首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Pseudomonas aeruginosa mutant, defective in taxis toward L-serine but responsive to peptone, was selected by the swarm plate method after N-methyl-N'-nitrosoguanidine mutagenesis. The mutant, designated PCT1, was fully motile but failed to show chemotactic responses to glycine, L-serine, L-threonine, and L-valine. PCT1 also showed weaker responses to some other commonly occurring L-amino acids than did the wild-type strain PAO1. A chemotactic transducer gene, denoted pctA (Pseudomonas chemotactic transducer A), was cloned by phenotypic complementation of PCT1. Nucleotide sequence analysis showed that the pctA gene encodes a putative polypeptide of 629 amino acids with a calculated mass of 68,042. A hydropathy plot of the predicted polypeptide suggested that PctA may be an integral membrane protein with two potential membrane-spanning regions. The C-terminal domain of PctA showed high homology with the enteric methyl-accepting chemotaxis proteins (MCPs). The most significant amino acid sequence similarity was found in the region of MCPs referred to as the highly conserved domain. The pctA gene was inactivated by insertion of a kanamycin resistance gene cassette into the wild-type gene, resulting in the same observed deficiency in taxis toward L-amino acids as PCT1. In vivo methyl labeling experiments with L-[methyl-3H]methionine showed that this knockout mutant lacked an MCP with a molecular weight of approximately 68,000.  相似文献   

2.
The specificity of phosphatidylethanolamine (PE) N-methyltransferase for molecular species of PE has been investigated. Phosphatidylcholine (PC), synthesized by incubation of [methyl-3H]S-adenosyl-L-methionine with microsomes or pure enzyme (Ridgway, N. D., and Vance, D. E. (1987) J. Biol. Chem. 262, 17231-17239) plus microsomal PE, had a distribution of methyl label in molecular species similar to the mole percent distribution of molecular species in the precursor PE. A similar lack of specificity was observed with PE that was synthesized from egg PC by transphosphatidylation with phospholipase D. Phosphatidyl-N-monomethylethanolamine (PMME) and phosphatidyl-N,N-dimethylethanolamine (PDME), both with the acyl composition of egg PC, were methylated by the pure enzyme and showed a distribution of labeled molecular species in PDME and PC, respectively, similar to the mole percent distribution of egg PC. Results with synthetic PEs and pure methyltransferase showed higher rates of methylation with more unsaturated species. Long chain saturated PEs (e.g. dipalmitoyl-PE) were not methylated by the enzyme. Maximal methylation rates were obtained with two or more double bonds in the substrate PE. Rates of methylation of the saturated and monoenoic PEs could be enhanced when 40 mol % polyunsaturated-rich microsomal PC was included in the mixed micelles. PC isolated from primary cultures of rat hepatocytes pulsed with [methyl-3H]methionine was analyzed by high performance liquid chromatography. Initially, the labeling pattern of PC molecular species varied slightly from that of total hepatocyte PE and hepatocyte microsomal PE. 1-Palmitoyl-2-docosahexaenoyl-PC had the highest specific activity at the end of the pulse and was preferentially labeled relative to the mole percent distribution of hepatocyte PE molecular species. During the 24-h chase period both the percent distribution of label and specific activity of this species of PC declined. In the same time period, there was a corresponding increase in specific activity and percent distribution of label in 1-palmitoyl and 1-stearoyl species with linoleate and arachidonate in the sn-2 position.  相似文献   

