首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
分子对接在基于结构药物设计中的应用   总被引:8,自引:0,他引:8       下载免费PDF全文
分子对接是研究分子间(如配体如受体)相互作用,并预测其结合模式和亲合力的一种理论模拟方法。近年来,分子对接方法已成为计算机辅助药物研究领域的一项重要技术,在数据库搜寻,组合库设计及蛋白作用研究方面得到了广泛发展。  相似文献   

2.
本研究旨在以黄芪活性成分为切入点,基于网络药理学及分子对接研究黄芪治疗特发性肺纤维化的分子机制.首先,通过TCMSP筛选黄芪的活性成分;利用Swiss Target Prediction预测黄芪化学成分潜在靶点;使用Gene-Cards和CTD筛选出特发性肺纤维化的相关基因,交集获得黄芪治疗特发性肺纤维化的潜在靶点,对...  相似文献   

3.
为探究雷公藤干预结缔组织相关间质性肺疾病(CTD-ILD)的分子机制.运用网络药理学的方法,通过TCM-SP数据库挖掘雷公藤的主要化学成分及作用靶点,利用Genecards、OMIM、DrugBank数据库获取CTD-ILD相关靶点,利用String平台进行蛋白质相互作用分析,构建PPI网络并挖掘网络中潜在的蛋白质功能...  相似文献   

4.
蛋白质与类药分子的柔性对接   总被引:1,自引:0,他引:1  
本文利用“禁忌搜索”算法和Gehlhaar简化能量势函数实现蛋白质与类药分子之间的柔性对接。对包含100个复合物的检验集进行了计算检验,得到了满意的结果,89%预测复合物结构的误差小于0.25nm。与利用遗传算法进行柔性对接的GOLD程序相比,本方法的成功率高,局限性小,计算时间也短。  相似文献   

5.
受体酪氨酸激酶 c-Met 是抗肿瘤治疗的一个重要靶点,c-Met/HGF 通路在肿瘤的发生、发展、转移及血管再生中发挥重要作用。综述 c-Met 及与配体 HGF 的复合物结构特征、c-Met/HGF 通路的生物学作用以及靶向 c-Met 抗肿瘤小分子抑制剂的研究进展。  相似文献   

6.
蛋白质-蛋白质分子对接方法研究进展   总被引:5,自引:0,他引:5       下载免费PDF全文
蛋白质分子间相互作用与识别是21世纪生命科学研究的前沿和热点.分子对接方法是研究这一课题有效的计算机模拟手段.通常,蛋白质-蛋白质分子对接包括四个阶段:搜索受体与配体分子间的结合模式,过滤对接结构以排除不合理的结合模式,优化结构,用精细的打分函数评价、排序对接模式并挑选近天然构象.结合国内外研究蛋白质-蛋白质分子对接方法进展和本研究小组的工作,对以上四个环节做了详细的综述.另外,还分析了目前存在的主要问题,并提出对未来工作的展望.  相似文献   

7.
全局极小化方法及其在结构生物学中的应用近年来取得了显著的进展.适当简化的分子对接问题是全局极小化方法的一个很好目标,并且是当前一个相当活跃的研究领域.对接可分为两类:主要用于从头配体设计的细致对接和用于已知化合物数据库筛选以发现药物的粗略对接,它们对全局极小化算法的要求是不同的.简要评述了新出现的适合于对接问题的随机和确定性全局极小化算法,其中势能平滑算法看来很有希望,值得密切关注.  相似文献   

