首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long lasting changes in the strength of synaptic transmission in the hippocampus are thought to underlie certain forms of learning and memory. Accordingly, the molecular mechanisms that account for these changes are heavily studied. Postsynaptically, changes in synaptic strength can occur by altering the amount of neurotransmitter receptors at the synapse or by altering the functional properties of synaptic receptors. In this study, we examined the biochemical changes produced following chemically induced long term depression in acute hippocampal CA1 minislices. Using three independent methods, we found that this treatment did not lead to an internalization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Furthermore, when the plasma membrane was separated into synaptic membrane-enriched and extrasynaptic membrane-enriched fractions, we actually observed a significant increase in the concentration of AMPA receptors at the synapse. However, phosphorylation of Ser-845 on the AMPA receptor subunit GluR1 was significantly decreased throughout the neuron, including in the synaptic membrane-enriched fraction. In addition, phosphorylation of Ser-831 on GluR1 was decreased specifically in the synaptic membrane-enriched fraction. Phosphorylation of these residues has been demonstrated to control AMPA receptor function. From these data, we conclude that the decrease in synaptic strength is likely the result of a change in the functional properties of AMPA receptors at the synapse and not a decrease in the amount of synaptic receptors.  相似文献   

2.
Recent findings suggest that rapid activation of extrasynaptic receptors and transient depletion of extracellular Ca(2+) may represent an important component of glutamatergic synaptic transmission. These phenomena imply a previously unrecognized role for synaptic glial sheaths: to retard extracellular diffusion in the synaptic vicinity. The present study is an attempt to assess the extent and physiological implications of this retardation using a detailed compartmental model of the typical synaptic environment. The model allows reconstruction of a partial (asymmetric) glial sheath covered with transporter molecules, which gives a more realistic representation of the vicinity of central synapses. Simulations show to what extent, in conditions compatible with physiology, the occupancy of synaptic receptors and the depletion of Ca(2+) in the cleft increase with increased glial coverage. The impact of glial sheaths on synaptic transmission is shown to become greater with smaller synapses and with slower kinetics of perisynaptic ion transients. At a calyceal synapse, a profound temporal filtering of fast Ca(2+) influx is found, and similar phenomena are predicted to occur following simultaneous activation of multiple synapses in the neuropil. The results provide a quantitative guidance for interpretation of physiological experiments that address fast transients of neurotransmitters and small ions in the brain tissue.  相似文献   

3.
Spinocerebellar ataxia type 14 (SCA14) is an autosomal, dominant neurodegenerative disorder caused by mutations in PKCγ. The objective of this study was to determine effects of PKCγ H101Y SCA14 mutation on Purkinje cells in the transgenic mouse. Results demonstrated that wild type PKCγ-like Purkinje cell localization of HA-tagged PKCγ H101Y mutant proteins, altered morphology and loss of Purkinje cells were observed in the PKCγ H101Y SCA14 transgenic mouse at four weeks of age. Failure of stereotypical clasping responses in the hind limbs of transgenic mice was also observed. Further, PKCγ H101Y SCA14 mutation caused lack of total cellular PKCγ enzyme activity, loss of connexin 57 phosphorylation on serines, and activation of caspase-12 in the PKCγ H101Y SCA14 transgenic mouse. Results clearly demonstrate a need for PKCγ control of gap junctions for maintenance of Purkinje cells. This is the first transgenic mouse to our knowledge which models a human SCA14 mutation.  相似文献   

4.
5.

Glutamate is the major excitatory amino acid neurotransmitter in the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed in neurons and glial cells. Overactivation of glutamate receptors results in neuronal death, known as excitotoxicity. A family of sodium-dependent glutamate transporters enriched in glial cells are responsible of the vast majority of the removal of this amino acid form the synaptic cleft. Therefore, a precise and exquisite regulation of these proteins is required not only for a proper glutamatergic transmission but also for the prevention of an excitotoxic insult. Manganese is a trace element essential as a cofactor for several enzymatic systems, although in high concentrations is involved in the disruption of brain glutamate homeostasis. The molecular mechanisms associated to manganese neurotoxicity have been focused on mitochondrial function, although energy depletion severely compromises the glutamate uptake process. In this context, in this contribution we analyze the effect of manganese exposure in glial glutamate transporters function. To this end, we used the well-established model of chick cerebellar Bergmann glia cultures. A time and dose dependent modulation of [3H]-d-aspartate uptake was found. An increase in the transporter catalytic efficiency, most probably linked to a discrete increase in the affinity of the transporter was detected upon manganese exposure. Interestingly, glucose uptake was reduced by this metal. These results favor the notion of a direct effect of manganese on glial cells, this in turn alters their coupling with neurons and might lead to changes in glutamatergic transmission.