3.
Polyadenylated messenger RNA from mouse kidney labeled in vivo exhibited a pattern of methylation distinct from that of rRNA and tRNA. After mice were given L-[methyl-3H]methionine, 4% of the polyribosomal RNA label was bound to oligo (dT)-cellulose; 20-24% of orotate- or adenine-labeled polyribosomal RNA eluted in the poly(A)+ RNA fraction under similar conditions. [3H]Methyl radioactivity was not incorporated into low molecular weight (5-5.8 S) rRNA, indicating the extent of nonmethylpurine ring labeling was negligible. [3H]Methyl-labeled poly(A)+ RNA sedimented heterogeneously in sodium dodecyl sulfate containing gradients similarly to poly(A)+ mRNA labeled with [3H]orotic acid. Based on an average molecular length of 2970 nucleotides, renal mRNA was estimated to contain 8.6 methyl moieties per molecule. Analysis of alkaline-hydrolyzed RNA sampled by DEAE-Sephadex-urea chromatography provided estimates of the relative amounts of base and ribose methylation. Although 83% of the [3H]methyl radioactivity in rRNA was in the 2'-0-methylnucleotide fraction, no methylated dinucleotides were found in mRNA. In poly(A)+ mRNA 60% of the [3H]methyl label was in the mononucleotide fraction; the remainder eluted between the trinucleotide and tetranucleotide markers and had a net negative charge between -4 and -5. The larger structure, not yet charcterized, could result from two or three consecutive 2'-0-ribose methylations and is estimated to contain 2.6 methyl residues. Alternatively, the oligonucleotide could be a 5'-terminal methylated nucleotide species containing 5'-phosphate(s) in addition to the 3'-phosphate moiety resulting from alkaline hydrolysis. Either structure could have a role in the processing or translation of mRNA in mammalian cells.  相似文献   

4.
In Salmonella typhimurium and Escherichia coli, elongation factor Tu (EF-Tu) is methylated as shown by its incorporation of labeled methyl residues from [methyl-3H]methionine. Analysis of the nature of the methyl-containing residues by protein hydrolysis, followed by paper chromatography and high voltage electrophoresis showed that both mono- and dimethyllysine are present. Eighty per cent of the EF-Tu molecules are methylated if methylation occurs at a unique lysine residue. The EF-Tu fraction which is not methylated is still able to accept methyl groups, as shown by methylation of approximately 10% of the EF-Tu after addition of chloramphenicol (D-(-)-threo-2,2-dichloro-N-[beta-hydroxy-alpha-(hydroxymethyl)-o-nitrophenethyl] acetamide) to inhibit further protein synthesis. There is no evidence of turnover of the methyl residues. We attempted to separate the methylated from the nonmethylated form of EF-Tu by isoelectric focusing on polyacrylamide gel, but were unable to do so.  相似文献   

5.
Modification of yeast ribosomal proteins. Methylation.   总被引:2,自引:0,他引:2  
Two-dimensional polyacrylamide-gel electrophoretic analysis of yeast ribosomal proteins uniformly labelled in vivo with [methyl-3H]methionine and [1-14C]methionine revealed that four ribosomal proteins are methylated, i.e. proteins S31, S32, L15 and L41. Lysine and arginine appear to be the predominant acceptors of the methyl groups. The degree of methylation ranges from 0.09 to 0.20 methyl group per modified ribosomal protein species.  相似文献   

6.
It has previously been shown that incubation of mammalian cell cytosolic extracts with the protein kinase inhibitor tyrphostin A25 results in enhanced transfer of methyl groups from S-adenosyl-[methyl-3H]methionine to proteins. These findings were interpreted as demonstrating tyrphostin stimulation of a novel type of protein carboxyl methyltransferase. We find here, however, that tyrphostin A25 addition to mouse heart cytosol incubated with S-adenosyl-[methyl-3H]methionine or S-adenosyl-[methyl-14C]methionine stimulates the labeling of small molecules in addition to proteins. Base treatment of both protein and small molecule fractions releases volatile radioactivity, suggesting labile ester-like linkages of the labeled methyl group. Production of both the base-volatile product and labeled protein occurs with tyrphostins A25, A47, and A51, but not with thirteen other tyrphostin family members. These active tyrphostins all contain a catechol moiety and are good substrates for recombinant and endogenous catechol-O-methyltransferase. Inhibition of catechol-O-methyltransferase activity with tyrphostin AG1288 prevents both base-volatile product formation and protein labeling from methyl-labeled S-adenosylmethionine in heart, kidney, and liver, but not in testes or brain extracts. These results suggest that the incorporation of methyl groups into protein follows a complex pathway initiated by the methylation of select tyrphostins by endogenous catechol-O-methyltransferase. We suggest that the methylated tyrphostins are further modified in the cell extract and covalently attached to cellular proteins. The presence of endogenous catechols in cells suggests that similar reactions can also occur in vivo.  相似文献   

