共查询到20条相似文献,搜索用时 0 毫秒
1.
We performed this study to determine how pretreatment of the ovariectomized rats with 17beta-estradiol could affect blood-brain barrier disruption caused by the vascular endothelial growth factor (VEGF), an important mediator of vascular permeability. Ovariectomized female rats aged twelve to fourteen weeks were used in the study. A 500 micro g 17beta-estradiol 21-day release pellet was implanted in the 17beta-estradiol group, and a vehicle pellet was implanted in the control group 21 days before the experiments. We performed three craniotomies under isoflurane anesthesia to expose cerebral cortices. Normal saline, 10 (- 10)M and 10 (- 9)M VEGF patches were applied on each hole for 30 min. The transfer coefficient (Ki) of (14)C-alpha-amino isobutyric acid and volume of (3)H-dextran (70,000 dalton) distribution were determined to measure the degree of BBB disruption. Ki was increased by 108 % and 138 % with 10 (- 10)M and 10 (- 9)M VEGF respectively after VEGF application in the control group (p < 0.01). However, there was no significant increase in the Ki with the VEGF application in the 17beta-estradiol group, and their values were significantly lower than the corresponding data of the control group (10 (- 10)M: - 55 %, 10 (- 9)M: - 52 %, p <0.05). The volume of dextran distribution in the control group increased by 47 % with VEGF 10 (- 9)M (p < 0.05), whereas there was no significant change in the volume of dextran distribution with VEGF application in the 17beta-estradiol group and the volume was lower than the corresponding volume of the vehicle-treated control group (10 (- 10)M: - 34 %, 10 (- 9)M: -32 %, p < 0.05). In conclusion, our study demonstrated that chronic 17beta-estradiol treatment prevented BBB disruption induced by the VEGF in the ovariectomized rats. 相似文献
2.
Phares TW Kean RB Mikheeva T Hooper DC 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(12):7666-7675
The loss of blood-brain barrier (BBB) integrity in CNS inflammatory responses triggered by infection and autoimmunity has generally been associated with the development of neurological signs. In the present study, we demonstrate that the clearance of the attenuated rabies virus CVS-F3 from the CNS is an exception; increased BBB permeability and CNS inflammation occurs in the absence of neurological sequelae. We speculate that regionalization of the CNS inflammatory response contributes to its lack of pathogenicity. Despite virus replication and the expression of several chemokines and IL-6 in both regions being similar, the up-regulation of MIP-1beta, TNF-alpha, IFN-gamma, and ICAM-1 and the loss of BBB integrity was more extensive in the cerebellum than in the cerebral cortex. The accumulation of CD4- and CD19-positive cells was higher in the cerebellum than the cerebral cortex. Elevated CD19 levels were paralleled by kappa-L chain expression levels. The timing of BBB permeability changes, kappa-L chain expression in CNS tissues, and Ab production in the periphery suggest that the in situ production of virus-neutralizing Ab may be more important in virus clearance than the infiltration of circulating Ab. The data indicate that, with the possible exception of CD8 T cells, the effectors of rabies virus clearance are more commonly targeted to the cerebellum. This is likely the result of differences in the capacity of the tissues of the cerebellum and cerebral cortex to mediate the events required for BBB permeability changes and cell invasion during virus infection. 相似文献
3.
4.
Lipoic acid affects cellular migration into the central nervous system and stabilizes blood-brain barrier integrity 总被引:4,自引:0,他引:4
Schreibelt G Musters RJ Reijerkerk A de Groot LR van der Pol SM Hendrikx EM Döpp ED Dijkstra CD Drukarch B de Vries HE 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(4):2630-2637
Reactive oxygen species (ROS) play an important role in various events underlying multiple sclerosis (MS) pathology. In the initial phase of lesion formation, ROS are known to mediate the transendothelial migration of monocytes and induce a dysfunction of the blood-brain barrier (BBB). In this study, we describe the beneficial effect of the antioxidant alpha-lipoic acid (LA) on these phenomena. In vivo, LA dose-dependently prevented the development of clinical signs in a rat model for MS, acute experimental allergic encephalomyelitis (EAE). Clinical improvement was coupled to a decrease in leukocyte infiltration into the CNS, in particular monocytes. Monocytes isolated from the circulation of LA-treated rats revealed a reduced migratory capacity to cross a monolayer of rat brain endothelial cells in vitro compared with monocytes isolated from untreated EAE controls. Using live cell imaging techniques, we visualized and quantitatively assessed that ROS are produced within minutes upon the interaction of monocytes with brain endothelium. Monocyte adhesion to an in vitro model of the BBB subsequently induced enhanced permeability, which could be inhibited by LA. Moreover, administration of exogenous ROS to brain endothelial cells induced cytoskeletal rearrangements, which was inhibited by LA. In conclusion, we show that LA has a protective effect on EAE development not only by affecting the migratory capacity of monocytes, but also by stabilization of the BBB, making LA an attractive therapeutic agent for the treatment of MS. 相似文献
5.
