首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Minor modifications were made sequentially to the nucleotide sequence of truncated cry1Ac9 to produce cry1Ac9A (one nucleotide change) and then cry1Ac9B (seven nucleotide changes). The derivative genes under the control of the CaMV 35S promoter were transformed into Nicotiana tabacum in order to determine whether these modified genes conferred resistance on the resulting transgenic tobacco plants to larvae of the potato tuber moth (Phthorimaea operculella). Over two trials with PTM larvae on the transgenic plants expressing the cry 1Ac9b gene, lower larval growth, development and survival was evident for most of the lines compared to the control plants. In the second trial, for four of these lines (7, 25, 26 and 28) larval growth rates were very low (0.28, 0.3, 0.42 and 0.28, respectively) compared to the control growth rate (4.18) and leaf damage was minimal. Northern analysis and RT‐PCR analysis showed that higher levels of cry 1Ac9 mRNA were present in the transgenic tobacco lines containing cry 1Ac9b than in the tobacco lines containing cry 1Ac9a. These results suggest that certain minor modifications to the nucleotide sequence of cry 1 Ac9 are sufficient to improve the stability of its mRNA when expressed in tobacco and that this increase in steady state mRNA is sufficient to confer significant resistance to PTM larvae.  相似文献   

2.
3.
Stable performance of insect‐resistant transgenic plants across field seasons and between plant organs damaged by the insect pest is critical for management of this resistance in the field. To evaluate this, potato (Solanum tuberosum) lines transgenic for a cry1Ac9 gene with resistance to potato tuber moth (Phthorimaea operculella) were established in the field during the southern hemisphere summers of 1997/98, 1998/99 and 1999/00 as small field plots, each of 10 plants. Replicate plots of the non‐transgenic parent cultivars (at least one for every three independently derived transgenic lines) were planted randomly throughout the trials. Field‐grown foliage was challenged with larvae in the laboratory and a growth index (GI) was calculated for recovered larvae from each transgenic and non‐transgenic potato line. Larval growth on young and mature leaves, and on newly harvested or stored tubers was also measured in the laboratory. Foliage from the transgenic lines inhibited larval growth in all seasons tested. For both control and transgenic lines, larvae had slightly lower GIs when reared on mature leaves compared with young leaves, although the correlation between mean GI for young and mature transgenic leaves was high (r = 0.97). The correlation between the mean GIs of larvae on newly harvested tubers and on those stored for 5 months was also high (r = 1.0). However, the GIs of larvae on newly harvested transgenic tubers were larger than on transgenic tubers stored for 5 months. The relative growth indices (RGI = mean GI/number days before final weighing) of larvae reared on newly harvested tubers from transgenic lines were generally higher than those from young transgenic foliage, while the RGIs of larvae reared on non‐transgenic tubers were slightly lower than those fed non‐transgenic foliage. The correlation between mean RGIs of larvae fed tubers or foliage was 0.62. The transgenic potato lines exhibited stable resistance to larvae across field seasons, between affected plant organs, and between plant organs of different ages.  相似文献   

4.
5.
6.
Variation in the susceptibility of lepidopterous pest larvae of different ages to transgenic crops and the potential for survivors to reproduce could have important consequences for the development of resistance in such pests. Experiments were undertaken in the laboratory to determine if larvae of the potato tuber moth, Phthorimaea operculella, of different ages (0 (< 1 day old), 3, 5, 7 days) varied in their susceptibility to cry1Ac9–transgenic potato (Solanum tuberosum) foliage grown in the glasshouse or field. The survival and fecundity of larvae reared on transgenic tubers was also determined in the laboratory. There were no apparent differences in susceptibility of larvae of different ages to transgenic foliage. Larvae fed glasshouse or field‐grown non‐transgenic foliage had significantly larger relative growth indices and more larvae pupated, than those fed transgenic foliage, regardless of larval age. Eggs from a laboratory colony were placed on transgenic or non‐transgenic tubers to measure survival and fecundity. Between 6% and 15% of eggs placed on transgenic tubers developed into pupae for three of the four transgenic potato lines tested. On one transgenic line, only six adults emerged from 1300 eggs. In contrast, between 71% and 97% of the eggs placed on non‐transgenic tubers developed into pupae. Male and female pupae from transgenic lines weighed less than those from non‐transgenic lines. The fecundity of females from two of four transgenic lines was lower than from the non‐transgenic parent cultivar. Although larvae of different ages did not exhibit any overall age‐dependent pattern of increasing or decreasing susceptibility to transgenic foliage of glasshouse or field‐grown plants, the ability of larvae to survive and reproduce on transgenic tubers suggests this pest has the ability to evolve resistance to the transgenic plants used in the present study.  相似文献   