7.
T W Munns  H F Sims  P A Katzman 《Biochemistry》1975,14(21):4758-4764
Immature rats treated with estradiol for selected periods of time demonstrated both increased methylation of uterine transfer ribonucleic acid (tRNA) and methylase activities. Whereas the former parameter was assessed by incubating whole uteri with [methyl-14C]methionine and measuring the incorporation of isotope into the tRNA, methylase activity was obtained by measuring the rate of incorporation of methyl groups from S-adenosyl[methyl-14C]methionine into heterologous tRNA (Escherichia coli B) in the presence of uterine cytosol preparations (100,000g supernatants). Although increased methylation of tRNA during the estrogen response was demonstrated, additional studies indicated that these results were largely attributable to an increased rate of synthesis of tRNA rather than gross changes in either the type or amount of methylated constituents present. Evidence in this regard included the inability of estrogen treatment of alter significantly the (a) resulting patterns of methyl-14C-methylated constituents of uterine tRNA, (b) the extent ot which [2-14C]guanine residues, incorporated into tRNA, become methylated, (c) the extent of methylation of precursor tRNA in the absence of tRNA synthesis, and (d) the types of methylase activities expressed in vitro.  相似文献   

8.
9.
Methylation of cytochrome c was studied in vivo using double label with L-[methyl-3H]methionine and DL-[2-14C]methionine. In pulse-chase experiments the cytochrome c associated with the mitochondrial fraction possessed a higher ratio of 3H/14C label, suggesting the presence of methylated cytochrome c. The appearance of methylated cytochrome c in mitochondria showed no lag phase. The inhibition of cytochrome c methylation in presence of cycloheximide indicated that both the methylation and protein synthesis were tightly coupled and cycloheximide selectively inhibited cytochrome c methylation. There was also an indication of selective turnover of incorporation methyl groups in preformed cytochrome c.  相似文献   

10.
Starvation of a mid-log-phase culture of Escherichia coli B/r for nitrogen, phosphate, or carbon resulted in methylation of a membrane-associated protein of about 43,000 daltons (P-43) in the presence of chloramphenicol and [methyl-3H]methionine. The in vivo methylation reaction occurred with a doubling time of 2 to 5 min and was followed by a slower demethylation process. Addition of the missing nutrient to a starving culture immediately prevented further methylation of P-43. P-43 methylation is not related to the methylated chemotaxis proteins because P-43 is methylated in response to a different spectrum of nutrients and because P-43 is methylated on lysine residues. The characteristics of P-43 are similar to those of a methylated protein previously described in Bacillus subtilis and B. licheniformis (R. W. Bernlohr, A. L. Saha, C. C. Young, B. R. Toth, and K. J. Golden, J. Bacteriol. 170:4113-4118, 1988; K. J. Golden and R. W. Bernlohr, Mol. Gen. Genet. 220:1-7, 1989) and are consistent with the proposal that methylation of this protein functions in nutrient sensing.  相似文献   

11.
We have isolated glutamic acid 5-methyl ester from an Escherichia coli protein that is involved in chemotaxis. The bacteria were first incubated with [methyl-3H]methionine under conditions which are known to result in methylation of the protein. The protein, isolated by gel electrophoresis, was then digested by successive treatment with three proteolytic enzymes. One of the products was [methyl-3H]glutamic acid 5-methyl ester, identified by comparison with an authentic sample in the following studies: (a) chromatography on an automatic amino acid analyzer, (b) chromatography on paper in two solvent systems, (c) chromatography on paper of the N-acetyl derivatives, and (d) stability of the ester bond to various pH conditions. No aspartic acid 4-methyl ester was found in the enzymatic digest. Treatment of the methylated protein with alkali released the radioactivity as [3H]methanol, which was identified by gas chromatography and by preparation of the 3,5-dinitrobenzoate.  相似文献   

