首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluates the contribution of two types of plasminogen activators (PAs; tissue-type PA (tPA) versus urokinase-type PA (uPA) toward the invasiveness of human melanoma cells in a novel in vitro assay. We identified two human melanoma cell lines, MelJuso and MeWo, expressing uPA or tPA as shown at mRNA, protein, and enzyme activity level. MelJuso cells produced uPA as well as plasminogen activator inhibitor-1 (PAI-1). The latter was, however, not sufficient to neutralize the cell-associated or secreted uPA activity. MeWo cells secreted tPA, but the enzyme was not found to be cell-associated. PAI-1 production by these cells was not detectable. Plasminogen activation and fibrinolytic capacity of both cell lines were reduced by anticatalytic monoclonal antibodies specific for the respective type of PA or by aprotinin. In a novel in vitro invasion assay, antibodies to PA as well as aprotinin decreased the invasiveness of both cell lines into a fibrin gel, Matrigel, or intact extracellular matrix. Our results confirm the importance of uPA-catalyzed plasminogen activation in tumor cell invasiveness. Furthermore, we provide evidence that tPA, beyond its key role in thrombolysis, can also be involved in in vitro invasion of human melanoma cells.  相似文献   

2.
Recently, we have shown that plasminogen activators (PAs) of both types, urokinase-type (uPA) as well as tissue-type (tPA), are involved in the in vitro invasiveness of human melanoma cells. The present study is focused on the generation and importance of cell surface-bound plasmin in this process. The human melanoma cell lines MelJuso and MeWo expressed plasminogen binding sites on the cell surface. Plasminogen binding was saturable and not species-specific, since human and bovine plasminogen bound to the cells with comparable efficiency. The activation of the proenzyme plasminogen bound on MelJuso cells, which expressed surface-associated uPA activity, occurred almost synchronously with binding to the cell surface. Removal of cell-associated uPA considerably reduced plasmin generation on these cells. In contrast, plasminogen activation on MeWo cells, which secreted tPA into the culture supernatant and which were devoid of surface-associated PA activity, was by far less effective. The efficiency of the activation process could be increased by addition of exogenous tPA. With both cell lines, plasmin generation on the cell surface was suppressed by inhibitory monoclonal antibodies specific for the respective PA type. Selective inhibition of cell surface-associated plasmin by preincubating the cells with an inhibitory monoclonal antibody or with aprotinin, as well as removal of plasmin from the cell surface, led to a significant decrease in cellular invasiveness of both cell lines into various biological substrates such as fibrin gel, the basement membrane extract Matrigel, or intact extracellular matrix. Both cell lines were able to penetrate an intact cell layer of the human keratinocyte line HaCaT, a process, which also proved to be dependent on cell-associated plasmin. In conclusion, these data provide evidence that plasminogen activation associated with the surface of human melanoma cells is catalyzed much more efficiently by cell-associated uPA (MelJuso) than by secreted tPA (MeWo). Cell-associated plasmin, which is protected from inactivation by serum inhibitors, represents the essential component of the proteolytic cascade of plasminogen activation during in vitro invasiveness of human melanoma cells.  相似文献   