The blood-brain barrier (BBB) provides significant protection against microbial invasion of the brain. However, the BBB is not impenetrable, and mechanisms by which viruses breach it are becoming clearer. In vivo and in vitro model systems are enabling identification of host and viral factors contributing to breakdown of the unique BBB tight junctions. Key mechanisms of tight junction damage from inside and outside cells are disruption of the actin cytoskeleton and matrix metalloproteinase activity, respectively. Viral proteins acting in BBB disruption are described for HIV-1, currently the most studied encephalitic virus; other viruses are also discussed. 相似文献
6.
Afonso PV Ozden S Prevost MC Schmitt C Seilhean D Weksler B Couraud PO Gessain A Romero IA Ceccaldi PE 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(4):2576-2583
The blood-brain barrier (BBB), which constitutes the interface between blood and cerebral parenchyma, has been shown to be disrupted during retroviral associated neuromyelopathies. Human T cell leukemia virus (HTLV-1)-associated myelopathy/tropical spastic paraparesis is a slowly progressive neurodegenerative disease, in which evidence of BBB breakdown has been demonstrated by the presence of lymphocytic infiltrates in the CNS and plasma protein leakage through cerebral endothelium. Using an in vitro human BBB model, we investigated the cellular and molecular mechanisms involved in endothelial changes induced by HTLV-1-infected lymphocytes. We demonstrate that coculture with infected lymphocytes induces an increase in paracellular endothelial permeability and transcellular migration, via IL-1alpha and TNF-alpha secretion. This disruption is associated with tight junction disorganization between endothelial cells, and alterations in the expression pattern of tight junction proteins such as zonula occludens 1. These changes could be prevented by inhibition of the NF-kappaB pathway or of myosin light chain kinase activity. Such disorganization was confirmed in histological sections of spinal cord from an HTLV-1-associated myelopathy/tropical spastic paraparesis patient. Based on this BBB model, the present data indicate that HTLV-1-infected lymphocytes can induce BBB breakdown and may be responsible for the CNS infiltration that occurs in the early steps of retroviral-associated neuromyelopathies. 相似文献
7.
Obesity-inducing lesions of the central nervous system alter leptin uptake by the blood-brain barrier. 总被引:1,自引:0,他引:1
Leptin regulates body adiposity by decreasing feeding and increasing thermogenesis. Obese humans and some obese rodents are resistant to peripherally administered leptin, suggesting a defect in the transport of leptin across the blood-brain barrier (BBB). Defective transport of exogenous leptin occurs in some models of obesity, but in other models transport is normal. This shows that factors other than obesity are associated with impairment of leptin transport across the BBB. In order to further investigate these factors, we determined leptin transport in rats made obese by lesioning of the ventromedial hypothalamus (VMH), paraventricular nucleus (PVN), or posterodorsal amygdala (PDA). These regions all contain leptin receptors and lesions there induce obesity and hyperleptinemia and alter the levels of many feeding hormones which might participate in leptin transporter regulation. We measured the uptake of radioactively labeled leptin by the BBB by multiple-time regression analysis which divides uptake into a reversible phase (Vi, e.g., receptor/transporter binding to the brain endothelial cell) and an irreversible phase (Ki, complete transport across the BBB). Leptin uptake was not affected in rats with VMH lesions. No significant change occurred in the entry rate (Ki) for any group, although Ki declined by over 35% in rats with PVN lesions. Decreased uptake was observed in rats with PVN lesions and with PDA lesions. This was primarily due to a reduced Vi (about 21% for the PDA). This decreased uptake is most likely explained by decreased binding of leptin to the brain endothelial cell, which could be because of decreased binding by either receptors or transporters. This suggests that some of the feeding hormones controlled by the PVN and PDA may participate in regulating leptin uptake by the BBB. 相似文献
8.
