首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The objective of this study was to evaluate whether the levels of coenzyme Q10 (CoQ10) in brain tissue of multiple system atrophy (MSA) patients differ from those in elderly controls and in patients with other neurodegenerative diseases.

Methods

Flash frozen brain tissue of a series of 20 pathologically confirmed MSA patients [9 olivopontocerebellar atrophy (OPCA) type, 6 striatonigral degeneration (SND) type, and 5 mixed type] was used for this study. Elderly controls (n = 37) as well as idiopathic Parkinson''s disease (n = 7), dementia with Lewy bodies (n = 20), corticobasal degeneration (n = 15) and cerebellar ataxia (n = 18) patients were used as comparison groups. CoQ10 was measured in cerebellar and frontal cortex tissue by high performance liquid chromatography.

Results

We detected a statistically significant decrease (by 3–5%) in the level of CoQ10 in the cerebellum of MSA cases (P = 0.001), specifically in OPCA (P = 0.001) and mixed cases (P = 0.005), when compared to controls as well as to other neurodegenerative diseases [dementia with Lewy bodies (P<0.001), idiopathic Parkinson''s disease (P<0.001), corticobasal degeneration (P<0.001), and cerebellar ataxia (P = 0.001)].

Conclusion

Our results suggest that a perturbation in the CoQ10 biosynthetic pathway is associated with the pathogenesis of MSA but the mechanism behind this finding remains to be elucidated.  相似文献   

2.
Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (statins) have been proven to reduce effectively cholesterol level and morbidity and mortality in patients with coronary heart disease and/or dyslipoproteinemia. Statins inhibit synthesis of mevalonate, a precursor of both cholesterol and coenzyme Q (CoQ). Inhibited biosynthesis of CoQ may be involved in some undesirable actions of statins. We investigated the effect of simvastatin on tissue CoQ concentrations in the rat model of NO-deficient hypertension induced by chronic L-NAME administration. Male Wistar rats were treated daily for 6 weeks with L-NAME (40 mg/kg) or with simvastatin (10 mg/kg), another group received simultaneously L-NAME and simvastatin in the same doses. Coenzyme Q(9) and Q(10) concentrations were analyzed by high performance liquid chromatography. L-NAME and simvastatin alone had no effect on CoQ concentrations. However, simultaneous application of L-NAME and simvastatin significantly decreased concentrations of both CoQ homologues in the left ventricle and slightly decreased CoQ(9) concentration in the skeletal muscle. No effect was observed on CoQ level in the liver and brain. We conclude that the administration of simvastatin under the condition of NO-deficiency reduced the level of CoQ in the heart and skeletal muscle what may participate in adverse effect of statins under certain clinical conditions.  相似文献   

3.
In order to determine whether coenzyme Q (CoQ) homologs which coexist in mammals play the same or different roles, the concentrations of coenzyme Q9 (CoQ9) and coenzyme Q10 (CoQ10) were analyzed in Japanese White (JW) rabbit tissues during growth, together with the intracellular distribution of these two CoQ homologs. In liver %CoQ9 (total [CoQ9] X 100/total [CoQ9] + total [CoQ10]) was approx. 40% until 3 weeks after birth, and then gradually decreased to 20%. In kidney, %CoQ9 decreased from 8% (1 week) to 1% (7 weeks). In heart, %CoQ9 was 3%, and in the brain, 2%, and these values did not change with growth. Most CoQ9 was present in the cytosolic fraction, whereas most CoQ10 was in the mitochondrial fraction. There was but minor change in the intracellular distribution of CoQ9 and CoQ10 in rabbit liver between 2 weeks and 7 weeks of age. These results suggest that CoQ9 and CoQ10 may play different roles in their physiological actions as antioxidant or component of the mitochondrial respiratory chain.  相似文献   