12.
Chemotaxis by Pseudomonas aeruginosa.   总被引:14,自引:3,他引:11       下载免费PDF全文
Chemotaxis by Pseudomonas aeruginosa RM46 has been studied, and conditions required for chemotaxis have been defined, by using the Adler capillary assay technique. Several amino acids, organic acids, and glucose were shown to be attractants of varying effectiveness for this organism. Ethylenediaminetetraacetic acid was absolutely required for chemotaxis, and magnesium was also necessary for a maximum response. Serine taxis was greatest when the chemotaxis medium contained 1.5 X 10(-5) M ethylenediaminetetraacetic acid and 0.005 M magnesium chloride. It was not necessary to include methionine in the chemotaxis medium. The strength of the chemotactic responses to glucose and to citrate was dependent on prior growth of the bacteria on glucose and citrate, respectively. Accumulation in response to serine was inhibited by the addition of succinate, citrate, malate, glucose, pyruvate, or methionine to the chemotaxis medium. Inhibition by succinate was not dependent on the concentration of attractant in the capillary. However, the degree to which glucose and citrate inhibited serine taxis was dependent on the carbon source utilized for growth. Further investigation of this inhibition may provide information about the mechanisms of chemotaxis in P. aeruginosa.  相似文献   

13.
In vivo and in vitro chemotactic methylation in Bacillus subtilis   总被引:31,自引:28,他引:3       下载免费PDF全文
Two doublets of Bacillus subtilis membrane proteins with molecular weights of 69,000 and 71,000 and of 30,000 and 30,800, were labeled by C3H3 transfer in the absence of protein synthesis. In addition, there was intense methylation of several low-molecular-weight substances. Both doublets were missing in a chemotaxis mutant. The equivalent proteins in Escherichia coli and Salmonella typhimurium are believed to be the methyl-accepting chemotaxis proteins. The higher-molecular-weight doublet bands were increased in degree of methylation upon addition of attractant to the bacteria. A methyltransferase from B. subtilis that methylates the wild-type membrane significantly better than the mutant membrane, using S-adenosylmethionine, has been partly purified. The methylated product was alkali labile and is probably a gamma-glutamyl methyl ester, as in E. coli and S. typhimurium. Ca2+ ion inhibited the methyltransferase, with a Ki of about 80 nM. Analysis of the in vitro methylation product showed labeling of the 69,000-dalton methyl-accepting chemotaxis protein and a low-molecular-weight protein, using wild-type membrane. Labeling of the low-molecular-weight protein but not of the 69,000 dalton protein was observed when the mutant membrane was used. The chemotaxis mutant tumbled much longer than the wild type when diluted away from attractant.  相似文献   

14.
Halophilic archaea, such as eubacteria, use methyl-accepting chemotaxis proteins (MCPs) to sense their environment. We show here that BasT is a halobacterial transducer protein (Htp) responsible for chemotaxis towards five attractant amino acids. The C-terminus of the protein exhibits the highly conserved regions that are diagnostic for MCPs: the signalling domain for communication with the histidine kinase and the methylation sites that interact with the methylation/demethylation enzymes for adaptation. Hydropathy analysis predicts an enterobacterial-type transducer protein topology for BasT, with an extracellular putative ligand-binding domain flanked by two transmembrane helices and a cytoplasmic domain. BasT-inactivated mutant cells are missing a membrane protein radiolabelled with L-[methyl-3H]-methionine in wild-type cells, confirming that BasT is methylatable and membrane bound. Behavioural analysis of the basT mutant cells by capillary and chemical-in-plug assays demonstrates complete loss of chemotactic responses towards five (leucine, isoleucine, valine, methionine and cysteine) of the six attractant amino acids for Halobacterium salinarum, whereas they still respond to arginine. The volatile methyl group production assays also corroborate these findings and confirm that BasT signalling induces methyl group turnover. Our data identify BasT as the chemotaxis transducer protein for the branched chain amino acids leucine, isoleucine and valine as well as for methionine and cysteine. Thus, BasT and the arginine sensor Car cover the entire spectrum of chemotactic responses towards attractant amino acids in H. salinarum.  相似文献   