3.
Recently, we have shown that plasminogen activators (PAs) of both types, urokinase-type (uPA) as well as tissue-type (tPA), are involved in the in vitro invasiveness of human melanoma cells. The present study is focused on the generation and importance of cell surface-bound plasmin in this process. The human melanoma cell lines MelJuso and MeWo expressed plasminogen binding sites on the cell surface. Plasminogen binding was saturable and not species-specific, since human and bovine plasminogen bound to the cells with comparable efficiency. The activation of the proenzyme plasminogen bound on MelJuso cells, which expressed surface-associated uPA activity, occurred almost synchronously with binding to the cell surface. Removal of cell-associated uPA considerably reduced plasmin generation on these cells. In contrast, plasminogen activation on Me Wo cells, which secreted tPA into the culture supernatant and which were devoid of surface-associated PA activity, was by far less effective. The efficiency of the activation process could be increased by addition of exogenous tPA. With both cell lines, plasmin generation on the cell surface was suppressed by inhibitory monoclonal antibodies specific for the respective PA type. Selective inhibition of cell surface-associated plasmin by preincubating the cells with an inhibitory monoclonal antibody or with aprotinin, as well as removal of plasmin from the cell surface, led to a significant decrease in cellular invasiveness of both cell lines into various biological substrates such as fibrin gel, the basement membrane extract Matrigel, or intact extracellular matrix. Both cell lines were able to penetrate an intact cell layer of the human keratinocyte line HaCaT, a process, which also proved to be dependent on cell-associated plasmin. In conclusion, these data provide evidence that plasminogen activation associated with the surface of human melanoma cells is catalyzed much more efficiently by cell-associated uPA (MelJuso) than by secreted tPA (MeWo). Cell-associated plasmin, which is protected from inactivation by serum inhibitors, represents the essential component of the proteolytic cascade of plasminogen activation during in vitro invasiveness of human melanoma cells.  相似文献   

4.
Binding of plasminogen to cultured human endothelial cells   总被引:26,自引:0,他引:26  
Endothelial cells are known to release the two major forms of plasminogen activator, tissue plasminogen activator (TPA) and urokinase. We have previously demonstrated that plasminogen (PLG) immobilized on various surfaces forms a substrate for efficient conversion to plasmin by TPA (Silverstein, R. L., Nachman, R. L., Leung, L. L. K., and Harpel, P. C. (1985) J. Biol. Chem. 260, 10346-10352). We now report the binding of human PLG to cultured human umbilical vein endothelial cell (HUVEC) monolayers, utilizing a newly devised cell monolayer enzyme-linked immunosorbent assay system. PLG binding to HUVEC was concentration dependent and saturable at physiologic PLG concentration (2 microM). Binding of PLG was 70-80% inhibited by 10 mM epsilon-aminocaproic acid, suggesting that it is largely mediated by the lysine-binding sites of PLG. PLG bound at an intermediate level to human fibroblasts, poorly to human smooth muscle cells, and not at all to bovine smooth muscle or bovine endothelial cells; unrelated proteins such as human albumin and IgG failed to bind HUVEC. PLG binding to HUVEC was rapid, reaching a steady state within 20 min, and quickly reversible. 125I-PLG bound to HUVEC with an estimated Kd of 310 +/- 235 nM (S.E.); each cell contained 1,400,000 +/- 1,000,000 (S.E.) binding sites. Functional studies demonstrated that HUVEC-bound PLG is activatable by TPA according to Michaelis-Menten kinetics (Km, 5.9 nM). Importantly, surface-bound PLG was activated with a 12.7-fold greater catalytic efficiency than fluid phase PLG. These results indicate that PLG binds to HUVEC in a specific and functional manner. Binding of PLG to endothelial cells may play a pivotal role in modulating thrombotic events at the vessel surface.  相似文献   

5.
Metastasizing tumor cells invade host tissues by degrading extracellular matrix constituents. We report here that the highly sulfated glycosaminoglycans, heparin and heparan sulfate, as well as the sulfated polysaccharide, fucoidan, significantly enhanced tumor cell invasionin vitrointo fibrin, the basement membrane extract, Matrigel, or through a basement membrane-like extracellular matrix. The enhancement of tumor cell invasion was due to a stimulation of the proteolytic cascade of plasminogen activation since the effect required plasminogen activation and was abolished by inhibitors of urokinase-type plasminogen activator (uPA) or plasmin. Sulfated polysaccharides enhanced five reactions of tumor-cell initiated plasminogen activation in a dose-dependent manner. They amplified plasminogen activation in culture supernatants up to 70-fold by stimulating (i) pro-uPA activation by plasmin and (ii) plasminogen activation by uPA. (iii) In addition, sulfated polysaccharides partially protected plasmin from inactivation by α2-antiplasmin. Sulfated polysaccharides also stimulated tumor-cell associated plasminogen activation, e.g., (iv) cell surface pro-uPA activation by plasmin and (v) plasminogen activation by cell surface uPA. These results suggest that sulfated glycosaminoglycans liberated by tumor-cell mediated extracellular matrix degradationin vivomight amplify pericellular plasminogen activation and locally enhance tumor cell invasion in a positive feedback manner.  相似文献   

