首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the effect of antigen in a protein free medium on cell growth and monoclonal antibody production by a hybridoma line. Antigen immobilized on a Sepharose gel matrix via a bovine gamma-globulin carrier protein was used to stimulate the cell cultures in T-flasks. In comparison to antigen-free culture, total antibody production during was increased up to 40%, while slower cell growth rates were observed. The specific antibody production during the stationary culture phase was 40% to 80% higher in the presence of immobilized antigen. The surface density of antigen on the Sepharose beads had a strong influence on the physiological response of the hybridomas. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
Factors affecting cell growth and antibody production in a mouse hybridoma were investigated. Antibody was produced during the growth and decline phases of a batch culture with an increase in the specific rate of antibody production during the decline phase. The specific rate of antibody production was also increased in cells arrested by 2 mM thymidine, suggesting that cell proliferation and antibody production can be uncoupled. Reduced serum concentrations resulted in lower cell growth rates but increased antibody production rates. However, this trend was reversed in hybridomas which had been arrested by thymidine, since the highest antibody production rate was associated with high serum concentrations. Likewise, in proliferating cells, the optimum pH for antibody production (pH 6.8) was lower than the optimum pH for cell growth (pH 7.2), whereas in thymidine-blocked cells, the highest antibody production rate was at pH 7.2. High antibody production rates and product yields were also associated with low growth rates in continuous cultures. The possibility that antibody was under cell cycle control was investigated in synchronized hybridoma cultures. Antibody production occurred during G1 and G2 with a decline in the M phase and evidence of a further decline in the S phase. Thus antibody production was not restricted to the G1 and S phase in this hybridoma.  相似文献   

3.
The effects of the microenvironment and the nature of the limiting nutrient on culture viability and overall MAb productivity were explored using a hybridoma cell line which characteristically produces MAb in the stationary phase. A direct comparison was made of the changes in the metabolic profiles of suspension and PEG-alginate immobilized (0.8 mm beads) batch cultures upon entry into the stationary phase. The shifts in glucose, glutamine, and amino acid metabolism upon entry into the stationary phase were similar for both microenvironments. While the utilization of most nutrients in the stationary phase decreased to below 20% of that in the growth phase, antibody production was not dramatically affected. The immobilized culture did exhibit a 1.5-fold increase in the specific antibody rate over the suspension culture in both the growth and stationary phases. The role of limiting nutrient on MAb production and cell viability was assessed by artificially depleting a specific nutrient to 1% of its control concentration. An exponentially growing population of HB121 cells exposed to these various depletions responded with dramatically different viability profiles and MAb production kinetics. All depletions resulted in growth-arrested cultures and nongrowth-associated MAb production. Depletions in energy sources (glucose, glutamine) or essential amino acids (isoleucine) resulted in either poor viability or low antibody productivity. A phosphate or serum depletion maintained antibody production over at least a six day period with each resulting in a 3-fold higher antibody production rate than in growing batch cultures. These results were translated to a high-density perfusion culture of immobilized cells in the growth-arrested state with continued MAb expression for 20 days at a specific rate equal to that observed in the phosphate- and serum-depleted batch cultures.  相似文献   

4.
Relationship between monoclonal antibody (MAb) productivity and growth rate, and effects of high cell density on MAb production of hybridoma T0405 cells immobilized in macroporous cellulose carriers were investigated in continuous and batch cultures. The results showing, that the specific MAb production rate increased with increasing specific growth rate in both suspended and immobilized continuous cultures indicate a positively growth-associated relationship between MAb productivity and growth rate. Moreover, the specific production rate was higher in the immobilized cell culture than that in suspended one at all dilution rates. In order to clarify these phenomena, MAb mRNA expression and cell cycle distribution were investigated in batch cultures with immobilized cells and suspended cells. RT-PCR was used for observation of MAb mRNA expression and a two-color bromode-oxyuridine (BrdU)/propidium iodide (PI) flow cytometry method for determination of cell cycle distribution. The results revealed that MAb mRNA expression reached the peak during the exponential growth phase, suggest a positively growth-associated MAb production. And the immobilized cells continued the MAb mRNA expression until dead phase, which was longer than that in suspended cells. The cell cycle distribution patterns were observed almost the same for both immobilized and suspended cells. Such results may imply that a high cell density state has positive influence on the mRNA expression and on growth-associated MAb productivity of T0405 cells.  相似文献   