4.
Muscle coenzyme Q(10) (CoQ(10) or ubiquinone) deficiency has been identified in more than 20 patients with presumed autosomal-recessive ataxia. However, mutations in genes required for CoQ(10) biosynthetic pathway have been identified only in patients with infantile-onset multisystemic diseases or isolated nephropathy. Our SNP-based genome-wide scan in a large consanguineous family revealed a locus for autosomal-recessive ataxia at chromosome 1q41. The causative mutation is a homozygous splice-site mutation in the aarF-domain-containing kinase 3 gene (ADCK3). Five additional mutations in ADCK3 were found in three patients with sporadic ataxia, including one known to have CoQ(10) deficiency in muscle. All of the patients have childhood-onset cerebellar ataxia with slow progression, and three of six have mildly elevated lactate levels. ADCK3 is a mitochondrial protein homologous to the yeast COQ8 and the bacterial UbiB proteins, which are required for CoQ biosynthesis. Three out of four patients tested showed a low endogenous pool of CoQ(10) in their fibroblasts or lymphoblasts, and two out of three patients showed impaired ubiquinone synthesis, strongly suggesting that ADCK3 is also involved in CoQ(10) biosynthesis. The deleterious nature of the three identified missense changes was confirmed by the introduction of them at the corresponding positions of the yeast COQ8 gene. Finally, a phylogenetic analysis shows that ADCK3 belongs to the family of atypical kinases, which includes phosphoinositide and choline kinases, suggesting that ADCK3 plays an indirect regulatory role in ubiquinone biosynthesis possibly as part of a feedback loop that regulates ATP production.  相似文献   

5.
The influence of different kinds of dietary fat (8%) and of endogenous lipid peroxidation with regard to coenzyme Q9 (CoQ9) and coenzyme Q10 (CoQ10) concentrations in mitochondria and microsomes from rat liver has been investigated by means of an HPLC technique. Although the different diet fats used did not produce any effect on microsomes, it was possible to show that each experimental diet differently influenced the mitochondrial levels of CoQ9 and CoQ10. The highest mitochondrial CoQ content was found in case of a diet supplemented with corn oil. An endogenous oxidative stress induced by adriamycin was able to produce a sharp decrease in mitochondrial CoQ9 levels in the rats to which corn oil was administered. The results suggest that dietary fat ought to be considered when studies concerning CoQ mitochondrial levels are carried out.  相似文献   

6.
Squalene has been used as a dietary supplement for a long history due to its potential cancer‐preventive function. However, the mechanism has not been investigated in detail yet. Therefore, the aim of this study is to see if the plasma coenzyme Q10 (CoQ10) level will be altered by gavage of squalene and oxidosqualenes to rats. In the present work, a sensitive and simple high‐performance analytical method based on ultra‐high‐performance liquid chromatography coupled with an Orbitrap mass spectrometry (UPLC‐Orbitrap‐MS) was developed for the quantification of CoQ10 in rat plasma. Coenzyme Q9 (CoQ9) was employed as the internal standard. CoQ10 was determined after acetonitrile‐mediated plasma protein precipitation using UPLC‐Orbitrap‐MS in negative ion mode. Intragastric administration of squalene and the two squalene epoxides into rats once daily for several days elevated the level of CoQ10 in their plasma, but there was no significant difference between high‐dose (286 mg/kg) and low‐dose (143 mg/kg) groups. Intragastric administration of squalene once a day for 5 consecutive days and oxidosqualenes once a day for 3 consecutive days is necessary for reaching the steady‐state level of CoQ10. Our present findings indicate that squalene and oxidosqualenes may be useful for stimulating the synthesis of CoQ10 in rats.  相似文献   

7.
The effect of rooibos tea (Aspalathus linearis) on liver antioxidant status and oxidative stress was investigated in rat model of carbon tetrachloride-induced liver damage. Synthetic antioxidant N-acetyl-L-cysteine (NAC) was used for comparison. Administration of carbon tetrachloride (CCl4) for 10 weeks decreased liver concentrations of reduced and oxidized forms of coenzyme Q9 (CoQ9H2 and CoQ9), reduced -tocopherol content and simultaneously increased the formation of malondialdehyde (MDA) as indicator of lipid peroxidation. Rooibos tea and NAC administered to CCl4-damaged rats restored liver concentrations of CoQ9H2 and alpha-tocopherol and inhibited the formation of MDA, all to the values comparable with healthy animals. Rooibos tea did not counteract the decrease in CoQ9, whereas NAC was able to do it. Improved regeneration of coenzyme Q9 redox state and inhibition of oxidative stress in CCl4-damaged livers may explain the beneficial effect of antioxidant therapy. Therefore, the consumption of rooibos tea as a rich source of natural antioxidants could be recommended as a market available, safe and effective hepatoprotector in patients with liver diseases.  相似文献   