  相似文献   

6.
One of the functions of astroglial cells in the central nervous system is to clear synaptically-released glutamate from the extracellular space. This is performed thanks to specific transporters of the excitatory amino acid expressed on their surface. The way by which astrocytic glutamate uptake contributes to synaptic transmission has been investigated via numerous experimental approaches but has never been addressed under conditions where neuroglial interactions are physiologically modified. Recently, we took advantage of the neuroglial plastic properties of the hypothalamo-neurohypophysial system to examine the consequences of a physiological reduction in the astrocytic coverage of neurons on glutamatergic synaptic transmission. This experimental model has brought some insights on the physiological interactions between glial cells and neurons at the level of the synapse. In particular, it has revealed that the degree of glial coverage of neurons influences glutamate concentration at the vicinity of excitatory synapses and, as a consequence, affects the level of activation of presynaptic glutamate receptors. Astrocytes, therefore, appear to contribute to the regulation of neuronal excitability by modulating synaptic efficacy at glutamatergic nerve terminals.  相似文献   

7.
Traditionally, glutamate transporters have been viewed as membrane proteins that harness the electrochemical gradient to slowly transport glutamate from the extracellular space into glial cells. However, recent studies have shown that glutamate transporters on glial and neuronal membranes also rapidly bind released glutamate to shape synaptic transmission. In this Review, we summarize the properties of glutamate transporters that influence synaptic transmission and are subject to regulation and plasticity. We highlight how the diversity of glutamate-transporter function relates to transporter location, density and affinity.  相似文献   

8.
Neuron-glial interactions in the nervous system are of fundamental importance to many processes including neural migration,axon guidance, myelination and synaptic transmission. At synapses in the CNS, the physiological and structural relationship between neurons and astrocytes is particularly complex. The juxtaposition of astrocytic membranes with presynaptic and postsynaptic elements is important for regulating synaptic transmission and plasticity. Recent investigations demonstrate that the morphology of both neuronal and glial components show rapid, continuous structural remodeling in the hippocampus.These physical modifications are likely to have a significant functional impact upon neurotransmission and indicate that there modeling of astrocytic morphology might be crucial for the dynamic regulation of the synapse and its microenvironment. In this review, we focus on the structural complexities of astrocyte-synapse interactions in the hippocampus and their implications for understanding synaptic physiology, behavior and disease.  相似文献   

9.
Cholinergic synaptic contact between motor neuron and skeletal muscle fiber is perhaps one of the core objects for investigations of molecular mechanisms underlying the communication between neurons and innervated cells. In the studies conducted on this object in the past few decades, a large amount of experimental data was obtained that substantially complemented a traditional view on synaptic transmission. In particular, it was established that (i) acetylcholine is released from the nerve ending in both quantal and nonquantal ways; (ii) molecular mechanisms of the processes of the quantal acetylcholine release—spontaneous and evoked by electrical stimuli—have unique features and can be regulated independently; (iii) acetylcholine release from the nerve ending is accompanied by a release of a number of synaptically active molecules modulating the processes of secretion or reception of the main mediator; (iv) signal molecules affecting the process of cholinergic neurotransmission can be released not only from the nerve ending but also from glial cells and muscle fiber; (v) molecular mechanisms of the regulation of synaptic transmission are highly diverse and go beyond the alteration of the number of the released acetylcholine quanta. Thus, the neuromuscular junction shall be deemed currently as complicated and adaptive synapse characterized by a wide range of multiloop intercellular signaling pathways between presynaptic motor neuron ending, muscle fiber, and glial cells ensuring a high safety factor of synaptic transmission and the possibility of its fine tuning.  相似文献   

