首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.

Background

Nkx2.7 is the tinman-related gene, as well as orthologs of Nkx2.5 and Nkx-2.3. Nkx2.7 and Nkx2.5 express in zebrafish heart fields of lateral plate mesoderm. The temporal and spatial expression patterns of Nkx2.7 are similar to those of Nkx2.5, but their functions during cardiogenesis remain unclear.

Methodology/Principal Findings

Here, Nkx2.7 is demonstrated to compensate for Nkx2.5 loss of function and play a predominant role in the lateral development of the heart, including normal cardiac looping and chamber formation. Knocking down Nkx2.5 showed that heart development was normal from 24 to 72 hpf. However, when knocking down either Nkx2.7 or Nkx2.5 together with Nkx2.7, it appeared that the heart failed to undergo looping and showed defective chambers, although embryos developed normally before the early heart tube stage. Decreased ventricular myocardium proliferation and defective myocardial differentiation appeared to result from late-stage up-regulation of bmp4, versican, tbx5 and tbx20, which were all expressed normally in hearts at an early stage. We also found that tbx5 and tbx20 were modulated by Nkx2.7 through the heart maturation stage because an inducible overexpression of Nkx2.7 in the heart caused down-regulation of tbx5 and tbx20. Although heart defects were induced by overexpression of an injection of 150-pg Nkx2.5 or 5-pg Nkx2.7 mRNA, either Nkx2.5 or Nkx2.7 mRNA rescued the defects induced by Nkx2.7-morpholino(MO) and Nkx2.5-MO with Nkx2.7-MO.

Conclusions and Significance

Therefore, we conclude that redundant activities of Nkx2.5 and Nkx2.7 are required for cardiac morphogenesis, but that Nkx2.7 plays a more critical function, specifically indicated by the gain-of-function and loss-of- function experiments where Nkx2.7 is observed to regulate the expressions of tbx5 and tbx20 through the maturation stage.  相似文献   

10.
11.
12.
13.
14.
Nkx2.5 and Nkx2.6 are murine homologs of Drosophila tinman. Their genes are expressed in the ventral region of the pharynx at early stages of embryogenesis. However, no abnormalities in the pharynges of embryos with mutations in either Nkx2.5 or Nkx2.6 have been reported. To examine the function of Nkx2.5 and Nkx2.6 in the formation of the pharynx, we generated and analyzed Nkx2.5 and Nkx2.6 double-mutant mice. Interestingly, in the double-mutant embryos, the pharynx did not form properly. Pharyngeal endodermal cells were largely missing, and the mutant pharynx was markedly dilated. Moreover, we observed enhanced apoptosis and reduced proliferation in pharyngeal endodermal cells of the double-mutant embryos. These results demonstrated a critical role of the NK-2 homeobox genes in the differentiation, proliferation, and survival of pharyngeal endodermal cells. Furthermore, the development of the atrium was less advanced in the double-mutant embryos, indicating that these two genes are essential for both pharyngeal and cardiac development.  相似文献   

15.
16.
The sinoatrial node (SAN), functionally known as the pacemaker, regulates the cardiac rhythm or heartbeat. Several genes are expressed in the developing SAN and form a genetic network regulating the fate of the SAN cells. The short stature homeobox gene Shox2 is an important player in the SAN genetic network by regulating the expression of different cardiac conduction molecular markers including the early cardiac differentiation marker Nkx2.5. Here we report that the expression patterns of Shox2 and Nkx2.5 are mutually exclusive from the earliest stages of the venous pole and the SAN formation. We show that tissue specific ectopic expression of Shox2 in the developing mouse heart downregulates the expression of Nkx2.5 and causes cardiac malformations; however, it is not sufficient to induce a SAN cell fate switch in the working myocardium. On the other hand, tissue specific overexpression of Nkx2.5 in the heart leads to severe hypoplasia of the SAN and the venous valves, dis-regulation of the SAN genetic network, and change of the SAN cell fate into working myocardium, and causes embryonic lethality, recapitulating the phenotypes including bradycardia observed in Shox2−/− mutants. These results indicate that Nkx2.5 activity is detrimental to the normal formation of the SAN. Taken together, our results demonstrate that Shox2 downregulation of Nkx2.5 is essential for the proper development of the SAN and that Shox2 functions to shield the SAN from becoming working myocardium by acting upstream of Nkx2.5.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号