9.
Sharief MK Ciardi M Thompson EJ Sorice F Rossi F Vullo V Cirelli A 《Mediators of inflammation》1992,1(3):191-196
The pathogenesis of brain inflammation and damage by human immunodeficiency virus (HIV) infection is unclear. Because blood-brain barrier damage and impaired cerebral perfusion are common features of HIV-1 infection, we evaluated the role of tumour necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) in mediating disruption of the blood-brain barrier. Levels of TNF-alpha were more elevated in cerebrospinal fluid (CSF) than in serum of HIV-1 infected patients and were mainly detected in those patients who had neurologic involvement. Intrathecal TNF-alpha levels correlated with signs of blood-brain barrier damage, manifested by high CSF to serum albumin quotient, and with the degree of barrier impairment. In contrast, intrathecal IL-1beta levels did not correlate with blood-brain barrier damage in HIV-1 infected patients. TNF-alpha seems to be related to active neural inflammation and to blood-brain barrier damage. The proinflammatory effects of TNF-alpha in the nervous system are dissociated from those of IL-1beta. 相似文献
10.
Subramanian S Bourdette DN Corless C Vandenbark AA Offner H Jones RE 《Journal of immunology (Baltimore, Md. : 1950)》2001,166(1):370-376
Certain cells within the CNS, microglial cells and perivascular macrophages, develop from hemopoietic myelomonocytic lineage progenitors in the bone marrow (BM). Such BM-derived cells function as CNS APC during the development of T cell-mediated paralytic inflammation in diseases such as experimental autoimmune encephalomyelitis and multiple sclerosis. We used a novel, interspecies, rat-into-mouse T cell and/or BM cell-transfer method to examine the development and function of BM-derived APC in the CNS. Activated rat T cells, specific for either myelin or nonmyelin Ag, entered the SCID mouse CNS within 3-5 days of cell transfer and caused an accelerated recruitment of BM-derived APC into the CNS. Rat APC in the mouse CNS developed from transferred rat BM within an 8-day period and were entirely sufficient for induction of CNS inflammation and paralysis mediated by myelin-specific rat T cells. The results demonstrate that T cells modulate the development of BM-derived CNS APC in an Ag-independent fashion. This previously unrecognized regulatory pathway, governing the presence of functional APC in the CNS, may be relevant to pathogenesis in experimental autoimmune encephalomyelitis, multiple sclerosis, and/or other CNS diseases involving myelomonocytic lineage cells. 相似文献
11.
Glutathione (GSH) plays a critical role in protecting cells from oxidative stress and xenobiotics, as well as maintaining the thiol redox state, most notably in the central nervous system (CNS). GSH concentration and synthesis are highly regulated within the CNS and are limited by availability of the sulfhydryl amino acid (AA) l-cys, which is mainly transported from the blood, through the blood-brain barrier (BBB), and into neurons. Several antiporter transport systems (e.g., x(c)(-), x(-)(AG), and L) with clearly different luminal and abluminal distribution, Na(+), and pH dependency have been described in brain endothelial cells (BEC) of the BBB, as well as in neurons, astrocytes, microglia and oligodendrocytes from different brain structures. The purpose of this review is to summarize information regarding the different AA transport systems for l-cys and its oxidized form l-cys(2) in the CNS, such as expression and activity in blood-brain barrier endothelial cells, astrocytes and neurons and environmental factors that modulate transport kinetics. 相似文献
12.