8.
Mitochondrial dysfunction and oxidative stress participate in the development of diabetic complications, however, the mechanisms of their origin are not entirely clear. Coenzyme Q has an important function in mitochondrial bioenergetics and is also a powerful antioxidant. Coenzyme Q (CoQ) regenerates alpha-tocopherol to its active form and prevents atherogenesis by protecting low-density lipoproteins against oxidation. The aim of this study was to ascertain whether the experimentally induced diabetes mellitus is associated with changes in the content of endogenous antioxidants (alpha-tocopherol, coenzymes Q9 and Q10) and in the intensity of lipoperoxidation. These biochemical parameters were investigated in the blood and in the isolated heart and liver mitochondria. Diabetes was induced in male Wistar rats by a single intravenous injection of streptozotocin (45 mg x kg(-1)), insulin was administered once a day for 8 weeks (6 U x kg(-1)). The concentrations of glucose, cholesterol, alpha-tocopherol and CoQ homologues in the blood of the diabetic rats were increased. The CoQ9/cholesterol ratio was reduced. In heart and liver mitochondria of the diabetic rats we found an increased concentration of alpha-tocopherol, however, the concentrations of CoQ9 and CoQ10 were decreased. The formation of malondialdehyde was enhanced in the plasma and heart mitochondria. The results have demonstrated that experimental diabetes is associated with increased lipoperoxidation, in spite of the increased blood concentrations of antioxidants alpha-tocopherol and CoQ. These changes may be associated with disturbances of lipid metabolism in diabetic rats. An important finding is that heart and liver mitochondria from the diabetic rats contain less CoQ9 and CoQ10 in comparison with the controls. We suppose that the deficit of coenzyme Q can participate in disturbances of mitochondrial energy metabolism of diabetic animals.  相似文献   

9.
Shalata  Adel  Edery  Michael  Habib  Clair  Genizi  Jacob  Mahroum  Mohammad  Khalaily  Lama  Assaf  Nurit  Segal  Idan  Abed El Rahim  Hoda  Shapira  Hana  Urian  Danielle  Tzur  Shay  Douiev  Liza  Saada  Ann 《Neurochemical research》2019,44(10):2372-2384

Primary deficiency of coenzyme Q10 (CoQ10 ubiquinone), is classified as a mitochondrial respiratory chain disorder with phenotypic variability. The clinical manifestation may involve one or multiple tissue with variable severity and presentation may range from infancy to late onset. ADCK3 gene mutations are responsible for the most frequent form of hereditary CoQ10 deficiency (Q10 deficiency-4 OMIM #612016) which is mainly associated with autosomal recessive spinocerebellar ataxia (ARCA2, SCAR9). Here we provide the clinical, biochemical and genetic investigation for unrelated three nuclear families presenting an autosomal form of Spino-Cerebellar Ataxia due to novel mutations in the ADCK3 gene. Using next generation sequence technology we identified a homozygous Gln343Ter mutation in one family with severe, early onset of the disease and compound heterozygous mutations of Gln343Ter and Ser608Phe in two other families with variable manifestations. Biochemical investigation in fibroblasts showed decreased activity of the CoQ dependent mitochondrial respiratory chain enzyme succinate cytochrome c reductase (complex II?+?III). Exogenous CoQ slightly improved enzymatic activity, ATP production and decreased oxygen free radicals in some of the patient’s cells. Our results are presented in comparison to previously reported mutations and expanding the clinical, molecular and biochemical spectrum of ADCK3 related CoQ10 deficiencies.

  相似文献   

10.
Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are effective drugs in the treatment of hypercholesterolemia, however, their undesirable actions are not fully known. We investigated the effects of atorvastatin on the oxidative phosphorylation and membrane fluidity in liver mitochondria, and also on the coenzyme Q (CoQ) content in the mitochondria, liver tissue, and plasma of rats on a standard (C) and hypercholesterolemic (HCh) diet. Atorvastatin was administered at either low (10 mg kg(-1)) or high dose (80 mg kg(-1)) for four weeks. The high dose of the drug decreased the concentrations of total cholesterol and triacylglycerols in the plasma and liver of rats on a HCh diet. Administration of atorvastatin was associated with decreased oxygen uptake (state 3), and oxidative phosphorylation rate in the mitochondria of both C and HCh rats. Further, the drug influenced mitochondrial membrane fluidity and dose-dependently reduced concentrations of oxidized and reduced forms of CoQ in the mitochondria. Our findings point to an association between in vivo administration of atorvastatin and impaired bioenergetics in the liver mitochondria of rats, regardless of diet, in conjunction with simultaneous depletion of oxidized and reduced CoQ forms from the mitochondria. This fact may play a significant role in the development of statin-induced hepatopathy.  相似文献   