8.
苓桂术甘汤是出自伤寒论的经典名方,临床上对治疗冠心病(coronary heart disease,CHD)具有显著疗效。由于苓桂术甘汤复杂的分子组成和多样的药学活性,且关于其治疗CHD的基础理论研究较少,目前苓桂术甘汤治疗CHD的作用机制和靶点尚未完全阐明。本文采用网络药理学的研究方法探索苓桂术甘汤治疗CHD的作用机制,并利用分子对接验证药物效应分子与靶点间的相互作用。本文通过TCMSP数据库获取苓桂术甘汤中103个有相关靶点信息的活性成分及对应靶点,通过GeneCards数据库和DisGeNET数据库获取4 618个CHD相关靶点蛋白。将苓桂术甘汤与CHD的交集靶点导入到Cytoscape3.9.1软件中构建“苓桂术甘汤-活性成分-CHD作用靶点”网络,并利用STRING数据库获取交集靶点相互作用关系,筛选出AKT1、TP53、STAT3等核心靶点并绘制PPI网络。利用交集靶点在David数据库中进行GO和KEGG富集分析发现,苓桂术甘汤通过调控细胞凋亡、细胞增殖、血管生成、胆固醇代谢、炎症反应以及对脂多糖、缺氧、肿瘤坏死因子的响应等生物学过程和AGE-RAGE、脂质与动脉粥样硬化...  相似文献   

9.
为从分子层面阐述小青龙汤治疗哮喘的作用机制,探索小青龙汤的潜在靶标,本研究检索中药系统药理学数据库及分析平台(TCMSP)并根据口服生物利用度(oralbioavailability,OB)、药物相似性(drug-likeness,DL)筛选出小青龙汤的活性成分,利用Pharmmapper数据库筛选小青龙汤潜在作用靶点,挖掘CTD、Genecards数据库以筛选与哮喘相关的作用靶点,利用Cytoscape 3.6.1软件构建小青龙汤的蛋白互作网络图、化合物靶点图,并通过计算拓扑学参数找到小青龙汤中关键的作用靶点和化合物。对小青龙汤对哮喘的作用靶点进行GO分析和KEGG分析。利用iGEMDOCK软件进行分子对接,预测作用靶点和主要化合物的结合度。通过筛选得到小青龙汤活性成分、潜在作用靶点;GO分析得到43个生物学过程、11个细胞组成和9个分子功能;KEGG分析包括PI3K-Akt信号通路、HIF-1信号通路、Wnt信号通路等。初步验证和预测了小青龙汤对治疗哮喘的作用机制,并为进一步深入揭示其作用机制提供参考。  相似文献   

10.
以LeDock分子对接软件对TCMSP数据库中的13445种中草药成分小分子与JAK3激酶进行分子模拟对接研究,分析对接结合自由能与配体效率,筛选出18种小分子,再根据受体与配体的相互作用进一步分析,得到7种与JAK3激酶有较好结合作用的小分子,并且发现JAK3激酶分子中氨基酸残基Arg953、Asp967、Lys830、Ala966和Asn954是小分子与酶形成氢键作用的重要位点,为JAK3抑制剂的开发设计提供有力依据。以其他JAK家族成员为靶蛋白,进行反向筛选,发现断马钱子苷(scologanin)对JAK3激酶表现出强结合力与高选择性。本研究意在寻找可以作为JAK3激酶高选择性抑制剂的中草药药效小分子,结果发现断马钱子苷具备相应的潜力,值得进一步深入研究。  相似文献   

11.
    
  相似文献   

12.
Mutations in the glucokinase (GK) gene play a critical role in the establishment of type 2 diabetes. In our earlier study, R308K mutation in GK in a clinically proven type 2 diabetic patient showed, structural and functional variations that contributed immensely to the hyperglycemic condition. In the extension of this work, a cohort of 30 patients with established type 2 diabetic condition were chosen and the exons 10 and 11 of GK were PCR-amplified and sequenced. The sequence alignment showed A379S, D400Y, E300A, E395A, E395G, H380N, I348N, L301M, M298I, M381G, M402R, R308K, R394P, R397S, and S398R mutations in 12 different patients. The structural analysis of these mutated GKs, showed a variable number of β-α-β units, hairpins, β-bulges, strands, helices, helix–helix interactions, β-turns, and γ-turns along with the RMSD variations when compared to wild-type GK. Molecular modeling studies revealed that the substrate showed variable binding orientations and could not fit into the active site of these mutated structures; moreover, it was expelled out of the conformations. Therefore, these structural variations in GK due to mutations could be one of the strongest reasons for the hyperglycemic levels in these type 2 diabetic patients.  相似文献   

