首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study measured the electric and growth responses in excised cucumber hypocotyls and compared them with those in intact seedlings. Root excision (first severing cut) eliminated most of the positive xylem pressure (Px) in the hypocotyl, caused a rapid, transient drop in the hypocotyl growth rate (GR) and some small, local depolarization near the cut site. Although accompanied by a smaller decrease in Px, a second, severing cut in the basal hypocotyl caused a decrease in GR which was no longer transient and a depolarization which was increased in both size and extent. These changes were not wound effects because they could be simulated by root incubation in mannitol. The reduced GR recovery occurred also in the absence of electric changes after a second increase in the mannitol concentration incubating the root of intact seedlings. Increased electric sensitivity and altered growth response therefore appear to be two independent examples of physiological changes resulting from a lowered Px.  相似文献   

2.
A positive hydraulic signal in the form of a xylem pressure step was applied to the roots of intact seedlings of Cucumis sativus L. and Pisum sativum L. Surface electrodes at three positions along the epicotyl/hypocotyl recorded a propagating depolarization which appeared first in the basal, then the central and sometimes the apical electrode positions and fitted the characteristics of a slow wave potential (SWP). This depolarization differed between pea and cucumber. It was transient in cells of pea epicotyls but sustained in cucumber hypocotyls. It was not associated with a change in cell input resistance in pea epicotyls but preceded an increase in the input resistance of cucumber hypocotyl cells. With the increased xylem pressure the growth rate (GR) of cucumber hypocotyls and pea epicotyls underwent a transient increase, peaking after 5 min. If the depolarization reached the growing upper region, it preceded a sustained decrease in the GR of cucumber hypocotyls but only a transient decrease in the GR of pea epicotyls. A temperature jump in the root medium (heat treatment) induced a steep pressure spike in the xylem of the cucumber hypocotyl which showed similar electric and growth effects as the previously applied, non-injurious pressure steps. We suggest that the observed differences in the electric and growth responses between the species were caused by the closure of ion channels in depolarized cells of cucumber but not pea seedlings.  相似文献   

3.
The local electric response to stem excision in both pea epicotyls and cucumber hypocotyls is a depolarization of the cells in the wound area. If we define wound area as the region of local depolarization, we find that it extends for approximately 10 mm from the cut or wound site in pea epicotyls, whereas it can reach up to 40 mm in cucumber hypocotyls. The wound-induced depolarization in pea cells is transient, reaching its maximal amplitude within 1–2 min, whereas in cucumber cells this depolarization is more sustained. A third difference between wound responses in pea and cucumber is the intermittent appearance of spikes, i.e. very short, rapidly reverted depolarizations which frequently accompany the basic depolarization in cucumber but not in pea cells. These spikes can propagate in both directions along the hypocotyl axis. The cause of the different responses of pea and cucumber cells is unknown. A possible explanation might be found in different degrees of electrical cell coupling in the two species. This possibility was investigated in cucumber hypocotyls by measuring the cell input resistance (Rin) of epidermal cells at various axial distances from the cut. Shorter distances increase the likelihood of shunting the cell membrane resistance through the shortened symplastic path to the cut surface. With a series of cuts made at decreasing distances from the measured site, cell depolarization increased without comparable changes in Rin. Two conclusions were drawn. Firstly, wound-induced depolarizations are not brought about by shunting of the cell resistance in the wound area. Secondly, the depolarization is probably not carried by ion channels but may be caused by an inhibition of proton pump activity. Parallel to its depolarizing effect on the membrane potential, excision led to a severe and sustained decline in the cucumber hypocotyl growth rate only when carried out sufficiently close to the growing region (45 mm from the hook). Similar excision in pea epicotyls failed to change the growth rate. Both electrical and growth data support the concept that the high and sustained responsiveness of cucumber seedlings to wounding is caused by a particular sensitivity of their proton pump mechanism.  相似文献   