10.
Profilins are important regulators of actin dynamics and have been implicated in activity-dependent morphological changes of dendritic spines and synaptic plasticity. Recently, defective presynaptic excitability and neurotransmitter release of glutamatergic synapses were described for profilin2-deficient mice. Both dendritic spine morphology and synaptic plasticity were fully preserved in these mutants, bringing forward the hypothesis that profilin1 is mainly involved in postsynaptic mechanisms, complementary to the presynaptic role of profilin2. To test the hypothesis and to elucidate the synaptic function of profilin1, we here specifically deleted profilin1 in neurons of the adult forebrain by using conditional knockout mice on a CaMKII-cre-expressing background. Analysis of Golgi-stained hippocampal pyramidal cells and electron micrographs from the CA1 stratum radiatum revealed normal synapse density, spine morphology, and synapse ultrastructure in the absence of profilin1. Moreover, electrophysiological recordings showed that basal synaptic transmission, presynaptic physiology, as well as postsynaptic plasticity were unchanged in profilin1 mutants. Hence, loss of profilin1 had no adverse effects on the morphology and function of excitatory synapses. Our data are in agreement with two different scenarios: i) profilins are not relevant for actin regulation in postsynaptic structures, activity-dependent morphological changes of dendritic spines, and synaptic plasticity or ii) profilin1 and profilin2 have overlapping functions particularly in the postsynaptic compartment. Future analysis of double mutant mice will ultimately unravel whether profilins are relevant for dendritic spine morphology and synaptic plasticity.  相似文献   

11.
In humans, sensory abnormalities, including neuropathic pain, often result from traumatic spinal cord injury (SCI). SCI can induce cellular changes in the CNS, termed central sensitization, that alter excitability of spinal cord neurons, including those in the dorsal horn involved in pain transmission. Persistently elevated levels of neuronal activity, glial activation, and glutamatergic transmission are thought to contribute to the hyperexcitability of these dorsal horn neurons, which can lead to maladaptive circuitry, aberrant pain processing and, ultimately, chronic neuropathic pain. Here we present a mouse model of SCI-induced neuropathic pain that exhibits a persistent pain phenotype accompanied by chronic neuronal hyperexcitability and glial activation in the spinal cord dorsal horn. We generated a unilateral cervical contusion injury at the C5 or C6 level of the adult mouse spinal cord. Following injury, an increase in the number of neurons expressing ΔFosB (a marker of chronic neuronal activation), persistent astrocyte activation and proliferation (as measured by GFAP and Ki67 expression), and a decrease in the expression of the astrocyte glutamate transporter GLT1 are observed in the ipsilateral superficial dorsal horn of cervical spinal cord. These changes have previously been associated with neuronal hyperexcitability and may contribute to altered pain transmission and chronic neuropathic pain. In our model, they are accompanied by robust at-level hyperaglesia in the ipsilateral forepaw and allodynia in both forepaws that are evident within two weeks following injury and persist for at least six weeks. Furthermore, the pain phenotype occurs in the absence of alterations in forelimb grip strength, suggesting that it represents sensory and not motor abnormalities. Given the importance of transgenic mouse technology, this clinically-relevant model provides a resource that can be used to study the molecular mechanisms contributing to neuropathic pain following SCI and to identify potential therapeutic targets for the treatment of chronic pathological pain.  相似文献   

12.
Dynamic alteration of the synaptic strength is one of the most important processes occurring in the nervous system. Combination of electrophysiology, confocal imaging and molecular biology led to significant advances in this research field. Yet, a progress in this area, in particular in studies of changes in the quantal behavior of central synapses and impact of glial cells on individual synapses, is hampered by technical difficulties of resolving small quantal synaptic currents. In this paper we will show how the technique of non-enzymatic vibro-dissociation, which enables to isolate living neurons avoiding artifacts of cell culture and preserving functional synapse, can be used to obtain a valuable information on fine details and mechanisms of synaptic plasticity. In particular, we will describe our recent results on Ca2+-dependent modulation of the postsynaptic AMPA and NMDA receptors in the individual synaptic boutons.  相似文献   