15.
A cytosolic protein carboxyl methyltransferase (S-adenosyl-L-methionine:protein O-methyltransferase, E.C. 2.1.1.24) purified from human erythrocytes catalyzes the methylation of erythrocyte membrane proteins in vitro using S-adenosyl-L-[methyl-3H]methionine as the methyl group donor. The principal methyl-accepting proteins have been identified by sodium dodecyl sulfate-gel electrophoresis at pH 2.4 and fluorography as the anion transport protein (band 3), ankyrin (band 2.1), and integral membrane proteins with molecular weights of 45,000, 28,000, and 21,000. Many of the methylation sites associated with intrinsic membrane proteins may reside in their extracellular portions, since these same proteins are methylated when intact cells are used as the substrate. The maximal number of methyl groups transferred in these experiments is approximately 30 pmol/mg of membrane protein, a value which represents less than one methyl group/50 polypeptide chains of any methyl-accepting species. The number of methylation sites associated with the membranes is increased, but not to stoichiometric levels, by prior demethylation of the membranes. The additional sites are associated primarily with bands 2.1 and 4.1, the principal methyl acceptors in vivo, suggesting that most methylation sites are fully modified in vivo. Extracellular methylation sites are not increased by demethylation of membranes. The aspartic acid beta-methyl ester which can be isolated from carboxypeptidase Y digests of [3H]methylated membranes is in the unusual D-stereoconfiguration. Similar results have been obtained with [3H]methylated membranes isolated from intact cells (McFadden, P.N., and Clarke, S. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2460-2464). It is proposed that the methyltransferase recognizes D-aspartyl residues in proteins and is involved with the metabolism of damaged proteins in vivo.  相似文献   

16.
When nitrogen-starved vegetative cells of Bacillus licheniformis A5 were presented with a good nitrogen source in the presence of chloramphenicol and methyl-labeled methionine, a 40-kilodalton (kDa) protein was found to be reversibly methylated, with a half-life of approximately 10 to 15 min. The 40-kDa protein was strongly methylated in response to the addition of ammonia, glutamine, or sodium glutamate nitrogen sources that produce generation times of less than or equal to 90 min) but was very poorly methylated in the absence of a nitrogen source or in the presence of potassium glutamate or histidine (generation times of greater than 150 min). The methylated protein was found to be membrane associated, but the methylation reaction did not appear to be related to chemotaxis, because the spectrum of nutrients that promoted methylation was different from that which prompted a chemotactic response. In addition, the methyl residue on the 40-kDa protein was found to be alkali stable. Approximately 180 to 640 molecules of the methylated protein were found per cell. The characteristics of this methylated protein were consistent with the hypothesis that the reversible methylation of the protein functions in nutrient sensing to regulate growth, cell division, and the initiation of sporulation.  相似文献   

17.
The antifungal agent, Sinefungin (SF), has been shown to be an inhibitor of transmethylation reactions. We report here the effects of SF on the production and methylation of rRNA in the yeast, Saccharomyces cerevisiae. Under conditions of SF treatment which have been shown to affect the regulation of cell proliferation in this yeast, pulse-chase labeling experiments using [methyl-3H]methionine and [3H]uracil indicated that methyl incorporation into rRNA during a short labeling period was inhibited, and stable 18 S rRNA production was differentially decreased. Other experiments quantitating modified nucleotides in newly produced rRNA showed that stable molecules were methylated. Taken together, these results suggest that SF slows methylation of rRNA, and is associated with differential loss of undermethylated 18 S rRNA species.  相似文献   