Effects of 17beta-estradiol on blood-brain barrier disruption during focal ischemia in rats. 总被引:1,自引:0,他引:1
This study was performed to test whether 17beta-estradiol could attenuate the blood-brain barrier disruption caused by middle cerebral artery occlusion in the ovariectomized rats. Rats aged twelve to fourteen weeks were used in this study. Their ovaries were removed one week prior to the implantation of the pellets. For the 17beta-estradiol group, a 500 microg 17beta-estradiol 21 day-release pellet was implanted and for the control group, a vehicle pellet was implanted 21 days before the experiments. One hour after middle cerebral artery occlusion under isoflurane anesthesia, the transfer coefficient of 14C-alpha-aminoisobutyric acid (104 Daltons) and the volume of 3H-dextran (70,000 Daltons) distribution were determined to represent the degree of blood-brain barrier disruption. Blood pressures and blood gases were similar between controls and 17beta-estradiol-treated rats. In both groups, the transfer coefficient of the ischemic cortex was higher than that of the corresponding contralateral cortex (control: Ischemic Cortex 12.5 +/- 5.9 microl/g/min, Contralateral Cortex 3.0 +/- 1.6, p < 0.001; 17beta-estradiol: Ischemic Cortex 6.7 +/- 3.3 micro l/g/min, Contralateral Cortex 2.2 +/- 0.9, p < 0.01). There was no significant difference in the transfer coefficient of the contralateral cortex between these two groups. However, the transfer coefficient of the Ischemic Cortex of the 17beta-estradiol-treated animals was 46 % lower than that of the control, vehicle-treated rats (p < 0.05). The increase of the volume of 3H-dextran distribution with middle cerebral artery occlusion was significant in the vehicle-treated rats (Ischemic Cortex: 6.4 +/- 2.7 ml/100 g, Contralateral Cortex: 3.8 +/- 0.8, p < 0.01) but not in the 17beta-estradiol-treated animals. Our data suggest that chronic 17beta-estradiol treatment was effective in reducing blood-brain barrier disruption during focal ischemia in the ovariectomized rats. 相似文献
13.
Summary The anatomical basis of the vertebrate blood-brain barrier is a series of tight junctions between endothelial cells of capillaries in the central nervous system. Over two decades ago, tight junctions were also proposed as the basis of the blood-brain barrier in insects. Currently there is a growing understanding that septate junctions might possess barrier properties in various invertebrate epithelial cells. We now examine these two views by studying the blood-brain barrier properties of the early postembryonic larva of a dipteran fly (Delia platura) by transmission electron microscopy. Newly hatched larvae possess a functioning blood-brain barrier that excludes the extracellular tracer, ionic lanthanum. This barrier is intact throughout the second instar stage as well. The ultrastructural correlate of this barrier is a series of extensive septate junctions that pervade the intercellular space between adjacent perineurial cells. No tight junctions were located in either nerve, glial or perineurial cell layers. We suggest that the overall barrier might involve septate junctions within extensive, meandering intercellular clefts. 相似文献
14.
Over the past few years there has been an exponential growth in the number of reports describing the effects of nutritional modulation on aging and age-related diseases. Specific attention has been directed toward the beneficial effects afforded by dietary antioxidants, in particular those from fruit and vegetables, in ameliorating age-related deficits in brain performance. The rationale for studying the effects of dietary intervention stems from evidence implicating free radicals in aspects related to the aging process. Age-dependent neuropathology is a cumulative response to alterations induced by reactive oxygen species. Therefore cognitive aging, according to this hypothesis, should be slowed, and possibly even reversed, by appropriately increasing levels of antioxidants or decreasing overproduction of free radicals in the body. 相似文献
15.
In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II receptors on astrocytes and immunoregulatory mediators such as Type I interferons which regulate cellular traffic. Myeloid cells at the blood-brain barrier present antigen to T cells and influence cytokine effector function. Myelin-specific T cells interact with microglia and promote differentiation of oligodendrocyte precursor cells in response to axonal injury. These innate responses offer potential targets for immunomodulatory therapy. 相似文献
16.
GP Howles Y Qi SJ Rosenzweig KR Nightingale GA Johnson 《Journal of visualized experiments : JoVE》2012,(65):e4055
Although mice are the dominant model system for studying the genetic and molecular underpinnings of neuroscience, functional neuroimaging in mice remains technically challenging. One approach, Activation-Induced Manganese-enhanced MRI (AIM MRI), has been used successfully to map neuronal activity in rodents. In AIM MRI, Mn(2+) acts a calcium analog and accumulates in depolarized neurons. Because Mn(2+) shortens the T1 tissue property, regions of elevated neuronal activity will enhance in MRI. Furthermore, Mn(2+) clears slowly from the activated regions; therefore, stimulation can be performed outside the magnet prior to imaging, enabling greater experimental flexibility. However, because Mn(2+) does not readily cross the blood-brain barrier (BBB), the need to open the BBB has limited the use of AIM MRI, especially in mice. One tool for opening the BBB is ultrasound. Though potentially damaging, if ultrasound is administered in combination with gas-filled microbubbles (i.e., ultrasound contrast agents), the acoustic pressure required for BBB opening is considerably lower. This combination of ultrasound and microbubbles can be used to reliably open the BBB without causing tissue damage. Here, a method is presented for performing AIM MRI by using microbubbles and ultrasound to open the BBB. After an intravenous injection of perflutren microbubbles, an unfocused pulsed ultrasound beam is applied to the shaved mouse head for 3 minutes. For simplicity, we refer to this technique of BBB Opening with Microbubbles and UltraSound as BOMUS. Using BOMUS to open the BBB throughout both cerebral hemispheres, manganese is administered to the whole mouse brain. After experimental stimulation of the lightly sedated mice, AIM MRI is used to map the neuronal response. To demonstrate this approach, herein BOMUS and AIM MRI are used to map unilateral mechanical stimulation of the vibrissae in lightly sedated mice. Because BOMUS can open the BBB throughout both hemispheres, the unstimulated side of the brain is used to control for nonspecific background stimulation. The resultant 3D activation map agrees well with published representations of the vibrissae regions of the barrel field cortex. The ultrasonic opening of the BBB is fast, noninvasive, and reversible; and thus this approach is suitable for high-throughput and/or longitudinal studies in awake mice. 相似文献
17.