4.
Stahlberg R  Cosgrove DJ 《Planta》1992,187(4):523-531
Excision of the epicotyl base of pea (Pisum sativum L.) seedlings in air results in a fast drop in the growth rate and rapid transient membrane depolarization of the surface cells near the cut. Subsequent immersion of the cut end into solution leads to a rapid, transient rise in the epicotyl growth rate and an acropetally propagating depolarization with an amplitude of about 35 mV and a speed of approx. 1 mm · s–1. The same result can be achieved directly by excision of the pea epicotyl under water. Shape, amplitude and velocity of the depolarization characterize it as a slow-wave potential. These results indicate that the propagating depolarization is caused by a surge in water uptake. Neither a second surge in water uptake (measured as a rapid increase in growth rate when the cut end was placed in air and then back into solution) nor another cut can produce the depolarization a second time. Cyanide suppresses the electrical signal at the treated position without inhibiting its transmission through this area and its development in untreated parts of the epicotyl. The large depolarization and repolarization which occur in the epidermal and subepidermal cells are not associated with changes in cell input resistance. Both results indicate that it is a transient shut-down of the plasma-membrane proton pump rather than large ion fluxes which is causing the depolarization. We conclude that the slow wave potential is spread in the stem via a hydraulic surge occurring upon relief of the negative xylem pressure after the hydraulic resistance of the root has been removed by excision.Abbreviations and Symbols GR growth rate - Px xylem pressure - Rin cell input resistance - SWP slow wave potential - Vm membrane potential - Vs surface potential This work was supported by grants to D.J.C. from the National Science Foundation and the U.S. Department of Energy.  相似文献   

5.
Stahlberg R  Cosgrove DJ 《Planta》1996,200(4):416-425
Slow wave potentials (SWPs) are transient depolarizations which propagate substantial distances from their point of origin. They were induced in the epidermal cells of pea epicotyls by injurious methods such as root excision and heat treatment, as well as by externally applied defined steps in xylem pressure (Px) in the absence of wounding. The common principle of induction was a rapid increase in Px. Such a stimulus appeared under natural conditions after (i) bending of the epicotyl, (ii) wounding of the epidermis, (iii) rewatering of dehydrated roots, and (iv) embolism. The induced depolarization was not associated with a change in cell input resistance. This result and the ineffectiveness of ion channel blockers point to H(+)-pumps rather than ion channels as the ionic basis of the SWP. Stimuli such as excision, heat treatment and pressure steps, which generate SWPs, caused a transient increase in the fluorescence intensity of epicotyls loaded with the pH-indicator DM-NERF, a 2',7'-dimethyl derivative of rhodol, but not of those loaded with the pH indicator 2',7'bis(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). Matching kinetics of depolarization and pH response identify a transient inactivation of proton pumps in the plasma membrane as the causal mechanism of the SWP. Feeding pump inhibitors to the cut surface of excised epicotyls failed to chemically simulate a SWP; cyanide, azide and 2,4-dinitrophenol caused sustained, local depolarizations which did not propagate. Of all tested substances, only sodium cholate caused a transient and propagating depolarization whose arrival in the growing region of the epicotyl coincided with a transient growth rate reduction.  相似文献   

6.
The positive xylem pressure (Px) in cucumber hypocotyls is a direct extension of root pressure and therefore depends on the root environment. Solutions of the electrolyte KCl (0-10 osm) reduced the hypocotyl Px transiently (biphasic response), while the Px reduction by mannitol solutions was sustained. The amplitudes of the induced Px reduction depended directly, and the degree of Px restoration after stress release depended indirectly, on the size of the initial positive Px indicating that mannitol released the root pressure by a mechanical rather than osmotic mechanism. Mannitol treatment and other means of root pressure reduction revealed two separate growth responses in the affected cucumber hypocotyls. Only steep Px drops (following root excision or root pressure release in mannitol) directly cause a rapid, transient drop in growth rate (GR). Both rapid and slow (after root incubation in KCN or NEM) decreases in root pressure, however, led to a sustained growth inhibition of cucumber hypocotyls after about 30 min. This delay characterizes the growth response as an indirect consequence of the Px change. Pea seedlings, which lacked root pressure and had a negative Px throughout, showed extremely small changes in epicotyl Px and GR after root incubation in mannitol. It is apparent that the higher sensitivity of cucumber growth to mannitol depended on the presence and release of root pressure.  相似文献   