7.
The full-modified Bacillus thuringiensis cry3a (cry3aM) gene was designed and synthesized for effective expression in plants. A plant expression vector pC29RBCS-leader-cry3aM–licBM2 was constructed for potato transformation. In this vector, the cry3aM sequence was fused in reading frame with a new reporter gene (licBM2) and a leader sequence for the rbcs gene. The reporter gene encoded thermostable lichenase and the leader sequence encoded a signal peptide for transporting protein product to chloroplasts. The vector contained the light-inducible promoter for rbcs gene isolated from Arabidopsis thaliana. Transgenic plants were obtained by Agrobacterium mediated transformation using microtuber explants. Transgenic plantlets were selected by kanamycin resistance and confirmed as transgenic by PCR with specific primers, evaluation of lichenase activity, and bioassay of Colorado potato beetle neonate larvae. Promoter activity assays under light induction (kinetic analysis) using lichenase activity and bioassay both showed high and stable expression of hybrid genes in transgenic plantlets. Furthermore, the presence of lichenase as a reporter protein in the composition of hybrid protein was shown to facilitate selection and analysis of the expression level of hybrid genes in transgenic plants.  相似文献   

8.
 A synthetic version of the cry1Ac gene of Bacillus thuringiensis has been used for the transformation of coffee species (Coffea canephora and C. arabica) to confer resistance to an important pest, the coffee leaf miner (Perileucoptera coffeella and other Leucoptera spp). Somatic embryos were co-cultivated with the LBA4404 strain of Agrobacterium tumefaciens containing the cry1Ac gene. More than 100 transformed plants from independent transformation events were obtained for each coffee genotype. The integration and expression of the cry1Ac gene was studied, and effective resistance of transgenic plants against leaf miner was verified in bioassays with the insects. These plants could represent a good opportunity to analyse the impact of genetic engineering of perennial crops for sustainable resistance to an obligate endocarpic pest using a B. thuringiensis insecticidal protein. Received: 7April 1999 / Revision received: 20 July 1999 / Accepted: 22 July 1999  相似文献   

9.
Twenty-eight soil samples were obtained from open fields and greenhouses used for tomato cultivation in various regions of Colombia. For functional characterization, 99 Bacillus thuringiensis (Bt) strains were isolated and characterized by abundance and morphology of microscopic crystals, SDS–PAGE of protein extracts and M-PCR analyses of genes of the cry1 family, as well as for their insecticidal activity against Tuta absoluta second instar larvae. Native Bt strains had amorphous (5%), bi-pyramidal (27%), square (8%), spherical (38%) and triangular (22%) crystal forms. Based on the presence of 1–4 different crystal forms, 18 different profiles were established. The SDS–PAGE analyses of protein extracts established ten different strain groups based on their protein band weight and potential biological activity. The M-PCR technique identified 35 native Bt strains based on the presence of the 6 genes cry1Aa, cry1Ab, cry1Ac, cry1B, cry1C and cry1D, whose frequency of occurrence was 76, 26, 21, 35, 32 and 8.8%, respectively. Thirteen different PCR profiles were found in native Bt strains. Several gene combinations tended to co-occur with elevated frequency, such as the pairs cry1Ac/cry1C, cry1Ab/cry1Ac and cry1Ab/cry1B, for which Pearson correlation coefficients were 0.69, 0.52 and 0.54, respectively. Native strains ZBUJTL39 and ZCUJTL11 had up to three times higher biological activity against T. absoluta second instar larvae than the reference strain Bt var. kurstaki HD1, with an LD50 of 2.4 μg/ml (P < 0.05) for native Bt strain ZCUJTL11. This study suggests a high biodiversity of native Bt strains from tomato growing regions in Colombia, which has important implications for designing biological control strategies for T. absoluta.  相似文献   