6.
Incubation of plasminogen with the subendothelial extracellular matrix (ECM) synthesized by cultured bovine corneal and aortic endothelial cells resulted in generation of fibrinolytic activity, indicated by proteolysis of 125I-fibrin in a time-and dose-dependent manner. Both tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA) were identified in the ECM by fibrin zymography, immunoblotting, and inhibition of plasminogen activation by anti-u-and anti-t-antibodies. Most of the ECM-resident plasminogen activator (PA) activity did not originate from intracellular PA release occurring when the endothelial cells were lyzed and the ECM exposed, since a comparable amount of PA was associated with the ECM when the cells were lyzed with Triton X-100 or removed intact by treatment with 2 M urea. Active u-PA and t-PA were released from ECM by treatment with heparanase (endo-β-D-), indicating that some of the ECM-resident PA activity is sequestered by heparan sulfate side chains. These results indicate that both u-PA and t-PA produced by endothelial cells are firmly sequestered in an active form by the subendothelial ECM. It is suggested that ECM-resident plasminogen activators participate in sequential matrix degradation during cell invasion and tumor metastasis. PA activity may also function in release of ECM-bound growth factors (i.e., basic fibroblast growth factor) and activation of proenzymes (i.e., prothrombin), resulting in modulation of the ECM growth-promoting and thrombogenic properties. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Hormonal regulation of plasminogen activator in rat hepatoma cells   总被引:11,自引:0,他引:11  
Plasminogen activators are membrane-associated, arginine-specific serine proteases which convert the inactive plasma zymogen plasminogen to plasmin, an active, broad-spectrum serine protease. Plasmin, the major fibrinolytic enzyme in blood, also participates in a number of physiologic functions involving protein processing and tissue remodelling, and may play an important role in tumor invasion and metastasis. In HTC rat hepatoma cells in tissue culture, glucocorticoids rapidly decrease plasminogen activator (PA) activity. We have shown that this decrease is mediated by induction of a soluble inhibitor of PA activity rather than modulation of the amount of PA. The hormonally-induced inhibitor is a cellular product which specifically inhibits PA but not plasmin. We have isolated variant lines of HTC cells which are selectively resistant to the glucocorticoid inhibition of PA but retain other glucocorticoid responses. These variants lack the hormonally-induced inhibitor; PA from these variants is fully sensitive to inhibition by inhibitor from steroid-treated wild-type cells. Cyclic nucleotides dramatically stimulate PA activity in HTC cells in a time- and concentration-dependent manner. Paradoxically, glucocorticoids further enhance this stimulation. Thus glucocorticoids exert two separate and opposite effects on PA activity. The availability of glucocorticoid-resistant variant cell lines, together with the unique regulatory interactions of steroids and cyclic nucleotides, make HTC cells a useful experimental system in which to study the multihormonal regulation of plasminogen activator.  相似文献   

8.
The binding of urokinase-type plasminogen activators (u-PA) to receptors on various cell types has been proposed to be an important feature of many cellular processes requiring extracellular proteolysis. We have investigated the effect of single-chain u-PA binding to the monocyte-like cell line U937 on plasminogen activation. A 16-fold acceleration of the activation of plasminogen was observed at optimal concentrations of single-chain u-PA. This potentiation was abolished by the addition of either 6-aminohexanoic acid or the amino-terminal fragment of u-PA, thus demonstrating the requirement for specific binding of both single-chain u-PA and plasminogen to the cells. The mechanism of the enhancement of plasmin generation appears to be due primarily to an increase in the rate of feedback activation of single-chain u-PA to the more active two-chain u-PA by cell-bound plasmin, initially generated by single-chain u-PA. This increased activity of the plasminogen activation system in the presence of U937 cells provides a mechanism whereby u-PAs may exert their influence in a variety of cell-associated proteolytic events.  相似文献   

9.