7.
Slow wave potentials (SWPs) are transitory depolarizations occurring in response to treatments that result in a pressure increase in the xylem conduits (Px). Here SWPs are induced by excision of the root under water in 40- to 50-cm-tall light-grown sunflower plants in order to determine the effective signal range to a naturally sized pressure signal. The induced slow wave depolarization appears to move up the stem while it is progressively decremented (i.e. the amplitude decreases with increasing distance from the point of excision) with a rate that appears to rise acropetally from 2.5 to 5.5% cm–1. The decline of the SWP signal, in both amplitude and range, could be experimentally increased (i) when root excision was carried out in air and (ii) when the transpiration of the sunflower shoot was minimized by a preceding removal or coating of the leaves. A further decline of the SW signal was expected to occur when leaves were included in the measured path. However, when the most distant apical electrode was attached to an upper leaf, it showed a considerably larger depolarization than a neighboring stem position. This apparent amplification of the SWP signal is not confined to the leaf blade but includes the petiole as well. The amplification disappeared (i) when the illumination level was lowered to room light, (ii) when the blade was excised either completely or along the remaining midvein and (iii) when the intact leaf blade was submersed in water. These treatments reduce the SWP at the petiole to a small fraction of the signal in the opposite control leaf and specify bright illumination and blade-mediated transpiration as prerequisites of a signal increase that is confined to young, expanding leaves.  相似文献   

8.
Apical applications of 0.2 μg N6-benzyladenine (BA), a synthetic cytokinin, or 5 μg of gibberellic acid (GA3) significantly enhanced hypocotyl elongation in intact dwarf watermelon seedlings over a 48-h period. Accompanying the increase in hypocotyl length was marked expansion of cotyledons in BA-treated seedlings and inhibition of root growth by both compounds. A study on dry matter partitioning indicated that both growth regulators caused a preferential accumulation of dry matter in hypocotyls at the expense of the roots; however, GA3 elicited a more rapid and greater change than did BA. In comparison to untreated seedlings, BA decreased total translocation of metabolites out of the cotyledons. Water potentials of cotyledons and hypocotyls were determined by allowing organs to equilibrate for 2 h in serial concentrations of polyethylene glycol 4000. Osmotic potentials were determined by thermocouple psychrometry. During periods of rapid growth in cotyledons and hypocotyls of BA-treated seedlings and in hypocotyls of GA-treated seedlings, the osmotic potential increased and the turgor pressure decreased in relation to untreated seedlings, indicating that cell wall extensibility was being increased. Osmotic potentials were lower in hypocotyls of GA-treated than in those of BA-treated seedlings, even though growth rates were higher in GA-treated seedlings, indicating that the latter treatment was generating more osmotically active solutes in hypocotyls.  相似文献   

9.
Apical applications of 0.2 g N6-benzyladenine (BA), a synthetic cytokinin, or 5 g of gibberellic acid (GA3) significantly enhanced hypocotyl elongation in intact dwarf watermelon seedlings over a 48-h period. Accompanying the increase in hypocotyl length was marked expansion of cotyledons in BA-treated seedlings and inhibition of root growth by both compounds. A study on dry matter partitioning indicated that both growth regulators caused a preferential accumulation of dry matter in hypocotyls at the expense of the roots; however, GA3 elicited a more rapid and greater change than did BA. In comparison to untreated seedlings, BA decreased total translocation of metabolites out of the cotyledons. Water potentials of cotyledons and hypocotyls were determined by allowing organs to equilibrate for 2 h in serial concentrations of polyethylene glycol 4000. Osmotic potentials were determined by thermocouple psychrometry. During periods of rapid growth in cotyledons and hypocotyls of BA-treated seedlings and in hypocotyls of GA-treated seedlings, the osmotic potential increased and the turgor pressure decreased in relation to untreated seedlings, indicating that cell wall extensibility was being increased. Osmotic potentials were lower in hypocotyls of GA-treated than in those of BA-treated seedlings, even though growth rates were higher in GA-treated seedlings, indicating that the latter treatment was generating more osmotically active solutes in hypocotyls.Scientific Contribution No. 1219 from the New Hampshire Agricultural Experiment Station.  相似文献   

10.
Abstract We tested the hypothesis that electrogenic ion pumps, working at the parenchyma symplast/xylem interface of pea hypocotyls, provide the driving force for K+ uptake from the xylem. Solutions of known composition were perfused through a hypocotyl segment. The K+ activity of the solution flowing out of the xylem (K+out) increased (i.e. K+ uptake decreased) when aerobic respiration was inhibited by lack of O2, and this was preceded by a decrease in Vpx (electrical potential difference between parenchyma symplast and xylem). Perfusion with auxin (1AA) and fusicoccin (FC) stimulated the electrogenic activity of the ‘xylem pumps’ (111 and 205% respectively) and stimulated uptake of K + from the xylem (with 71% and 29% respectively). The close correlation between xylem pump activity and K+ uptake corroborated the aforementioned hypothesis. Interestingly, inhibition of pump activity by anoxia was incomplete in the presence of FC. It is thought that FC increases the affinity of the ATP-requiring xylem pump for ATP, thus ensuring that ATP production during fermentation is sufficient to fuel the pump in the absence of O2.  相似文献   