13.
Danjo R  Kawasaki F  Ordway RW 《PloS one》2011,6(2):e17131
Tripartite (three-part) synapses are defined by physical and functional interactions of glia with pre- and post-synaptic elements. Although tripartite synapses are thought to be of widespread importance in neurological health and disease, we are only beginning to develop an understanding of glial contributions to synaptic function. In contrast to studies of neuronal mechanisms, a significant limitation has been the lack of an invertebrate genetic model system in which conserved mechanisms of tripartite synapse function may be examined through large-scale application of forward genetics and genome-wide genetic tools. Here we report a Drosophila tripartite synapse model which exhibits morphological and functional properties similar to those of mammalian synapses, including glial regulation of extracellular glutamate, synaptically-induced glial calcium transients and glial coupling of synapses with tracheal structures mediating gas exchange. In combination with classical and cell-type specific genetic approaches in Drosophila, this model is expected to provide new insights into the molecular and cellular mechanisms of tripartite synapse function.  相似文献   

14.
Previous studies of Drosophila flight muscle neuromuscular synapses have revealed their tripartite architecture and established an attractive experimental model for genetic analysis of glial function in synaptic transmission. Here we extend these findings by defining a new Drosophila glial cell type, designated peripheral perisynaptic glia (PPG), which resides in the periphery and interacts specifically with fine motor axon branches forming neuromuscular synapses. Identification and specific labeling of PPG was achieved through cell type-specific RNAi-mediated knockdown (KD) of a glial marker, Glutamine Synthetase 2 (GS2). In addition, comparison among different Drosophila neuromuscular synapse models from adult and larval developmental stages indicated the presence of tripartite synapses on several different muscle types in the adult. In contrast, PPG appear to be absent from larval body wall neuromuscular synapses, which do not exhibit a tripartite architecture but rather are imbedded in the muscle plasma membrane. Evolutionary conservation of tripartite synapse architecture and peripheral perisynaptic glia in vertebrates and Drosophila suggests ancient and conserved roles for glia-synapse interactions in synaptic transmission.  相似文献   

15.
Glial cells isolated from the nervous system are sensitive to neurotransmitters and may therefore be involved in synaptic transmission. The sensitivity of individual perisynaptic Schwann cells to activity of a single synapse was investigated, in situ, at the frog neuromuscular junction by monitoring changes in intracellular Ca2+ in the Schwann cells. Motor nerve stimulation induced an increase in intracellular Ca2+ in these Schwann cells; this increase was greatly reduced when transmitter release was blocked. Furthermore, local application of the cotransmitters acetylcholine and ATP evoked Ca2+ responses even in the absence of extracellular Ca2+. Successive trains of nerve stimuli or applications of transmitters resulted in progressively smaller Ca2+ responses. We conclude that transmitter released during synaptic activity can evoke release of intracellular Ca2+ in perisynaptic Schwann cells. This Ca2+ signal may play a role in the maintenance or modulation of a synapse. These data show that synaptic transmission involves three cellular components with both postsynaptic and glial components responding to transmitter secretion.  相似文献   

16.
Alpha-synuclein, the major component of Lewy bodies, is thought to play a central role in the onset of synaptic dysfunctions in Parkinson's disease (PD). In particular, α-synuclein may affect dopaminergic neuron function as it interacts with a key protein modulating dopamine (DA) content at the synapse: the DA transporter (DAT). Indeed, recent evidence from our "in vitro" studies showed that α-synuclein aggregation decreases the expression and membrane trafficking of the DAT as the DAT is retained into α-synuclein-immunopositive inclusions. This notwithstanding, "in vivo" studies on PD animal models investigating whether DAT distribution is altered by the pathological overexpression and aggregation of α-synuclein are missing. By using the proximity ligation assay, a technique which allows the "in situ" visualization of protein-protein interactions, we studied the occurrence of alterations in the distribution of DAT/α-synuclein complexes in the SYN120 transgenic mouse model, showing insoluble α-synuclein aggregates into dopaminergic neurons of the nigrostriatal system, reduced striatal DA levels and an altered distribution of synaptic proteins in the striatum. We found that DAT/α-synuclein complexes were markedly redistributed in the striatum and substantia nigra of SYN120 mice. These alterations were accompanied by a significant increase of DAT striatal levels in transgenic animals when compared to wild type littermates. Our data indicate that, in the early pathogenesis of PD, α-synuclein acts as a fine modulator of the dopaminergic synapse by regulating the subcellular distribution of key proteins such as the DAT.  相似文献   