Background

Leptospirosis is a multisystem disease caused by pathogenic strains of the genus Leptospira. We have reported that Leptospira are able to bind plasminogen (PLG), to generate active plasmin in the presence of activator, and to degrade purified extracellular matrix fibronectin.

Methodology/Principal Findings

We have now cloned, expressed and purified 14 leptospiral recombinant proteins. The proteins were confirmed to be surface exposed by immunofluorescence microscopy and were evaluated for their ability to bind plasminogen (PLG). We identified eight as PLG-binding proteins, including the major outer membrane protein LipL32, the previously published rLIC12730, rLIC10494, Lp29, Lp49, LipL40 and MPL36, and one novel leptospiral protein, rLIC12238. Bound PLG could be converted to plasmin by the addition of urokinase-type PLG activator (uPA), showing specific proteolytic activity, as assessed by its reaction with the chromogenic plasmin substrate, D-Val-Leu-Lys 4-nitroanilide dihydrochloride. The addition of the lysine analog 6-aminocaproic acid (ACA) inhibited the protein-PLG interaction, thus strongly suggesting the involvement of lysine residues in plasminogen binding. The binding of leptospiral surface proteins to PLG was specific, dose-dependent and saturable. PLG and collagen type IV competed with LipL32 protein for the same binding site, whereas separate binding sites were observed for plasma fibronectin.

Conclusions/Significance

PLG-binding/activation through the proteins/receptors on the surface of Leptospira could help the bacteria to specifically overcome tissue barriers, facilitating its spread throughout the host.  相似文献   

10.
The cysteine protease cathepsin B is upregulated in a variety of tumors, particularly at the invasive edges. Cathepsin B can degrade extracellular matrix proteins, such as collagen IV and laminin, and can activate the precursor form of urokinase plasminogen activator (uPA), perhaps thereby initiating an extracellular proteolytic cascade. Recently, we demonstrated that procathepsin B interacts with the annexin II heterotetramer (AIIt) on the surface of tumor cells. AIIt had previously been shown to interact with the serine proteases: plasminogen/plasmin and tissue-type plasminogen activator (tPA). The AIIt binding site for cathepsin B differs from that for either plasminogen/plasmin or tPA. AIIt also interacts with extracellular matrix proteins, e.g., collagen I and tenascin-C, forming a structural link between the tumor cell surface and the extracellular matrix. Interestingly, cathepsin B, plasminogen/plasmin, t-PA and tenascin-C have all been linked to tumor development. We speculate that colocalization through AIIt of proteases and their substrates on the tumor cell surface may facilitate: (1) activation of precursor forms of proteases and initiation of proteolytic cascades; and (2) selective degradation of extracellular matrix proteins. The recruitment of proteases to specific regions on the cell surface, regions where potential substrates are also bound, could well function as a 'proteolytic center' to enhance tumor cell detachment, invasion and motility.  相似文献   

11.
Plasminogen activators (PAs) are highly specific serine proteases that convert the extracellular zymogen plasminogen into the active proteinase plasmin. Plasminogen-dependent proteolytic activity was detected by zymography both in the tissue membrane fraction of oviducts and in the oviductal flushing obtained at the preovulatory (Pre-Ov), postovulatory (Post-Ov) and mid-luteal (Mid-L) stages of the estrous cycle. A main proteolytic band, with a relative mobility similar to a human melanoma cell tissue-type plasminogen activator (t-PA), was found in all samples. Two additional components were observed in Pre-Ov and Post-Ov oviductal flushing but not in the tissue membrane fraction. In the oviductal flushing the PA activity was significantly higher in the Post-Ov stage than in the Pre-Ov one. Both urokinase-type plasminogen activator (u-PA, 50 kDa) and t-PA (72 kDa) were detected by Western blot; they showed differences in their relative concentration between Post-Ov and Pre-Ov oviductal flushing. The main PA substrate, plasminogen, was detected by indirect immunofluorescence in the cumulus cell extracellular matrix (ECM) and oocyte zona pellucida (ZP). In denuded oocytes, plasminogen was also detected on the surface of the plasma membrane. It is possible that oviductal PAs may act on the plasminogen present in the cumulus cell ECM and ZP; consequently, the generated plasmin could be involved in the rebuilding or degradation of these oocyte structures during fertilization or early development.  相似文献   