18.
Tethered-cell and capillary assays indicated that L-methionine is required by Cellulomonas gelida for its normal cell motility pattern and chemotaxis and that S-adenosylmethionine is involved in sugar chemotaxis by this cellulolytic bacterium. In addition, in vivo methylation assays showed that several proteins were methylated in the absence of protein synthesis. The incorporated methyl groups were alkali sensitive. Of special interest was the observation that the methylation level of a 51,000-Mr protein increased two- to fivefold upon addition of various sugar attractants and decreased after the removal of the attractants. The increase was less pronounced in mutants defective in sugar chemotaxis and appeared to be specifically involved with sugar chemotaxis. Furthermore, cell fractionation and in vitro methylation assays demonstrated that the 51,000-Mr protein is located in the cytoplasmic membrane. These results suggest that a specific methyl-accepting chemotaxis protein is involved in multiple-sugar chemotaxis by C gelida. During chemotaxis, the changes of methylesterase activity in C gelida cells were similar to those in Escherichia coli RP437 cells, as determined by a continuous-flow assay for methanol evolution. Thus, the mechanism of methyl-accepting chemotaxis protein-mediated chemotaxis of the gram-positive C. gelida appears to be similar to that of the gram-negative E. coli rather than to that of other gram-positive bacteria, such as Bacillus subtilis.  相似文献   

19.
Protein methylation reactions can play important roles in cell physiology. After labeling intact Saccharomyces cerevisiae cells with S-adenosyl-l-[methyl-(3)H]methionine, we identified a major methylated 49-kDa polypeptide containing [(3)H]methyl groups in two distinct types of linkages. Peptide sequence analysis of the purified methylated protein revealed that it is eukaryotic elongation factor 1A (eEF1A, formerly EF-1alpha), the protein that forms a complex with GTP and aminoacyl-tRNAs for binding to the ribosomal A site during protein translation. Previous studies have shown that eEF1A is methylated on several internal lysine residues to give mono-, di-, and tri-N-epsilon-methyl-lysine derivatives. We confirm this finding but also detect methylation that is released as volatile methyl groups after base hydrolysis, characteristic of ester linkages. In cycloheximide-treated cells, methyl esterified eEF1A was detected largely in the ribosome and polysome fractions; little or no methylated protein was found in the soluble fraction. Because the base-labile, volatile [methyl-(3)H]radioactivity of eEF1A could be released by trypsin treatment but not by carboxypeptidase Y or chymotrypsin treatment, we suggest that the methyl ester is present on the alpha-carboxyl group of its C-terminal lysine residue. From the results of pulse-chase experiments using radiolabeled intact yeast cells, we find that the N-methylated lysine residues of eEF1A are stable over 4 h, whereas the eEF1A carboxyl methyl ester has a half-life of less than 10 min. The rapid turnover of the methyl ester suggests that the methylation/demethylation of eEF1A at the C-terminal carboxyl group may represent a novel mode of regulation of the activity of this protein in yeast.  相似文献   

20.
The methyl-accepting chemotaxis proteins (MCPs) are integral membrane proteins that undergo reversible methylation during adaptation of bacterial cells to environmental attractants and repellents. The numerous methylated forms of each MCP are seen as a pattern of multiple bands on polyacrylamide gels. We have characterized the methylation sites in MCPI by analyzing methyl-accepting tryptic peptides. At least two different tryptic peptides accept methyl esters; one methyl-accepting peptide contains methionine and lysine and may be methylated a maximum of four times. The second methyl-accepting tryptic peptide contains arginine and may be methylated twice. Base-catalyzed demethylations of tryptic peptides and analysis of the charge differences between the different methylated forms of MCPI show that MCPI molecules may be methylated a total of six times. The two methyl esters on the methyl-accepting arginine peptide appear to be preferentially methylated in most of the forms of MCPI in attractant-stimulated cells. The ability to acquire six methylations on MCPI allows the bacterial cells to adapt to a broad range of attractant and repellent concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号