11.
Thompson NP 《Plant physiology》1966,41(7):1106-1112
Excision of all leaves and buds of Coleus blumei Benth. plants reduced xylem cell and sieve tube regeneration a highly significant amount around a wound in internode number 5 when compared with regeneration in intact (wounded) plants. Application of indoleacetic acid (IAA-14C) to the cut surface of internode number 2 restores regenerative activity around the wound in internode number 5. Radioactivity applied as IAA-14C reaches the wound area when applied at the cut surface of inter-node number 2 showing a logarithmic decrease with distance from the point of application. Chromatography showed that radioactivity was located close to the RF of IAA as well as near the solvent front.  相似文献   

12.
To evaluate the possible role of solute transport during extension growth, water and solute relations of cortex cells of the growing hypocotyl of 5-day-old castor bean seedlings (Ricinus communis L.) were determined using the cell pressure probe. Because the osmotic pressure of individual cells (πi) was also determined, the water potential (ψ) could be evaluated as well at the cell level. In the rapidly growing part of the hypocotyl of well-watered plants, turgor increased from 0.37 megapascal in the outer to 1.04 megapascal in the inner cortex. Thus, there were steep gradients of turgor of up to 0.7 megapascal (7 bar) over a distance of only 470 micrometer. In the more basal and rather mature region, gradients were less pronounced. Because cell turgor ≈ πi and ψ ≈ 0 across the cortex, there were also no gradients of ψ across the tissue. Gradients of cell turgor and πi increased when the endosperm was removed from the cotyledons, allowing for a better water supply. They were reduced by increasing the osmotic pressure of the root medium or by cutting off the cotyledons or the entire hook. If the root was excised to interrupt the main source for water, effects became more pronounced. Gradients completely disappeared and turgor fell to 0.3 megapascal in all layers within 1.5 hours. When excised hypocotyls were infiltrated with 0.5 millimolar CaCl2 solution under pressure via the cut surface, gradients in turgor could be restored or even increased. When turgor was measured in individual cortical cells while pressurizing the xylem, rapid responses were recorded and changes of turgor exceeded that of applied pressure. Gradients could also be reestablished in excised hypocotyls by abrading the cuticle, allowing for a water supply from the wet environment. The steep gradients of turgor and osmotic pressure suggest a considerable supply of osmotic solutes from the phloem to the growing tissue. On the basis of a new theoretical approach, the data are discussed in terms of a coupling between water and solute flows and of a compartmentation of water and solutes, both of which affect water status and extension growth.  相似文献   

13.
We have studied the role of endogenous auxin on adventitious rooting in hypocotyls of derooted sunflower (Helianthus annuus L. var. Dahlgren 131) seedlings. Endogenous free and conjugated indole-3-acetic acid (IAA) were measured in three segments of hypocotyls of equal length (apical, middle, basal) by using gas chromatography-mass spectrometry with [13C6]-IAA as an internal standard. At the time original roots were excised (0 h), the free IAA level in the hypocotyls showed an acropetally decreasing gradient, but conjugated IAA level increased acropetally; i.e. free to total IAA ratio was highest in the basal portion of hypocotyls. The basal portion is the region where most of root primordia were found. Some primordia were seen in this region within 24 h after the roots were excised. The quantity of free IAA in the middle portion of the hypocotyl increased up to 15 h after excision and then decreased. In this middle region there were fewer root primordia, and they could not be seen until 72 h. In the apical portion the amount of free IAA steadily increased and no root primordia were seen by 72 h. Surgical removal of various parts of the hypocotyl tissues caused adventitious root formation in the hypocotyl regions where basipetally transported IAA could accumulate. Reduction in the basipetal flow of auxin by N-1-naphthylphthalamic acid and 2,3,5-tri-iodobenzoic acid resulted in fewer adventitious roots. The fewest root primordia were seen if the major sources of endogenous auxin were removed by decapitation of the cotyledons and apical bud. Exogenous auxins promoted rooting and were able to completely overcome the inhibitory effect of 2,3,5-tri-iodobenzoic acid. Exogenous auxins were only partially able to overcome the inhibitory effect of decapitation. We conclude that in sunflower hypocotyls endogenously produced auxin is necessary for adventitious root formation. The higher concentrations of auxin in the basal portion may be partially responsible for that portion of the hypocotyl producing the greatest number of primordia. In addition to auxins, other factors such as wound ethylene and lowered cytokinin levels caused by excision of the original root system cuttings must also be important.  相似文献   