11.
Life-long low-dosage supplementation of coenzyme Q(10) (CoQ(10)) is studied in relation to the antioxidant status and DNA damage. Thirty-two male rats were assigned into two experimental groups differing in the supplementation or not with 0.7 mg/kg/day of CoQ(10). Eight rats per group were killed at 6 and 24 months. Plasma retinol, alpha-tocopherol, coenzyme Q, total antioxidant capacity and fatty acids were analysed. DNA strand breaks were studied in peripheral blood lymphocytes. Aging and supplementation led to significantly higher values for CoQ homologues, retinol and alpha-tocopherol. No difference in total antioxidant capacity was detected at 6 months but significantly lower values were found in aged control animals. Similar DNA strand breaks levels were found at 6 months. Aging led to significantly higher DNA strand breaks levels in both groups but animals supplemented with CoQ(10) led to a significantly lower increase in that marker. Aged rats showed significantly higher polyunsaturated fatty acids. This study demonstrates that lifelong intake of a low dosage of CoQ(10) enhances plasma levels of CoQ(9), CoQ(10), alpha-tocopherol and retinol. In addition, CoQ(10) supplementation attenuates the age-related fall in total antioxidant capacity of plasma and the increase in DNA damage in peripheral blood lymphocytes.  相似文献   

12.
Ubiquinone (coenzyme Q(10) or CoQ(10)) is a lipid-soluble component of virtually all cell membranes, where it functions as a mobile electron and proton carrier. CoQ(10) deficiency is inherited as an autosomal recessive trait and has been associated with three main clinical phenotypes: a predominantly myopathic form with central nervous system involvement, an infantile encephalomyopathy with renal dysfunction, and an ataxic form with cerebellar atrophy. In two siblings of consanguineous parents with the infantile form of CoQ(10) deficiency, we identified a homozygous missense mutation in the COQ2 gene, which encodes para-hydroxybenzoate-polyprenyl transferase. The A-->G transition at nucleotide 890 changes a highly conserved tyrosine to cysteine at amino acid 297 within a predicted transmembrane domain. Radioisotope assays confirmed a severe defect of CoQ(10) biosynthesis in the fibroblasts of one patient. This mutation in COQ2 is the first molecular cause of primary CoQ(10) deficiency.  相似文献   

13.
The main purpose of this study was to determine whether intake of coenzyme Q10, which can potentially act as both an antioxidant and a prooxidant, has an impact on indicators of oxidative stress and the aging process. Mice were fed diets providing daily supplements of 0, 93, or 371 mg CoQ10 /kg body weight, starting at 3.5 months of age. Effects on mitochondrial superoxide generation, activities of oxidoreductases, protein oxidative damage, glutathione redox state, and life span of male mice were determined. Amounts of CoQ9 and CoQ10, measured after 3.5 or 17.5 months of intake, in homogenates and mitochondria of liver, heart, kidney, skeletal muscle, and brain increased with the dosage and duration of CoQ10 intake in all the tissues except brain. Activities of mitochondrial electron transport chain oxidoreductases, rates of mitochondrial O2-* generation, state 3 respiration, carbonyl content, glutathione redox state of tissues, and activities of superoxide dismutase, catalase, and glutathione peroxidase, determined at 19 or 25 months of age, were unaffected by CoQ10 administration. Life span studies, conducted on 50 mice in each group, showed that CoQ10 administration had no effect on mortality. Altogether, the results indicated that contrary to the historical view, supplemental intake of CoQ10 elevates the endogenous content of both CoQ9 and CoQ10, but has no discernable effect on the main antioxidant defenses or prooxidant generation in most tissues, and has no impact on the life span of mice.  相似文献   