10.
11.
An important strategy for obtaining a safer transgenic plant may be the use of a spatial- or tissue-specific promoter, instead of a constitutive one. In this study, we have used a light-inducible maize PEPC promoter to regulate the cry1Ab gene, aiming to produce transgenic potatoes that are resistant to potato tuber moth (PTM) (Phthorimaea operculella, Zeller). Out of 60 regenerated lines having normal phenotypes, 55 lines were PCR-positive for both the cry1Ab and nptII genes. Southern analysis on three selected putative transgenic lines revealed that they have only a single intact copy of the cry1Ab gene. An investigation of the Cry1Ab protein in the leaves and light-exposed (LE) tubers of the transgenic lines demonstrated the presence of the protein in the foliage and green tubers but not in the light-not exposed (LNE) tubers. A bioassay analysis of excised leaves of nine randomly selected lines showed that eight lines had 100% PTM larval mortality. Confirming results were obtained in six selected lines using the whole plant bioassay in the greenhouse. LE transgenic tubers also exhibited 100% larval mortality; however, the levels of damage to the LNE transgenic tubers were high and statistically the same as those incurred by the non-transgenic ones. Based on the results, we believe that this spatial expression of Cry1Ab using the light-inducible PEPC promoter can control PTM infestation in the field and significantly reduce pollution transmission to storage potatoes.  相似文献   

12.
Field evaluation and risk assessment of transgenic indica basmati rice   总被引:11,自引:1,他引:10  
We report the first field trial of different transgenic lines of Indica Basmati rice (B-370) expressing cry1Ac and cry2A genes. Different transgenic lines were grown under field conditions for two consecutive years, according to RCBD and Split Plot Design respectively. All the biosafety measures were taken into consideration. Sixty neonate larvae of yellow stem borer were artificially infested into each plant in three installments. Data was recorded in terms of dead hearts and white heads at vegetative and flowering stage respectively. Transgenic lines exhibited inherent ability to protect rice plants from target insects (p<0.01). Natural infestations of rice skipper and rice leaf folder were also observed and transgenic plants were statistically superior to their untransformed counterparts. Green house whole plant bioassays were done by infesting two 2nd instar larvae of rice leaf folder per tiller. Transgenics were 96% more resistant than untransformed control plants. The presence of cry genes was observed with Dot blot, PCR and Southern blot analysis, while ELISA and Western blot analysis confirmed the expression of Cry proteins. All lines expressed higher level of Cry proteins when compared with commercially released cultivars of Bt cotton, maize and potato. It was also observed that although toxin titer substantially decreased with increasing age of the plants, it remained well within the limits to kill the target insects. Morphological studies showed significant variation for days to maturity, plant height and panicle length. Cooking qualities of seeds harvested from these lines were compared with the untransformed control. The transgenic lines had no effect on non-target insects (insects belonging to orders other than diptera and lepidoptera) and germination of three local varieties of wheat. Chances of gene spread were calculated at a level of 0.18% cross pollination in experimental lines.  相似文献   

13.
A semi-liquid artificial diet was established and found to be a suitable food source for Chrysoperla sinica larvae, comparable to aphid prey. Using the artificial diet, we established and validated a dietary exposure assay by using the insecticidal potassium arsenate (PA) as positive control. Dose-dependent responses were documented for all observed life-table parameters of C. sinica larvae such as survival rate, pupation rate, larval weight, and larval development time. Thus, the dietary assay can detect the effects of insecticidal compounds on the survival and development of C. sinica larvae. Using the established dietary assay, we subsequently tested the toxicity of Cry1Ab, Cry1Ac, and Cry2Aa proteins (which are produced by transgenic maize, cotton or rice plants) to C. sinica larvae. Artificial diets containing Galanthus nivalis agglutinin (GNA) or PA were included as positive controls. Survival and development of C. sinica larvae were not affected when the artificial diet contained purified Cry1Ab, Cry1Ac, or Cry2Aa at 200 μg/g diet. In contrast, C. sinica larvae were adversely affected when the diet contained PA and GNA. The stability and bioactivity of the Cry proteins in the diet and Cry protein uptake by the lacewing larvae were confirmed by bioassay with a Cry-sensitive insect species and by ELISA. The current study describes a suitable experimental system for assessing the potential effects of gut-active insecticidal compounds on green lacewing larvae. The experiments with the Cry proteins demonstrate that C. sinica larvae are not sensitive to Cry1Ab, Cry1Ac, and Cry2Aa.  相似文献   