13.
Designing of rapid, facile, selective, and cost-effective biosensor technology is a growing area for the detection of various classes of pesticides. The biosensor with these features can be achieved only through the various bio-components using different transducers. This study, therefore, focuses on the usage of molecular docking, specificity tendencies, and capabilities of proteins for the detection of pesticides. Accordingly, the four transducers, acetylcholinesterase (ACH), cytochromes P450 (CYP), glutathione S-transferase (GST), and protein kinase C (PKC) were selected based on their applications including neurotransmitter, metabolism, detoxification enzyme, and protein phosphorylation. Then after molecular docking of the pesticides, fenobucarb, dichlorodiphenyltrichloroethane (DDT), and parathion onto each enzyme, the conformational behavior of the most stable complexes was further analyzed using 50 ns Molecular Dynamics (MD) simulations carried out under explicit water conditions. In the case of protein kinase C (PKC) and cytochrome P450 3A4 enzyme (CYP), the fenobucarb complex showed the most suitable combination of free energy of binding and inhibition constant ?4.42 kcal/mol (573.73 μM) and ?5.1 kcal/mol (183.49 μM), respectively. Parathion dominated for acetylcholinesterase (ACH) with ?4.57 kcal/mol (448.09 μM) and lastly dichlorodiphenyltrichloroethane for glutathione S-transferase (GST), ?5.43 kcal/mol (103.88 μM). The RMSD variations were critical for understanding the impact of pesticides as they distinctively influence the energetic attributes of the proteins. Overall, the outcomes from the extensive analysis provide an insight into the structural features of the proteins studied, thereby highlighting their potential use as a substrate in biorecognition sensing of pesticide compounds.  相似文献   

14.
    
The recent occurrence of 2009 influenza A (H1N1) pandemic as well as others has raised concern of a far more dangerous outcome should this virus becomes resistant to current drug therapies. The number of clinical cases that are resistant to oseltamivir (Tamiflu®) is larger than the limited number of neuraminidase (NA) mutations (H275Y, N295S, and I223R) that have been identified at the active site and that are associated to oseltamivir resistance. In this study, we have performed a comparative analysis between a set of NAs that have the most representative mutations located outside the active site. The recently crystallized NA‐oseltamivir complex (PDB ID: 3NSS) was used as a wild‐type structure. After selecting the target NA sequences, their three‐dimensional (3D) structure was built using 3NSS as a template by homology modeling. The 3D NA models were refined by molecular dynamics (MD) simulations. The refined models were used to perform a docking study, using oseltamivir as a ligand. Furthermore, the docking results were refined by free‐energy analysis using the MM‐PBSA method. The analysis of the MD simulation results showed that the NA models reached convergence during the first 10 ns. Visual inspection and structural measures showed that the mutated NA active sites show structural variations. The docking and MM‐PBSA results from the complexes showed different binding modes and free energy values. These results suggest that distant mutations located outside the active site of NA affect its structure and could be considered to be a new source of resistance to oseltamivir, which agrees with reports in the clinical literature. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
    
Palmer DS  Jensen F 《Proteins》2011,79(10):2778-2793
We report the development of a method to improve the sampling of protein conformational space in molecular simulations. It is shown that a principal component analysis of energy-weighted normal modes in Cartesian coordinates can be used to extract vectors suitable for describing the dynamics of protein substructures. The method can operate with either atomistic or user-defined coarse-grained models of protein structure. An implicit reverse coarse-graining allows the dynamics of all-atoms to be recovered when a coarse-grained model is used. For an external test set of four proteins, it is shown that the new method is more successful than normal mode analysis in describing the large-scale conformational changes observed on ligand binding. The method has potential applications in protein-ligand and protein-protein docking and in biasing molecular dynamics simulations.  相似文献   

16.
分子伴侣HdeA与底物蛋白间的相互作用可帮助底物蛋白复性,这是肠道致病菌得以在酸性环境中幸存的重要原因之一.为探究HdeA发挥伴侣活性的作用机制,本研究采用分子对接和分子动力学的方法,模拟了HdeA与底物蛋白SurA间的相互作用,计算了二者的结合自由能.通过分析HdeA-SurA复合物体系的作用模式、氢键作用以及能量分解的结果,确定了HdeA与底物蛋白SurA结合时发挥重要作用的关键氨基酸残基.该研究结果为以后采用实验手段探究HdeA与底物蛋白之间的作用提供了重要的理论参考,同时为今后设计与开发HdeA的抑制剂提供了理论指导依据.  相似文献   