12.
Cancer cell invasion and metastasis require the concerted action of several proteases that degrade extracellular matrix proteins and basement membranes. Recent reports suggest the plasminogen activator system plays a critical role in pancreatic cancer biology. In the present study, we determined the contribution of the plasminogen activator system to pancreatic cancer cell invasion in vitro. Moreover, the effect of peroxisome proliferator-activated receptor (PPAR)-gamma ligands, which are currently in clinical use as antidiabetic drugs and interestingly seem to display antitumor activities, on pancreatic cancer cell invasion and the plasminogen activator system was assessed. Expression of components of the plasminogen activator system [i.e., urokinase-type plasminogen activator (uPA), plasminogen activator inhibitor-1, and uPA receptor] was detected in six human pancreatic cancer cell lines. Inhibition of urokinase activity by specific synthetic compounds reduced baseline pancreatic cancer cell invasion. The PPAR-gamma ligands 15-deoxy-Delta12,14-prostaglandin J2 and ciglitazone also attenuated pancreatic cancer cell invasion. This effect was abrogated by dominant-negative PPAR-gamma receptors and pharmacologic PPAR-gamma inhibitors. Moreover, activation of PPAR-gamma by ligands increased plasminogen activator inhibitor-1 and decreased uPA levels in pancreatic cancer cells, and this was accompanied by a reduction in total urokinase activity. The present study shows that the plasminogen activator system plays an integral role in pancreatic cancer cell invasion in vitro. Activation of the nuclear receptor PPAR-gamma by ligands reduced pancreatic cancer cell invasion, which was largely mediated by modulation of the plasminogen activator system. These findings further underscore the potential role of PPAR-gamma ligands as therapeutic agents in pancreatic cancer.  相似文献   

13.
Binding and activation of plasminogen on the platelet surface   总被引:18,自引:0,他引:18  
A mechanism by which platelets might participate in fibrinolysis by binding plasminogen and influencing its activation has been examined. Binding of radioiodinated human Glu-plasminogen to washed human platelets was time-dependent and was enhanced 3-9-fold by stimulation of platelets with thrombin but not with ADP. The interaction with both stimulated and unstimulated cells was specific, saturable, divalent ion-independent, and reversible. The platelet-bound ligand had the molecular weight of plasminogen, and no conversion to plasmin was detected. Scatchard analyses provided evidence for a single class of plasminogen-binding sites on both stimulated and unstimulated cells. The Kd for thrombin-stimulated platelets was 2.6 +/- 1.3 microM, and 190,000 +/- 45,000 molecules were bound per cell, whereas unstimulated platelets bound 37,000 +/- 10,500 molecules/cell with a Kd of 1.9 +/- 0.15 microM. Plasminogen binding was inhibited in a dose-dependent manner by omega-aminocarboxylic acids at concentrations consistent with a requirement for an unoccupied high affinity lysine-binding site for plasminogen binding to the cells. When platelet-bound plasminogen was incubated with tissue plasminogen activator, urokinase, or streptokinase, gel analysis established that plasmin was preferentially associated with the platelet relative to the supernatant. Plasminogen and plasmin interacted with thrombin-stimulated platelets with similar binding characteristics, and there was no evidence for a binding site for plasmin which did not also bind plasminogen. Therefore, the results suggest that plasminogen activation is enhanced on the cell surface. In sum, these results indicate that platelets bind plasminogen at physiologic zymogen concentrations and this interaction may serve to localize and promote plasminogen activation.  相似文献   