5.
When mouse hybridoma cells were grown in culture media which were made hyperosmotic through the addition of NaCl or sucrose, the specific rate of antibody production increased with medium osmolality, reaching approx. 1.9 times the level obtained at physiological osmolality. However, due to a simultaneous reduction of the maximal cell density in the hyperosmotic media, the effect of the increased production rate did not give significant increases in the maximum antibody titer obtained in the cultures. When the osmoprotective compound, glycine betaine, was included in the NaCl- or sucrose-stressed cultures, the specific antibody production rate wasincreased up to 2.6-fold and maximum antibody titer up to twofold over that obtained in the control culture (physiological osmolality). A similar pattern of response was observed when other osmoprotective compounds (sarcosine, proline, glycine) were added to NaCl-stressed hybridoma cell cultures. For the present experiments, the results suggest that medium osmolality, rather than growth rate, will determine the specific antibody production rate by hybridoma cell line 6H11 growing in hyperosmotic culture media. (c) 1994 John Wiley & Sons, Inc.  相似文献   

6.
Fong W  Zhang Y  Yung P 《Cytotechnology》1997,24(1):47-54
To increase the yield of monoclonal antibody in a hybridoma culture, it is important to optimize the combination of several factors including cell density, antibody productivity per cell, and the duration of the culture. Potassium acetate enhances the production of antibodies by cells but sometimes depresses cell density. The production of anti-(human B-type red blood cell surface antigen) antibody by Cp9B hybridoma was studied. In batch cultures, potassium acetate inhibited Cp9B cells growth and decreased the maximal cell density but the productivity of antibody per cell was increased. The balance of the two effects resulted in a slight decline of antibody production. In a stirred tank bioreactor, the inhibitory effect of potassium acetate on cell density was overcome by applying the perfusion technique with the attachment of a cell-recycling apparatus to the bioreactor. In such a reactor, potassium acetate at 1 g l-1 did not cause a decrease in the cell density, and the antibody concentration in the culture supernatant was increased from 28 μg ml-1 to 38 μg ml-1. Potassium acetate also suppressed the consumption of glucose and the accumulation of lactate in batch cultures, but the glucose and lactate levels were kept stable by applying the perfusion technique in the stirred tank bioreactor. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Summary Continuous production of monoclonal antibody was achieved in serum-free medium by hybridoma cells immobilized by calcium alginate. The cells were cultivated in an expanded bed fermentor under mild flow conditions which reduced destruction of the immobilized gel particles. Monoclonal antibody was produced continuously for more than 40 days.  相似文献   

8.
Summary Effects of growth factors such as EGF, FGF and IL-2 on cell proliferation and monoclonal antibody production in a hybridoma cell line adapted to a completely defined serum-free medium were determined in batch cultures. The results indicate that the presence of growth factors in the medium enhances the antibody secretion without significantly affecting the growth rate. The specific antibody secretion rate of cells grown in serum-free medium supplemented with growth factors was 35% higher than those grown in serum-free medium alone.  相似文献   

9.
Oxygen consumption by hybridoma cells immobilized in 1- and 3.9-mm-diameter calcium alginate beads was measured. The entrapped cells consumed oxygen at about 10 mumol/min per 10(9) cells, regardless of the bead size and cell loading. In contrast, the same cells in suspension culture respire at specific rates of 3-8 mumol/min per 10(9) cells (depending on the cell density). The growth rate of the immobilized cells was significantly reduced, while specific antibody production was comparable to that of free cells.  相似文献   

