythroid colony formation. In further studies, we demonstrate that the primary mechanism by which the p38 Map kinase pathway mediates hematopoietic suppression is regulation of cell cycle progression and is unrelated to induction of apoptosis. Altogether, these findings establish that the p38 Map kinase pathway is a common effector for type I IFN and transforming growth factor beta signaling in human hematopoietic progenitors and plays a critical role in the induction of the suppressive effects of these cytokines on normal hematopoiesis.  相似文献   

8.
We previously reported that Schwann cells undergo apoptosis after serum withdrawal. Insulin-like growth factor-I, via phosphatidylinositol-3 kinase, inhibits caspase activation and rescues Schwann cells from serum withdrawal-induced apoptosis. In this study, we examined the role of c-jun N-terminal protein kinase (JNK) in Schwann cell apoptosis induced by serum withdrawal. Activation of both JNK1 and JNK2 was detected 1 h after serum withdrawal with the maximal level detected at 2 h. A dominant negative JNK mutant, JNK (APF), blocked JNK activation induced by serum withdrawal and Schwann cell apoptosis, suggesting JNK activation participates in Schwann cell apoptosis. Serum withdrawal-induced JNK activity was caspase dependent and inhibited by a caspase 3 inhibitor, Ac-DEVD-CHO. Because insulin-like growth factor-I and Bcl-X(L) are both Schwann cell survival factors, we tested their effects on JNK activation during apoptosis. Insulin-like growth factor-I treatment decreased both JNK1 and JNK2 activity induced by serum withdrawal. LY294002, a phosphatidylinositol-3 kinase inhibitor, blocked insulin-like growth factor-I inhibition on JNK activation, suggesting that phosphatidylinositol-3 kinase mediates the effects of insulin-like growth factor-I. Overexpression of Bcl-X(L) also resulted in less Schwann cell death and inhibition of JNK activation after serum withdrawal. Collectively, these results suggest JNK activation is involved in Schwann cell apoptosis induced by serum withdrawal. Insulin-like growth factor-I and Bcl family proteins rescue Schwann cells, at least in part, by inhibition of JNK activity.  相似文献   

9.
10.
11.

Background  

Haematopoiesis is a process of formation of mature blood cells from hematopoietic progenitors in bone marrow. Haematopoietic progenitors are stimulated by growth factors and cytokines to proliferate and differentiate, and they die via apoptosis when these factors are depleted. An aberrant response to growth environment may lead to haematological disorders. Bomapin (serpinb10) is a hematopoietic- and myeloid leukaemia-specific protease inhibitor with unknown function.  相似文献   

12.
The growth in vitro of the murine myeloid cell line FDC-P1 depends on the presence of serum and a murine hemopoietic growth factor (either granulocyte/macrophage colony-stimulating factor (GM-CSF) or multipotential colony-stimulating factor (multi-CSF, IL3]. To determine the differential roles of serum and colony-stimulating factor (CSF) during the growth of FDC-P1 cultures, we investigated the kinetics of proliferation and death after withdrawal of serum or CSF, using flow cytometry to quantitate the numbers of vital and dead cells. After withdrawal of CSF, the cells died without entering a quiescent state. The life span of cultures lacking CSF increased with increasing concentrations of serum (greater than 50 h at 30% serum), and the cells kept dividing until they died. During the period of population death caused by the absence of CSF, the re-addition of CSF immediately prevented further cells from dying. After the withdrawal of serum in the presence of CSF, the cells continued to live and proliferate for weeks, but required high cell densities (much greater than 10(5)/ml), which suggests that the cells produced an active substance that can substitute for serum. Serum as well as serum-free conditioned medium from dense cultures made the survival and growth of FDC-P1 cultures independent of cell density. Without sufficient quantities of this activity, all cells of the population died within an interval that was much shorter than one cell cycle, which indicates that the factor acts throughout most of the cell cycle. The results suggest that both the CSF and the serum factor act together to permit cell survival, rather than to drive proliferation.  相似文献   

13.
Murine embryonic stem (ES) cells are cell lines established from blastocyst which can contribute to all adult tissues, including the germ-cell lineage, after reincorporation into the normal embryo. ES cell pluripotentiality is preserved in culture in the presence of LIF. LIF withdrawal induces ES cell differentiation to nervous, myocardial, endothelial and hematopoietic tissues. The model of murine ES cell hematopoietic differentiation is of major interest because ES cells are non transformed cell lines and the consequences of genomic manipulations of these cells are directly measurable on a hierarchy of synchronized in vitro ES cell-derived hematopoietic cell populations. These include the putative hemangioblast (which represents the emergence of both hematopoietic and endothelial tissues during development), myeloid progenitors and mature stages of myeloid lineages. Human ES cell lines have been recently derived from human blastocyst in the USA. Their manipulation in vitro should be authorized in France in a near future with the possibility of developing a model of human hematopoietic differentiation. This allows to envisage in the future the use of ES cells as a source of human hematopoietic cells.  相似文献   

14.
Bone marrow-derived myeloid progenitor cells are dependent on the presence of cytokines such as interleukin-3 (IL-3) for their survival. The withdrawal of IL-3 from IL-3-dependent myeloid progenitors results in death via an apoptotic program. Previous studies have shown that IL-3 withdrawal induces the activities of caspase proteases. However, the molecular identities of myeloid progenitor caspases have not been determined. In this study, we used an affinity labeling reagent (biotin-YVAD-acyloxymethyl ketone) that binds to processed active caspase subunits, to study caspase activation in 32D and FDCP-1 myeloid progenitor cells. After IL-3 withdrawal, we detected affinity labeling of caspase subunits of 20, 17, and 16 kDa in both cell lines. Surprisingly, affinity labeling of the 20- and 17-kDa proteins, but not the 16-kDa protein, was also detected in healthy cells maintained in the presence of IL-3. By contrast, in cytokine-independent cell lines, affinity labeling of caspase subunits was detected only after treatment with an apoptotic stimulus. Immunoblotting experiments showed that caspase-3 constitutes at least a portion of the 20- and 17-kDa affinity-labeled proteins detected in the myeloid progenitor cell lines. Taken together, these data provide direct evidence of caspase activation in cytokine-dependent myeloid progenitors, and suggest that unique apoptotic pathways may exist in these cells.  相似文献   