14.
The neuropathological and clinical symptoms of Huntington's disease (HD) can be simulated in animal model with systemic administration of 3-nitropropionic acid (3-NP). Energy defects in HD could be ameliorated by administration of coenzyme Q(10) (CoQ(10)), creatine, or nicotinamid. We studied the activity of creatine kinase (CK) and the function of mitochondrial respiratory chain in the brain of aged rats administered with 3-NP with and without previous application of antioxidants CoQ(10)+vitamin E. We used dynamic and steady-state methods of in vivo phosphorus magnetic resonance spectroscopy ((31)P MRS) for determination of the pseudo-first order rate constant (k(for)) of the forward CK reaction, the phosphocreatine (PCr) to adenosinetriphosphate (ATP) ratio, intracellular pH(i) and Mg(i)(2+) content in the brain. The respiratory chain function of isolated mitochondria was assessed polarographically; the concentration of CoQ(10) and alpha-tocopherol by HPLC. We found significant elevation of k(for) in brains of 3-NP rats, reflecting increased rate of CK reaction in cytosol. The function of respiratory chain in the presence of succinate was severely diminished. The activity of cytochromeoxidase and mitochondrial concentration of CoQ(10) was unaltered; tissue content of CoQ(10) was decreased in 3-NP rats. Antioxidants CoQ(10)+vitamin E prevented increase of k(for) and the decrease of CoQ(10) content in brain tissue, but were ineffective to prevent the decline of respiratory chain function. We suppose that increased activity of CK system could be compensatory to decreased mitochondrial ATP production, and CoQ(10)+vitamin E could prevent the increase of k(for) after 3-NP treatment likely by activity of CoQ(10) outside the mitochondria. Results of our experiments contributed to elucidation of mechanism of beneficial effect of CoQ(10) administration in HD and showed that the rate constant of CK is a sensitive indicator of brain energy disorder reflecting therapeutic effect of drugs that could be used as a new in vivo biomarker of neurodegenerative diseases.  相似文献   

15.
Plasma coenzyme Q10 (CoQ10) response to oral ingestion of various CoQ10 formulations was examined. Both total plasma CoQ10 and net increase over baseline CoQ10 concentrations show a gradual increase with increasing doses of CoQ10. Plasma CoQ10 concentrations plateau at a dose of 2400 mg using one specific chewable tablet formulation. The efficiency of absorption decreases as the dose increases. About 95% of circulating CoQ10 occurs as ubiquinol, with no appreciable change in the ratio following CoQ10 ingestion. Higher plasma CoQ10 concentrations are necessary to facilitate uptake by peripheral tissues and also the brain. Solubilized formulations of CoQ10 (both ubiquinone and ubiquinol) have superior bioavailability as evidenced by their enhanced plasma CoQ10 responses.  相似文献   

16.
There is substantial evidence that a bioenergetic defect may play a role in the pathogenesis of Huntington's Disease (HD). A potential therapy for remediating defective energy metabolism is the mitochondrial cofactor, coenzyme Q10 (CoQ10). We have reported that CoQ10 is neuroprotective in the R6/2 transgenic mouse model of HD. Based upon the encouraging results of the CARE-HD trial and recent evidence that high-dose CoQ10 slows the progressive functional decline in Parkinson's disease, we performed a dose ranging study administering high levels of CoQ10 from two commercial sources in R6/2 mice to determine enhanced efficacy. High dose CoQ10 significantly extended survival in R6/2 mice, the degree of which was dose- and source-dependent. CoQ10 resulted in a marked improvement in motor performance and grip strength, with a reduction in weight loss, brain atrophy, and huntingtin inclusions in treated R6/2 mice. Brain levels of CoQ10 and CoQ9 were significantly lower in R6/2 mice, in comparison to wild type littermate control mice. Oral administration of CoQ10 elevated CoQ10 plasma levels and significantly increased brain levels of CoQ9, CoQ10, and ATP in R6/2 mice, while reducing 8-hydroxy-2-deoxyguanosine concentrations, a marker of oxidative damage. We demonstrate that high-dose administration of CoQ10 exerts a greater therapeutic benefit in a dose dependent manner in R6/2 mice than previously reported and suggest that clinical trials using high dose CoQ10 in HD patients are warranted.  相似文献   