14.
Cells in complex tissues contact extracellular matrix that interacts with integrin receptors to influence gene expression, proliferation, apoptosis, adhesion, and motility. During development, tissue remodeling, and tumorigenesis, matrix components are modified by enzymatic digestion with subsequent effects on integrin binding and signaling. We are interested in understanding the mechanisms by which broad spectrum proteinases such as plasmin are targeted to their extracellular matrix protein substrates. We have utilized plasmin-mediated cleavage of the epithelial basement membrane glycoprotein laminin-5 as a model to evaluate molecular events that direct plasmin activity to specific structural domains. We report that plasminogen and tissue plasminogen activator (tPA) exhibit high affinity, specific binding to the G(1) subdomain of the N terminus of the laminin-5 alpha(3) subunit, with equilibrium dissociation constants of 50 nm for plasminogen and 80 nm for tPA. No high affinity binding to the G(2), G(3), and G(4) subdomains was observed. As a result of binding to the G(1) subdomain, the catalytic efficiency of tPA-catalyzed plasminogen activation is enhanced 32-fold, leading to increased matrix-associated plasmin that is positioned favorably for cleavage within the G(4) subdomain as we have reported previously (Goldfinger, L. E., Stack, M. S., and Jones, J. C. R. (1998) J. Cell Biol. 141, 255-265). Thus, physical constraints dictated by interaction of proteinase and matrix macromolecule control not only enzymatic activity but may regulate substrate targeting of proteinases.  相似文献   

15.
Floden AM  Watt JA  Brissette CA 《PloS one》2011,6(11):e27502
Borrelia burgdorferi is the causative agent of Lyme disease, the most commonly reported arthropod-borne disease in the United States. B. burgdorferi is a highly invasive bacterium, yet lacks extracellular protease activity. In order to aid in its dissemination, B. burgdorferi binds plasminogen, a component of the hosts' fibrinolytic system. Plasminogen bound to the surface of B. burgdorferi can then be activated to the protease plasmin, facilitating the bacterium's penetration of endothelial cell layers and degradation of extracellular matrix components. Enolases are highly conserved proteins with no sorting sequences or lipoprotein anchor sites, yet many bacteria have enolases bound to their outer surfaces. B. burgdorferi enolase is both a cytoplasmic and membrane associated protein. Enolases from other pathogenic bacteria are known to bind plasminogen. We confirmed the surface localization of B. burgdorferi enolase by in situ protease degradation assay and immunoelectron microscopy. We then demonstrated that B. burgdorferi enolase binds plasminogen in a dose-dependent manner. Lysine residues were critical for binding of plasminogen to enolase, as the lysine analog εaminocaproic acid significantly inhibited binding. Ionic interactions did not play a significant role in plasminogen binding by enolase, as excess NaCl had no effects on the interaction. Plasminogen bound to recombinant enolase could be converted to active plasmin. We conclude that B. burgdorferi enolase is a moonlighting cytoplasmic protein which also associates with the bacterial outer surface and facilitates binding to host plasminogen.  相似文献   

16.
The serine protease urokinase-type plasminogen activator (uPA) and its receptor (uPAR) are involved in the control of extracellular matrix turnover, cell migration, invasion and cell signalling leading to a variety of different responses, under both physiological and pathological conditions. The urokinase receptor, binding to the growth factor-like domain of uPA, directs membrane-associated extracellular proteolysis and signals through transmembrane proteins, thus regulating tissue regeneration, angiogenesis, cancer growth and metastasis. Since these physiological and patho-physiological processes of the uPA-system are known, less informations concerning uPA-induced cell proliferation and anti-apoptotic effects of the uPA-system are available. Recent studies show a close relationship of the uPA-system and cell proliferation/ apoptosis. uPA is responsible for the activation and release of different growth factors and modulates the cell proliferation/apoptosis ratio through the dynamic control of cell-matrix interactions. This article focuses on the important role of the uPA/uPAR-system for cell proliferation and apoptosis.  相似文献   