Tomkins O Kaufer D Korn A Shelef I Golan H Reichenthal E Soreq H Friedman A 《Cellular and molecular neurobiology》2001,21(6):675-691
1. The blood–brain barrier (BBB) protects the brain from circulating xenobiotic agents. The pathophysiology, time span, spatial pattern, and pathophysiological consequences of BBB disruptions are not known.2. Here, we report the quantification of BBB disruption by measuring enhancement levels in computerized tomography brain images.3. Pathological diffuse enhancement associated with elevated albumin levels in the cerebrospinal fluid (CSF) was observed in the cerebral cortex of 28 out of 43 patients, but not in controls. Four patients displayed weeks-long focal BBB impairment. In 19 other patients, BBB disruption was significantly associated with elevated blood pressure, body temperature, serum cortisol, and stress-associated CSF readthrough acetylcholinesterase. Multielectrode electroencephalography revealed enhanced slow-wave activities in areas of focal BBB disruption. Thus, quantification of BBB disruption using minimally invasive procedures, demonstrated correlations with molecular, clinical, and physiological stress-associated indices.4. These sequelae accompany a wide range of neurological disorders, suggesting that persistent, detrimental BBB disruption is considerably more frequent than previously assumed. 相似文献
18.
19.
Adoptively transferred allergic encephalomyelitis can be inhibited by various phosphosugars, particularly mannose-6-phosphate. The sugar specificity suggests that inhibition may be due to depletion of lymphocyte cell-surface lysosomal enzymes, which are essential for the passage of lymphocytes across the vascular endothelium and the entry of lymphocytes into the central nervous system parenchyma. 相似文献
20.
This study was performed to compare the effects of 17beta-estradiol on blood-brain barrier disruption in focal cerebral ischemia between younger and older rats. Younger (three-month-old) and older (24-month-old) ovariectomized female Fischer 344 rats were studied. In one half of each age group, a 500 microg 17beta-estradiol 21-day release pellet and in another half, a vehicle pellet was implanted 21 days before the experiments. One hour after middle cerebral artery occlusion, the transfer coefficient (Ki) of 14C-alpha-aminoisobutyric acid and the volume of 3H-dextran distribution were determined to examine the degree of blood-brain barrier disruption. In all four groups, the Ki in the ischemic cortex was higher than in the corresponding contralateral cortex. There was no significant difference in the Ki in both cortices among the groups. The volume of dextran distribution of the ischemic cortex was only greater than in the corresponding contralateral cortex in the older 17beta-estradiol-treated group, and the volume of that group was greater than the younger 17beta-estradiol-treated group (4.00 +/- 1.29 VS. 2.13 +/- 0.88 ml/100 g). After analyzing the difference in Ki between the ischemic cortex and the contralateral cortex in each animal, the difference was significantly greater in the older 17beta-estradiol-treated rats than the older vehicle-treated rats (3.40 +/- 2.10 VS. 1.26 +/- 1.44 microl/g/min). In the younger rats, however, 17beta-estradiol did not significantly affect the difference. Our data showed that 17beta-estradiol treatment failed to attenuate the BBB disruption in the cerebral ischemic cortex in the older or younger Fischer 344 rats. However, our data also suggest the possibility that 17beta-estradiol could aggravate the BBB disruption in older rats. 相似文献