15.
Hemopoiesis is regulated in part by survival/apoptosis of hemopoietic stem/progenitor cells. Exogenously added stromal cell-derived factor-1 ((SDF-1)/CXC chemokine ligand (CXCL)12) enhances survival/antiapoptosis of myeloid progenitor cells in vitro. To further evaluate SDF-1/CXCL12 effects on progenitor cell survival, transgenic mice endogenously expressing SDF-1/CXCL12 under a Rous sarcoma virus promoter were produced. Myeloid progenitors (CFU-granulocyte-macrophage, burst-forming unit-erythroid, CFU-granulocyte-erythrocyte-megakaryocyte-monocyte) from transgenic mice were studied for in vitro survival in the context of delayed addition of growth factors. SDF-1-expressing transgenic myeloid progenitors were enhanced in survival and antiapoptosis compared with their wild-type littermate counterparts. Survival-enhancing effects were due to release of low levels of SDF-1/CXCL12 and mediated through CXCR4 and G(alpha)i proteins as determined by ELISA, an antagonist to CXCR4, Abs to CXCR4 and SDF-1, and pertussis toxin. Transgenic effects of low SDF-1/CXCR4 may be due to synergy of SDF-1/CXCL12 with other cytokines; low SDF-1/CXCL12 synergizes with low concentrations of other cytokines to enhance survival of normal mouse myeloid progenitors. Consistent with in vitro results, progenitors from SDF-1/CXCL12 transgenic mice displayed enhanced marrow and splenic myelopoiesis: greatly increased progenitor cell cycling and significant increases in progenitor cell numbers. These results substantiate survival effects of SDF-1/CXCL12, now extended to progenitors engineered to endogenously produce low levels of this cytokine, and demonstrate activity in vivo for SDF-1/CXCL12 in addition to cell trafficking.  相似文献   

16.
17.
Whereas most mammalian cells require extracellular signals to suppress apoptosis, preimplantation embryos can survive and develop to the blastocyst stage in defined medium without added serum or growth factors. Since cells of these embryos are capable of undergoing apoptosis, it has been suggested that their lack of dependence upon exogenous growth factors results from the production of endogenous growth factors that suppress apoptosis by an autocrine signaling mechanism. In the present study, we have examined the growth factor requirements and intracellular signaling pathways that suppress apoptosis in both mouse preimplantation embryos and embryonic stem (ES) cells, which are derived from the blastocyst inner cell mass. Cultured ES cells, in contrast to intact embryos, required serum growth factors to prevent apoptosis. Suppression of ES cell apoptosis by serum growth factors required the phosphatidylinositol 3-kinase (PI 3-kinase) signaling pathway, since apoptosis was rapidly induced by inhibition of PI 3-kinase with LY294002. In contrast, inhibition of MEK/ERK signaling with U0126 or of mTOR with rapamycin had no detectable effect on ES cell survival. Thus, like most mammalian cells, the survival of ES cells is mediated by growth factor stimulation of PI 3-kinase signaling. Treatment with LY294002 (but not with U0126 or rapamycin) similarly induced apoptosis of mouse blastocysts in serum-free medium, indicating that intact preimplantation embryos are also dependent upon PI 3-kinase signaling for survival. These results demonstrate that PI 3-kinase signaling is required to suppress apoptosis of both ES cells and intact preimplantation embryos, consistent with the hypothesis that survival of preimplantation embryos is maintained by endogenous growth factors that stimulate the PI 3-kinase pathway.  相似文献   

18.
To determine the role of Thy-1 antigen in murine hematopoietic differentiation, bone marrow was treated with anti-Thy-1.2 antibody and complement or complement alone. Growth of immature hematopoietic progenitors, erythroid burst-forming units (BFU-E), and granulocyte/macrophage colony-forming units (CFU-GM) was greatly reduced following antibody and complement treatment and was not restored by mitogen-stimulated spleen cell supernatants. In contrast, more mature erythroid and myeloid progenitors, the erythroid colony-forming unit (CFU-E) and the macrophage progenitor stimulated by L-cell-conditioned media (LCM), were spared by anti-Thy-1.2 antibody and complement treatment. Here, to separate the effects of anti-Thy-1.2 antibody treatment on accessory cells from those on progenitors, splenic T cells and thymocytes were added to treated marrow at ratios of up to 200%. Growth of BFU-E and CFU-GM was not restored. To more precisely replace required accessory cells, male complement-treated marrow was cocultured with female anti-Thy-1.2 antibody and complement-treated marrow. Even marrow cells failed to restore female BFU-E and CFU-GM growth. Fluorescent-activated cell sorting (FACS) and immune sheep red cell rosetting with anti-Thy-1.2-labeled marrow were then performed to determine if immature hematopoietic progenitors bear Thy-1.2. These techniques revealed enrichment of BFU-E and CFU-GM in the Thy-1.2-positive fraction, demonstrating the presence of Thy-1.2 on early murine hematopoietic progenitors. CFU-E and CFU-M were present in the Thy-1.2-negative fraction following FACS separation. These data demonstrate that Thy-1.2 is a differentiation antigen, present on at least some murine BFU-E and CFU-GM and lost as they mature to CFU-E and CFU-M.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号