17.
Ma Y  Hu JH  Zhao WJ  Fei J  Yu Y  Zhou XG  Mei ZT  Guo LH 《Cell research》2001,11(1):61-67
Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter, and the GABAergic synaptic transmission is normally terminated by the rapid uptake through GABA transporters. With transgenic mice ubiquitously overexpressing GABA transporter subtype I (GAT1), the present study explored the pathophysiological role of GAT1 in epileptogenesis. Though displaying no spontaneous seizure activity, these mice exhibit altered electroencephalographic patterns and increased susceptibility to seizure induced by kainic acid. In addition, the GABA(A) receptor and glutamate transporters are up-regulated in transgenic mice, which perhaps reflects a compensatory or corrective change to the elevated level of GAT1. These preliminary findings support the hypothesis that excitatory and inhibitory neurotransmission, and seizure susceptibility can be altered by neurotransmitter transporters.  相似文献   

18.
In this review we summarize published data on the involvement of glial cells in molecular mechanisms underlying brain plastic reorganization in epilepsy. The role of astrocytes as glial elements in pathological plasticity in epilepsy is discussed. Data on the involvement of aquaporin-4 in epileptogenic plastic changes and on participation of microglia and extracellular matrix in dysregulation of synaptic transmission and plastic remodeling in epileptic brain tissue are reviewed.  相似文献   

19.
The neuronal isoform of vesicular monoamine transporter, VMAT2, is responsible for packaging dopamine and other monoamines into synaptic vesicles and thereby plays an essential role in dopamine neurotransmission. Dopamine neurons in mice lacking VMAT2 are unable to store or release dopamine from their synaptic vesicles. To determine how VMAT2-mediated filling influences synaptic vesicle morphology and function, we examined dopamine terminals from VMAT2 knockout mice. In contrast to the abnormalities reported in glutamatergic terminals of mice lacking VGLUT1, the corresponding vesicular transporter for glutamate, we found that the ultrastructure of dopamine terminals and synaptic vesicles in VMAT2 knockout mice were indistinguishable from wild type. Using the activity-dependent dyes FM1-43 and FM2-10, we also found that synaptic vesicles in dopamine neurons lacking VMAT2 undergo endocytosis and exocytosis with kinetics identical to those seen in wild-type neurons. Together, these results demonstrate that dopamine synaptic vesicle biogenesis and cycling are independent of vesicle filling with transmitter. By demonstrating that such empty synaptic vesicles can cycle at the nerve terminal, our study suggests that physiological changes in VMAT2 levels or trafficking at the synapse may regulate dopamine release by altering the ratio of fillable-to-empty synaptic vesicles, as both continue to cycle in response to neural activity.  相似文献   

20.
Neurotransmitter transporters are key elements in the termination of the synaptic actions of the neurotransmitters. They use the energy stored in the electrochemical ion gradients across the plasma membrane of neurons and glial cells for uphill transport of the transmitters into the cells surrounding the synapse. Therefore specific transporter inhibitors can potentially be used as novel drugs for neurological disease. Sodium-coupled neurotransmitter transporters belong to either of two distinct families. The glutamate transporters belong to the SLC1 family, whereas the transporters of the other neurotransmitters belong to the SLC6 family. An exciting and recent development is the emergence of the first high-resolution structures of archeal and bacterial members belonging to these two families. In this review the functional results on prototypes of the two families, the GABA transporter GAT-1 and the glutamate transporters GLT-1 and EAAC1, are described and discussed within the perspective provided by the novel structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号