17.
alpha-enolase of Bacillus anthracis has recently been classified as an immunodominant antigen and a potent virulence factor determinant. alpha-enolase (2-phospho-d-glycerate hydrolase (EC 4.2.1.11), a key glycolytic metalloenzyme catalyzes the dehydration of d-(+)-2-phosphoglyceric acid to phosphoenolpyruvate. Interaction of surface bound alpha-enolase with plasminogen has been incriminated in tissue invasion for pathogenesis. B. anthracis alpha-enolase was expressed in Escherichia coli and the recombinant enzyme was purified to homogeneity that exhibited a K(m) of 3.3 mM for phosphoenolpyruvate and a V(max) of 0.506 microM min(- 1) mg(-1). B. anthracis whole cells and membrane vesicles probed with anti-enolase antibodies confirmed the surface localization of alpha-enolase. The specific interaction of alpha-enolase with human plasminogen (but not plasmin) evident from ELISA and the retardation in the native gel reinforced its role in plasminogen binding. Putative plasminogen receptors in B. anthracis other than enolase were also observed. This binding was found to be carboxypeptidase sensitive implicating the role of C-terminal lysine residues. The recombinant enolase displayed in vitro laminin binding, an important mammalian extracellular matrix protein. Plasminogen interaction conferred B. anthracis with a potential to in vitro degrade fibronectin and exhibit fibrinolytic phenotype. Therefore, by virtue of its interaction to host plasminogen and extracellular matrix proteins, alpha-enolase may contribute in augmenting the invasive potential of B. anthracis.  相似文献   

18.
The activation of plasminogen at the cell surface is a crucial step in cell migration and invasion. In the present study, the effect of membrane-bound melanotransferrin (mMTf), also known as human melanoma antigen p97, on cell surface plasminogen binding and activation was investigated by using Chinese Hamster Ovary (CHO) cells transfected with full-length melanotransferrin (MTf) cDNA and SK-MeL-28 melanoma cells. The expression of mMTf in CHO increased cell surface plasminogen binding by about 2-fold. In addition, application of the monoclonal antibody L235 against MTf as well as truncated, soluble MTf (sMTf) abolished plasminogen binding to MTf-transfected and SK-MeL-28 cells, indicating that mMTf is a potential cell surface plasminogen receptor. Moreover, mMTf expression in CHO cells stimulates plasminogen activation at the cell surface by about 2.5-fold. In addition to the induced binding and activation of plasminogen, cell motility, migration and invasion were about 3-fold higher in CHO cells expressing mMTf. Both monoclonal antibody L235 and truncated sMTf inhibited mMTf-stimulated CHO cell motility, migration and invasion. Overall, our results indicate a key role for mMTf in cell surface plasminogen binding and in activation processes involved during cell migration and invasion.  相似文献   

19.
A melanoma cell line (Bowes) was found to produce plasminogen activator even on its growing phase, and the rate of plasminogen activator production was rather constant. The production of plasminogen activator was proportional to the cell number. Morphologically, no specific features for plasminogen activator production were seen. Plasminogen activator was observed in the lysate of this cell line only when the cell number was large. The extracellular plasminogen activator activity was higher than the intracellular plasminogen activator activity, suggesting the existence of a secretion mechanism for the plasminogen activator.  相似文献   

20.
The breakdown of the barriers formed by extracellular matrix proteins is a pre-requisite for all processes of tissue remodeling. Matrix degradation reactions take part in specific physiological events in the healthy organism but also represent a crucial step in cancer invasion. These degradation processes involve a highly organized interplay between proteases and their cellular binding sites as well as specific substrates and internalization receptors. This review article is focused on two components, the urokinase plasminogen activator receptor (uPAR) and the uPAR-associated protein (uPARAP, also designated Endo180), that are considered crucially engaged in matrix degradation. uPAR and uPARAP have highly diverse functions, but on certain cell types they interact with each other in a process that is still incompletely understood. uPAR is a glycosyl-phosphatidylinositol-anchored glycoprotein on the surface of various cell types that serves to bind the urokinase plasminogen activator and localize the activation reactions in the proteolytic cascade system of plasminogen activation. uPARAP is an integral membrane protein with a pronounced role in the internalization of collagen for intracellular degradation. Both receptors have additional functions that are currently being unraveled. The present discussion of uPAR and uPARAP is centered on their protein structure and molecular and cellular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号