10.
We have recently described the production of cytotoxic T lymphocyte (CTL) hybridomas that grow continuously in culture, exhibiting constitutive, allospecific (anti-H-2b) killing activity. We now report on the response of these monoclonal CTL hybridomas to specific antigen (H-2Db) and to mitogenic lectins. Both specific antigen and T cell mitogens enhance hybridoma-mediated specific target cell killing. In addition, stimulated, but not unstimulated hybridoma cells secrete considerable amounts of IL 2 into the culture medium. Repeated cloning of the hybridomas provides strong evidence that both killing activity and IL 2 secretion can be attributed to one cell. Unfractionated Con A supernatants, containing IL 2 and other factors known to influence T cell responsiveness, or IL 2-containing media of stimulated hybridomas affect neither the growth nor the lytic activity of the hybridomas. Anti-LFA-1 monoclonal antibody, a potent inhibitor of CTL and CTL hybridoma-mediated target cell lysis, abolishes antigen- or mitogen-induced IL 2 secretion by the CTL hybridomas. Involvement of a single hybridoma receptor in antigen recognition (afferent and efferent) and in initiating IL 2 secretion is proposed. The CTL hybridomas displaying retarded killing activity before the antigenic or mitogenic stimulation appear to represent an intermediate stage in CTL differentiation, reminiscent of "memory" CTL.  相似文献   

11.
The production characteristics for Taxol (paclitaxel) using free and immobilized cells of Taxus cuspidata were investigated in a perfusion culture bioreactor. Although the cell growth was inhibited by higher dilution rates, the specific production rate of Taxol was increased by perfusion compared with that using batch operation. Perfusion cultures using a nylon-mesh cell separator for free suspension cells showed similar production profiles to those obtained using immobilized cells. Continuous Taxol production was successfully obtained at an approximate specific production rate of 0.3 mg/g DCW (dry cell weight) per day for up to 40 days. (c) 1997 John Wiley & Sons, Inc.  相似文献   

12.
To determine the effect of hyperosmotic stress on the monoclonal antibody (MAb) production by calcium-alginate-immobilized S3H5/gamma2bA2 hybridoma cells, the osmolalities of medium in the MAb production stage were varied through the addition of NaCI. The specific MAb productivity (q(MAb)) of immobilized cells exposed to abrupt hyperosmotic stress (398 mOsm/kg) was increased by 55% when compared with that of immobilized cells in the control culture (286 mOsm/kg). Furthermore, this enhancement of q(MAb) was not transient. Abrupt increase in osmolality, however, inhibited cell growth, resulting in no increase in volumetric MAb productivity (r(MAb)). On the other hand, gradual increase in osmolality allowed further cell growth while maintaining the enhanced q(MAb) immobilized cells. The q(MAb) immobilized cells at 395 mOsm/kg was 0.661 +/- 0.019 mug/10(6) cells/h, which is almost identical to that of immobilized cells exposed to abrupt osmotic stress. Accordingly, the r(MAb) was increased by ca. 40% when compared with that in the control immobilized cell culture. This enhancement in i(MAb) of immobilized S3H5/gamma2bA2 hybridoma cells by applying gradual osmotic stress suggests the potential of using hyperosmolar medium in other perfusion culture systems for improved MAb production. (c) 1995 John Wiley & Sons, Inc.  相似文献   