14.
Solutions of 3-phenylpropionitrile (PPN) and 3-phenylpropionicacid (PPA) exhibited auxin-like plant growth activity by stimulatingelongation of sections cut from wheat coleoptiles and garden-cresshypocotyls. Elongation of sugar-beet hypocotyl sections wasstimulated by PPA but not by PPN. Although PPA stimulated elongationof pea-epicotyl sections after 19 h incubation, most concentrationsof PPN did not show activity until 70 h. PPN generally stimulatedadventitious root formation on hypocotyls of garden-cress andsugar-beet, and on epicotyls of pea seedlings whereas dilutesolutions of PPA were inactive and concentrated solutions weretoxic. Steam distillates of water-cress plants contained a substancewith auxin-like growth activity and chromatographic propertiessimilar to PPN. Nasturtium officinale R. Br. water-cress, 3-phenylpropionitrile, 3-phenylpropionic acid, auxins  相似文献   

15.
It has been proposed that cell wall loosening during plant cell growth may be mediated by the endotransglycosylation of load-bearing polymers, specifically of xyloglucans, within the cell wall. A xyloglucan endotransglycosylase (XET) with such activity has recently been identified in several plant species. Two cell wall proteins capable of inducing the extension of plant cell walls have also recently been identified in cucumber hypocotyls. In this report we examine three questions: (1) Does XET induce the extension of isolated cell walls? (2) Do the extension-inducing proteins possess XET activity? (3) Is the activity of the extension-inducing proteins modulated by a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2)? We found that the soluble proteins from growing cucumber (cucumis sativum L.) hypocotyls contained high XET activity but did not induce wall extension. Highly purified wall-protein fractions from the same tissue had high extension-inducing activity but little or no XET activity. The XET activity was higher at pH 5.5 than at pH 4.5, while extension activity showed the opposite sensitivity to pH. Reconstituted wall extension was unaffected by the presence of a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2), an oligosaccharide previously shown to accelerate growth in pea stems and hypothesized to facilitate growth through an effect on XET-induced cell wall loosening. We conclude that XET activity alone is neither sufficient nor necessary for extension of isolated walls from cucumber hypocotyls.  相似文献   

16.
Kiyoshi Katou  Kazuo Ichino 《Planta》1982,155(6):486-492
Carbon dioxide, introduced into the gas phase of the experimental chamber, has distinct effects on two spatially separate membrane potentials and the rate of elongation growth in hypocotyl segments ofVigna sesquipedalis Wight. Both membrane potentials (V ps andV px=the electric potential difference between the parenchyma symplast and the surface of the hypocotyl, and that between the parenchyma symplast and the xylem, respectively) hyperpolarized rapidly but transiently at the introduction of CO2. Prolonged exposure of the hypocotyl to high concentrations of CO2 (above 10%) caused depolarization of membrane potentials above the level before CO2 introduction. When CO2 was replaced with air, the membrane potentials exhibited a distinct depolarization response of transient nature. The growth rate of the hypocotyl segments exhibited similar responses to CO2 as did the membrane potentials (the increase and the decrease of the growth rate were corresponded to the hyperpolarization and the depolarization, respectively), but these responses always followed the changes of the membrane potentials. The CO2-induced maximum hyperpolarization ofV ps and the maximum increase of the growth rate were closely correlated. All these responses were strictly dependent on aerobic metabolism. These results indicate that CO2 may regulate elongation growth in two ways: by affecting the activity of the electrogenic ion pump via intracellular acidification, and also by acting via apoplastic acidification as a wall-loosening acid.Symbols and abbreviations V sx electric potential difference between the surface (S) and the xylem (X) of the hypocotyl - V px electric potential difference between the inside of a parenchyma cell (P) andX - V ps electric potential difference betweenP andS - V ps (CO2, max) the maximum value of CO2-induced hyperpolarization ofV ps - GR(CO2, max) the maximum value of CO2-induced increase of the growth rate - IAA indole-3-acetic acid  相似文献   