14.
Crops genetically engineered to produce Bacillus thuringiensis toxins for insect control can reduce use of conventional insecticides, but insect resistance could limit the success of this technology. The first generation of transgenic cotton with B. thuringiensis produces a single toxin, Cry1Ac, that is highly effective against susceptible larvae of pink bollworm (Pectinophora gossypiella), a major cotton pest. To counter potential problems with resistance, second-generation transgenic cotton that produces B. thuringiensis toxin Cry2Ab alone or in combination with Cry1Ac has been developed. In greenhouse bioassays, a pink bollworm strain selected in the laboratory for resistance to Cry1Ac survived equally well on transgenic cotton with Cry1Ac and on cotton without Cry1Ac. In contrast, Cry1Ac-resistant pink bollworm had little or no survival on second-generation transgenic cotton with Cry2Ab alone or with Cry1Ac plus Cry2Ab. Artificial diet bioassays showed that resistance to Cry1Ac did not confer strong cross-resistance to Cry2Aa. Strains with >90% larval survival on diet with 10 μg of Cry1Ac per ml showed 0% survival on diet with 3.2 or 10 μg of Cry2Aa per ml. However, the average survival of larvae fed a diet with 1 μg of Cry2Aa per ml was higher for Cry1Ac-resistant strains (2 to 10%) than for susceptible strains (0%). If plants with Cry1Ac plus Cry2Ab are deployed while genes that confer resistance to each of these toxins are rare, and if the inheritance of resistance to both toxins is recessive, the efficacy of transgenic cotton might be greatly extended.  相似文献   

15.
Thirteen of the most common lepidopteran-specific Cry proteins of Bacillus thuringiensis have been tested for their efficacy against newly hatched larvae of two populations of the spiny bollworm, Earias insulana. At a concentration of 100 μg of toxin per milliliter of artificial diet, six Cry toxins (Cry1Ca, Cry1Ea, Cry1Fa, Cry1Ja, Cry2Aa, and Cry2Ab) were not toxic at all. Cry1Aa, Cry1Ja, and Cry2Aa did not cause mortality but caused significant inhibition of growth. The other Cry toxins (Cry1Ab, Cry1Ac, Cry1Ba, Cry1Da, Cry1Ia, and Cry9Ca) were toxic to E. insulana larvae. The 50% lethal concentration values of these toxins ranged from 0.39 to 21.13 μg/ml (for Cry9Ca and Cry1Ia, respectively) for an E. insulana laboratory colony originating from Egypt and from 0.20 to 4.25 μg/ml (for Cry9Ca and Cry1Da, respectively) for a laboratory colony originating from Spain. The relative potencies of the toxins in the population from Egypt were highest for Cry9Ca and Cry1Ab, and they were both significantly more toxic than Cry1Ac and Cry1Ba, followed by Cry1Da and finally Cry1Ia. In the population from Spain, Cry9Ca was the most toxic, followed in decreasing order by Cry1Ac and Cry1Ba, and the least toxic was Cry1Da. Binding experiments were performed to test whether the toxic Cry proteins shared binding sites in this insect. 125I-labeled Cry1Ac and Cry1Ab and biotinylated Cry1Ba, Cry1Ia, and Cry9Ca showed specific binding to the brush border membrane vesicles from E. insulana. Competition binding experiments among these toxins showed that only Cry1Ab and Cry1Ac competed for the same binding sites, indicating a high possibility that this insect may develop cross-resistance to Cry1Ab upon exposure to Cry1Ac transgenic cotton but not to the other toxins tested.  相似文献   

16.
Expression of cry1Ac gene from Bacillus thuringiensis (Bt) was evaluated under the control of a wound-inducible AoPR1 promoter from Asparagus officinalis in transgenic tobacco plants. The leaves of transgenic plants were mechanically wounded to evaluate the activity of the AoPR1 promoter in driving the expression of Cry1Ac protein at the wound site. Our results indicate that mechanical wounding of transgenic plants was effective in inducing the expression of Cry1Ac protein. As a result of this induction, the accumulated levels of Cry1Ac protein increased during 6–72 h post-wounding period. The leaves of transgenic tobacco plants were evaluated for resistance against Heliothis virescens and Manduca sexta in insect bioassays in two different ways. The detached tobacco leaves were either fed directly to the insect larvae or they were first mechanically wounded followed by a 72 h post-wounding feeding period. Complete protection of mechanically wounded leaves of transgenic plants was observed within 24 h of the bioassay. The leaves of transgenic plants fed directly (without pre-wounding) to the larvae achieved the same level of protection between 24 and 72 h of the bioassay.  相似文献   