13.
Culture redox potential (CRP) and oxygen uptake rate (OUR) were monitored on-line during glucose- and glutamine-limited batch cultures of a murine hybridoma cell line that secretes a neutralizing monoclonal antibody specific to toxin 2 of the scorpion Centruroides noxius Hoffmann. It was found that OUR and CRP can be used for assessing the viable cell concentration and growth phases of the culture. Before nutrient depletion, OUR increased exponentially with viable cell concentration, whereas CRP decreased monotonically until cell viability started to decrease. During the death phase, CRP gradually increased. A sudden decrease in OUR occurred upon glucose or glutamine depletion. CRP traced the dissolved oxygen profile during a control action or an operational eventuality, however, during nutrient depletion it did not follow the expected behavior of a system composed mainly by the O(2)/H(2)O redox couple. Such a behavior was not due to the accumulated lactate or ammonia, nor to possible intracellular redox potential changes caused by nutrient depletion, as inferred from respiration inhibition by rotenone or uncoupled respiration by 2,4-dinitrophenol. As shown in this study, operational eventualities can be erroneously interpreted as changes in OUR when using algorithms based solely on oxygen balances. However, simultaneous measurements of CRP and OUR may be used to discriminate real metabolic events from operational failures. The results presented here can be used in advanced real-time algorithms for controling glucose and glutamine at low concentrations, avoiding under- or over-feeding them in hybridoma cultures, and consequently reducing the accumulation of metabolic wastes and improving monoclonal antibody production. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 555-563, 1997.  相似文献   

14.
A mouse hybridoma cell line which produced an anti-human salivary alpha-amylase monoclonal antibody was obtained by fusion between mouse spleen cells immunized with human salivary alpha-amylase and mouse myeloma cells, followed by screening the hybridoma cells by enzyme-linked immunosorbent assay. The hybridoma cell line (27-4-1) secreted IgG. The monoclonal antibody produced by the hybridoma showed no inhibitory effect on the activity of human salivary alpha-amylase. The specificity and reactivity of this monoclonal antibody were examined by determining the activities of human salivary and pancreatic alpha-amylases bound to the monoclonal antibody immobilized on polystyrene balls or by enzyme immunoassay with the monoclonal antibody conjugated with beta-D-galactosidase. The results revealed that the monoclonal antibody produced by the hybridoma cell line was specific for salivary alpha-amylase and absolutely unreactive to pancreatic alpha-amylase.  相似文献   

15.
目的:制备稳定分泌抗人生长分化因子15(GDF15)单克隆抗体(m Ab)的杂交瘤细胞系,并对其分泌的m Ab进行鉴定。方法:根据人GDF15氨基酸序列特征,设计合成了8条能够免疫产生GDF15特异性抗体的抗原多肽,与VLP载体偶联后,免疫雌性BALB/c小鼠,利用杂交瘤技术制备鼠源抗人GDF15的m Ab,用间接ELISA检测m Ab腹水效价。结果:获得针对7个抗原多肽的12株稳定分泌抗人GDF15的杂交瘤细胞系,腹水m Ab效价可达1×104~1×109。结论:获得了针对不同抗原多肽的抗人GDF15的特异性m Ab,为进一步研发以GDF15为靶点的单克隆抗体抗肿瘤药物奠定了基础。  相似文献   

16.
Traditionally, cell culturists have relied upon the addition of serum to culture medium for the growth and maintenance of cell lines. However, many aspects of the use of serum in tissue culture are problematic. Cell culture supplements that circumvent the need for serum are readily available and provide a consistent protein composition. This defined environment allows the antibody to be more easily purified from culture supernatants. Nutridoma media supplements were formulated to support the growth of lymphoblastoid cells in a defined culture environment. In this study, Nutridoma media supplements were tested in parallel with serum-containing cultures to determine if Nutridoma supplemented medium is effective in supporting hybridoma cell growth and antibody production in three hybridoma cell lines. Data, based on cell growth and antibody production, show the importance of basal media selection when serum is replaced with Nutridoma media supplements. SDS-PAGE results show that cell supernatants from Nutridoma supplemented cultures contain very few contaminating proteins.  相似文献   

17.
Continuous production of monoclonal antibody by hybridoma cells immobilized with alginate and urethane polymer was done using a fluidized bed bioreactor with direct bubbling. Increasing the dilution rate did not affect the antibody production rate under aeration with air. By changing the aeration gas to oxygen instead of air, the antibody production rate was increased 2-fold. The monoclonal antibody could be produced continuously for more than 40 d.  相似文献   