17.
A possible difference in antioxidant activity between reduced coenzyme Q9 (CoQ9H2) and reduced coenzyme Q10 (CoQ10H2) in animal cells was studied by incubation of hepatocytes with a hydrophilic radical initiator, 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH). Two kinds of hepatocytes differing in their content of CoQ homologs were used: rat, total (oxidized plus reduced) CoQ9: total CoQ10 6:1, guinea pig, 1:5. The sum of total CoQ9 and CoQ10 in rat and guinea-pig hepatocytes was about 780 and 400 pmol/mg protein, respectively. The concentration of CoQ9H2 in rat hepatocytes decreased linearly after the addition of AAPH, whereas that of oxidized CoQ9 showed a reciprocal increase. No loss of cell viability or increase of lipid peroxidation was observed until most of the CoQ9H2 had been consumed. Cellular CoQ9H2 was consumed probably through scavenging of lipid peroxyl radicals produced by incubation with AAPH. On the other hand, CoQ10H2 was not significantly consumed in the AAPH-treated rat hepatocytes during incubation compared with the control cells. In guinea-pig hepatocytes, cellular CoQ10H2 as well as CoQ9H2 was consumed by addition of AAPH. alpha-Tocopherol also showed linear consumption with incubation time regardless of the cell types used. It is concluded that CoQ9H2, together with alpha-tocopherol, constantly acts as a potential antioxidant in hepatocytes when incubated with AAPH, whereas CoQ10H2 mainly exhibits its antioxidant activity in cells containing CoQ10 as the predominant CoQ homolog.  相似文献   

18.
The main objective of this study was to determine the nature of the relationship between aging and mitochondrial coenzyme Q (CoQ) content. Mitochondria in the heart, skeletal muscle, kidney and brain of the mouse varied in both the amount of total CoQ (CoQ9 + CoQ10) content as well as in the ratio of the CoQ9 to CoQ10. CoQ content declined with age only in the skeletal muscle. Caloric restriction (CR) resulted in an increase in the amount of CoQ9 in skeletal muscle mitochondria. This effect was partially reversible upon termination of the caloric restriction regimen. Results suggest that a decrease in mitochondrial CoQ content is an integral aspect of aging in skeletal muscle.  相似文献   

19.
The role of a secondary respiratory chain deficiency as an additional mechanism to intoxication, leading to development of long-term energy-dependent complications, has been recently suggested in patients with propionic acidemia (PA). We show for the first time a coenzyme Q(10) (CoQ(10)) functional defect accompanied by a multiple organ oxidative phosphorylation (OXPHOS) deficiency in a child who succumbed to acute heart failure in the absence of metabolic stress. Quinone-dependent activities in the liver (complex I+III, complex II+III) were reduced, suggesting a decrease in electron transfer related to the quinone pool. The restoration of complex II+III activity after addition of exogenous ubiquinone to the assay system suggests CoQ(10) deficiency. Nevertheless, we disposed of insufficient material to perform direct measurement of CoQ(10) content in the patient's liver. Death occurred before biochemical diagnosis of OXPHOS deficiency could be made. However, this case highlights the usefulness of rapidly identifying CoQ(10) defects secondary to PA since this OXPHOS disorder has a good treatment response which could improve heart complications or prevent their appearance. Nevertheless, further studies will be necessary to determine whether CoQ(10) treatment can be useful in PA complications linked to CoQ(10) deficiency.  相似文献   

20.
Although coenzyme Q10 (CoQ10) is a component of the oxidative phosphorylation process in mitochondria that converts the energy in carbohydrates and fatty acids into ATP to drive cellular machinery and synthesis, its effect in type I diabetes is not clear. We have studied the effect of 4 wk of treatment with CoQ10 (10 mg/kg, ip, daily) in streptozotocin (STZ)-induced (40 mg/kg, iv in adult rats) type I diabetes rat models. Treatment with CoQ10 produced a significant decrease in elevated levels of glucose, cholesterol, triglycerides, very-low-density lipoprotein, lowdensity lipoprotein, and atherogenic index and increased high-density lipoprotein cholesterol levels in diabetic rats. CoQ10 treatment significantly decreased the area under the curve over 120 min for glucose in diabetic rats, without affecting serum insulin levels and the area under the curve over 120 min for insulin in diabetic rats. CoQ10 treatment also reduced lipid peroxidation and increased antioxidant parameters like superoxide dismutase, catalase, and glutathione in the liver homogenates of diabetic rats. CoQ10 also lowered the elevated blood pressure in diabetic rats. In conclusion, CoQ10 treatment significantly improved deranged carbohydrate and lipid metabolism of experimental chemically induced diabetes in rats. The mechanism of its beneficial effect appears to be its antioxidant property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号