17.
By a combination of PCR and mass spectrometry, a total of five cry genes (cry1Aa, cry1Ac, cry2Aa, cry2Ab, and cry1Ia) were detected in genomic DNA from the wild-type Bacillus thuringiensis strain 4.0718, and three protoxins (Cry1Aa, Cry1Ac, and Cry2Aa) were identified in the strain's parasporal crystals. These results indicated that this complementary method may be useful in evaluating B. thuringiensis strains at both the gene and protein levels.  相似文献   

18.
Many crops transformed with insecticidal genes isolated from Bacillus thuringiensis (Bt) show resistance to targeted insect pests. The concentration of Bt endotoxin proteins in plants is very important in transgenic crop efficacy and risk assessment. In the present study, changes in levels of Cry1Ac protein in the leaves of transgenic Bt oilseed rape (Brassica napus) carrying a Bt cry1Ac gene under the control of the cauliflower mosaic virus 35S promoter were quantified during vegetative growth by enzyme‐linked immunosorbent assay. Plants were grown in a glasshouse, sampled at 2, 4, 5 and 6 weeks, and the concentration of Cry1Ac was quantified in basal, top and previous top leaves. The mean concentration differed between sowing dates when Cry1Ac concentration was expressed as ng g?1 fresh leaf weight but not when expressed as ng mg?1 total soluble protein. It was demonstrated that Cry1Ac concentration increased significantly as the leaf aged, while the total soluble plant protein decreased significantly. Levels of Cry1Ac were therefore higher in leaves at the base of the plants than in leaves close to the growing point. However, even young leaves with very low Cry1Ac concentrations caused high mortality in the larvae of a Cry1Ac‐susceptible laboratory strain of the diamondback moth. The feeding area of leaves consumed by larvae in vivo and in situ was similar. Leaf damage caused by sampling (i.e. artificially) or by feeding of larvae did not affect the levels of Cry1Ac in the leaves under the experimental conditions in this study.  相似文献   

19.
《Journal of Asia》1999,2(2):153-162
Pesticidal activity of different Bacillus thuringiensis (Bt) δ-endotoxins, Cry1Aa, Cry1Ab, Cry1Ac and Cry2A, were investigated against Helicoverpa armigera infesting cotton crop worldwide. Cry1Ac toxin was found to be the most potent toxin towards H. armigera. All selected Bt toxins were found stable in vitro processing by midgut juice of H. armigera. Saturation and competition binding experiments were performed with iodine-125 labeled proteins and brush border membrane vesicles prepared from the midgut of H. armigera. The results show saturable, specific and high affinity of all toxins except for Cry2A. Both the toxins were bound with low binding affinity but with high binding site concentration. Heterologous competition experiments showed that Cry1Aa, Cry1Ab and Cry1Ac recognized or share the same binding site which is different from that of Cry2A. The data suggest that development of multiple toxin system in transgenic plants with toxin pyramiding, which recognize different binding sites, may be useful in the deployment strategies to decrease the rate of pest adaptation to Bt toxins in transgenic plants.  相似文献   

20.
Pigeon pea is an important legume. Yield losses due to insect pests are enormous in the cultivation of this crop. Expression of cry proteins has led to increased resistance to pests in several crops. We report in this paper, expression of a chimeric cry1AcF (encoding cry1Ac and cry1F domains) gene in transgenic pigeon pea and its resistance towards Helicoverpa armigera. PCR, Southern hybridization, RT‐PCR and Western analysis confirmed stable integration and expression of the cry1AcF gene in pigeon pea transgenics. When screened for efficacy of the transformants for resistance against H. armigera, the transgenics showed not only high mortality of the larva but could also resist the damage caused by the larvae. Analysis for the stable integration, expression and efficacy of the transgenics resulted in the identification of four T3 plants arising from two T1 backgrounds as highly promising. The results demonstrate potentiality of the chimeric cry1AcF gene in developing H. armigera‐resistant pigeon pea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号