18.
The response of hybridoma cells to fluid shear caused by stirring and sparging has been investigated in a 2-L turbine-agitated bioreactor. Viable cell count, lactate dehydrogenase (LDH) release, and antibody secretion were measured over the course of batch culture experiments under varied conditions of stirring and gas sparging. The effectiveness of Pluronic F68 as a protective agent in sparged cultures was also studied. Growth was found to be unaffected by stirring of the culture under surface aerated conditions, but gas sparging had a significant detrimental effect on growth and antibody production. The effect of sparging was reduced when cultures were supplemented with Pluronic at a level of 0.4% (w/v). Experimental data were analyzed through formulation of models for LDH release and antibody production. Rates of cell lysis could be estimated by correlating extracellular LDH levels through the model for LDH release. The lysis rate estimated for sparged conditions was sufficiently large to approximately account for the observed decrease in the specific growth rate of the culture. The presence of Pluronic apparently interfered with the LDH release mechanism, so precise estimation of lysis rates under these conditions was not possible. Sparging was found not to have a detrimental effect on antibody production in cultures without Pluronic added. Specific antibody production rates in cultures supplemented with Pluronic were about 25% higher than in sparged cultures without Pluronic added.  相似文献   

19.
For the mouse hybridoma cell line VO 208, kinetics of growth, consumption of glucose and glutamine, and production of lactate, ammonia and antibodies were compared in batch and continuous cultures. At a given specific growth rate, different metabolic activities were observed: a 40% lower glucose and glutamine consumption rate, but a 70% higher antibody production rate in continuous than in batch culture. Much higher metabolic rates were also measured during the initial lag phase of the batch culture. When representing the variation of the specific antibody production rate as a function of the specific growth rate, there was a positive association between growth and antibody production in the batch culture, but a negative association during the transient phase of the continuous culture. The kinetic differences between cellular metabolism in batch and continuous cultures may be result of modifications in the physiology and metabolism of cells which, in continuous cultures, were extensively exposed to glucose limitations.Institut National Polytechnique de Lorraine, ENSAIA BP 172, 2 avenue de la forêt de Haye, 54505, Vandoeuvre Cedex France  相似文献   

20.
Hybridomas are finding increased use for the production of a wide variety of monoclonal antibodies. Understanding the roles of physiological and environmental factors on the growth and metabolism of mammalian cells is a prerequisite for the development of rational scale-up procedures. An SP2/0-derived mouse hybridoma has been employed in the present work as a model system for hybridoma suspension culture. In preliminary shake flask studies to determine the effect of glucose and glutamine, it was found that the specific growth rate, the glucose and glutamine metabolic quotients, and the cumulative specific antibody production rate were independent of glucose concentration over the range commonly employed in cell cultures. Only the specific rate of glutamine uptake was found to depend on glutamine concentration. The cells were grown in continuous culture at constant pH and oxygen concentration at a variety of dilution rates. Specific substrate consumption rates and product formation rates were determined from the steady state concentrations. The specific glucose uptake rate deviated from the maintenance energy model(1) at low specific growth rates, probably due to changes in the metabolic pathways of the cells. Antibody production was not growth-associated; and higher specific antibody production rates were obtained at lower specific growth rates. The effect of pH on the metabolic quotients was also determined. An optimum in viable cell concentration was obtained between pH 7.1 and 7.4. The viable cell number and viability decreased dramatically at pH 6.8. At pH 7.7 the viable cell concentration initially decreased, but then recovered to values typical of pH 7.1-7.4. Higher specific nutrient consumption rates were found at the extreme pH values; however, glucose consumption was inhibited at low pH. The pH history also influenced the behavior at a given pH. Higher antibody metabolic quotients were obtained at the extreme pH values. Together with the effect of specific growth rate, this suggests higher antibody production under environmental or nutritional stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号