17.
Bacterial resistance to β-lactams antibiotics is a serious threat to human health. The most common cause of resistance to the β-lactams is the production of β-lactamase that inactivates β-lactams. Specifically, class A extended-spectrum β-lactamase produced by antibiotic resistant bacteria is capable of hydrolyzing extended-spectrum Cephalosporins and Monobactams. Mutations in class A β-lactamases play a crucial role in substrate and inhibitor specificity. In this present study, the E166A point mutant, R274N/R276N double mutant, and E166A/R274N/R276N triple mutant class A β-lactamases are analyzed. Molecular dynamics (MD) simulations are done to understand the consequences of mutations in class A β-lactamases. Root mean square deviation, root mean square fluctuation, radius of gyration, solvent accessibility surface area, hydrogen bond, and essential dynamics analysis results indicate notable loss in stability for mutant class A β-lactamases. MD simulations of native and mutant structures clearly confirm that the substitution of alanine at the position of 166, Asparagine at 274 and 276 causes more flexibility in 3D space. Molecular docking results indicate the mutation in class A β-lactamases which decrease the binding affinity of Cefpirome and Ceftobiprole which are third and fifth generation Cephalosporins, respectively. MD simulation of Ceftobiprole-native and mutant type Class A β-lactamases complexes reveal that E166A/R274N/R276N mutations alter the structure and notable loss in the stability for Ceftobirole-mutant type Class A β-lactamases complexes. Ceftobiprole is currently prescribed for patients with serious bacterial infections; this phenomenon is the probable cause for the effectiveness of Ceftobiprole in controlling bacterial infections.  相似文献   

18.
Schizophrenia is a mental illness; most affected people live in developing countries, and neither appropriate treatment nor commercial drugs are currently available. One possibility is to inhibit human-d-amino acid oxidase (h-DAAO). In this study, molecular dynamic simulations of the monomer, dimer and tetramer forms of h-DAAO complexed with the inhibitor 3-hydroxyquinolin-2(1H)-one(2) were performed. Seven residues, Leu51, Gln53, Leu215, Tyr228, Ile230, Arg283 and Gly313, were identified as essential for interacting with the inhibitor. Molecular docking of h-DAAO with pyrrole, quinoline and kojic acid derivatives, representing 69 known or potential h-DAAO inhibitors, was also performed. The results indicated that the activity of the inhibitor can be improved by modifying the compounds to have a substituent group capable of interacting with the side chain of Tyr228. Van der Waals interactions of the inhibitor with the hydrophobic pocket of h-DAAO and electrostatic interactions or H-bonds with Arg283 and Gly313 were important elements in determining the efficiency of the inhibitor. These results provide information on the interaction between h-DAAO and its inhibitors at the molecular level and can aid in the design of novel inhibitors against h-DAAO for new drug development in the treatment of schizophrenia.  相似文献   

19.
P-glycoprotein (P-gp) is a main factor contributing to multidrug resistance. The effect of this transporter protein on limiting the effectiveness of chemotherapy has been shown by various studies. In a previous report, we synthesized some 14-dihydropyridine (DHP) derivatives as inhibitors of human P-gp. In the present study, a computational approach has been exploited to reveal the main interactions between DHPs and P-gp. In order to do this, homology modeling was performed to obtain a model of the protein. Then, molecular dynamics simulation was used to refine the constructed model of P-gp in the presence of the lipids bilayer. Model validation was performed with several tools. Finally, molecular docking followed by MD simulation of ligand–protein complex was employed to elucidate the binding mode and the dynamical changes of protein with/without DHPs bound. The results emphasized that interaction of the residues Gln912, Ser909, Arg905, Ser474, Val472 with DHPs play a crucial role in the inhibitory of these ligands and this was in a relatively good accordance with the results reported in the experimental studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号