17.
18.
Salt sensitive (pea) and salt tolerant (barley) species were used to understand the physiological basis of differential salinity tolerance in crops. Pea plants were much more efficient in restoring otherwise depolarized membrane potential thereby effectively decreasing K+ efflux through depolarization‐activated outward rectifying potassium channels. At the same time, pea root apex was 10‐fold more sensitive to physiologically relevant H2O2 concentration and accumulated larger amounts of H2O2 under saline conditions. This resulted in a rapid loss of cell viability in the pea root apex. Barley plants rapidly loaded Na+ into the xylem; this increase was only transient, and xylem and leaf Na+ concentration remained at a steady level for weeks. On the contrary, pea plants restricted xylem Na+ loading during the first few days of treatment but failed to prevent shoot Na+ elevation in the long term. It is concluded that superior salinity tolerance of barley plants compared with pea is conferred by at least three different mechanisms: (1) efficient control of xylem Na+ loading; (2) efficient control of H2O2 accumulation and reduced sensitivity of non‐selective cation channels to H2O2 in the root apex; and (3) higher energy saving efficiency, with less ATP spent to maintain membrane potential under saline conditions.  相似文献   

19.
Two inhibitory fractions (B1 and C) from extracts of immature fruit of carob were tested for their ability to inhibit the action of indoleacetic acid (IAA) in three bioassays. There was no reduction of IAA-induced reactions in the Avena curvature test, abscission of debladed coleus petioles, or growth of cucumber hypocotyls. The highest ratio of inhibitor to IAA was 10,000 times greater than the ratio necessary to inhibit by 50% the growth caused by an equivalent amount of gibberellin A3 in pea seedlings. At the highest concentration used, fraction C alone caused curvature of Avena coleoptiles. The inhibitory fractions appeared to enhance the effect of IAA in the cucumber test.  相似文献   

20.
Both hypocotyl and root growth of sunflower (Helianthus annuus) were examined in response to a range of narrow-band width light treatments. Changes in two growth-regulating hormones, ethylene and gibberellins (GAs) were followed in an attempt to better understand the interaction of light and hormonal signaling in the growth of these two important plant organs. Hydroponically-grown 6-day-old sunflower seedlings had significantly elongated hypocotyls and primary roots when grown under far-red (FR) light produced by light emitting diodes (LEDs), compared to narrow-band red (R) and blue (B) light. However, hypocotyl and primary root lengths of seedlings given FR light were still shorter than was seen for dark-grown seedlings. Light treatment in general (compared to dark) increased lateral root formation and FR light induced massive lateral root formation, relative to treatment with R or B light. Levels of ethylene evolution (roots and hypocotyls) and concentrations of endogenous GAs (hypocotyls) were assessed from both 6-day-old sunflower plants either grown in the dark, or treated with FR, R or B light. Both R and B light had similar effects on hypocotyl and root growth as well as on ethylene and on hypocotyl GA levels. Dark treatment resulted in the highest ethylene levels, whereas FR treatment significantly reduced ethylene evolution for both hypocotyls and roots. R- and B-light treatments elevated ethylene evolution relative to FR light. Endogenous GA53 and GA19 levels in hypocotyls were significantly higher and GA44, GA20 and GA1 levels significantly lower, for dark and FR light treatments compared to R and B light-treatments. The patterns seen for changes in GA concentrations indicate FR-, R- and B-light-mediated effects [differences] in the metabolism of the early C20 GAs, GA53 → GA44 → GA19. Surprisingly, GA20, GA1 and GA8 levels in hypocotyls were very much reduced by treatment of the plants with FR light, relative to B and R-light treatments, e.g. the increased hypocotyl elongation induced by FR light was correlated with reduced levels of all three of the downstream C19 GAs. The best explanation, albeit speculative, is that a more rapid metabolism, i.e. GA20 → GA1 → GA8 → GA8 conjugates occurs under FR light. Although this study provided no evidence that elevated ethylene evolution by roots or hypocotyls of sunflower is controlling growth via endogenous GA biosynthesis, there are differences between soil-grown and hydroponically-grown sunflower seedlings with regard to trends seen for hypocotyl GA concentrations and both root and hypocotyl ethylene evolution in response to narrow band width R and FR light signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号