首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite its small size, the 205 nt group I intron from Azoarcus tRNA(Ile) is an exceptionally stable self-splicing RNA. This IC3 class intron retains the conserved secondary structural elements common to group I ribozymes, but lacks several peripheral helices. These features make it an ideal system to establish the conserved chemical basis of group I intron activity. We collected nucleotide analog interference mapping (NAIM) data of the Azoarcus intron using 14 analogs that modified the phosphate backbone, the ribose sugar, or the purine base functional groups. In conjunction with a complete interference set collected on the Tetrahymena group I intron (IC1 class), these data define a "chemical phylogeny" of functional groups that are important for the activity of both introns and that may be common chemical features of group I intron catalysts. The data identify the functional moieties most likely to play a conserved role as ligands for catalytic metal ions, the substrate helix, and the guanosine cofactor. These include backbone functional groups whose nucleotide identity is not conserved, and hence are difficult to identify by standard phylogenetic sequence comparisons. The data suggest that both introns utilize an equivalent set of long range tertiary interactions for 5'-splice site selection between the P1 substrate helix and its receptor in the J4/5 asymmetric bulge, as well as an equivalent set of 2'-OH groups for P1 helix docking into most of the single stranded segment J8/7. However, the Azoarcus intron appears to make an alternative set of interactions at the base of the P1 helix and at the 5'-end of the J8/7. Extensive differences were observed within the intron peripheral domains, particularly in P2 and P8 where the Azoarcus data strongly support the proposed formation of a tetraloop-tetraloop receptor interaction. This chemical phylogeny for group I intron catalysis helps to refine structural models of the RNA active site and identifies functional groups that should be carefully investigated for their role in transition state stabilization.  相似文献   

2.
Kaye NM  Christian EL  Harris ME 《Biochemistry》2002,41(14):4533-4545
The tRNA processing endonuclease ribonuclease P contains an essential and highly conserved RNA molecule (RNase P RNA) that is the catalytic subunit of the enzyme. To identify and characterize functional groups involved in RNase P RNA catalysis, we applied self-cleaving ribozyme-substrate conjugates, on the basis of the RNase P RNA from Escherichia coli, in nucleotide analogue interference mapping (NAIM) and site-specific modification experiments. At high monovalent ion concentrations (3 M) that facilitate protein-independent substrate binding, we find that the ribozyme is largely insensitive to analogue substitution and that concentrations of Mg2+ (1.25 mM) well below that necessary for optimal catalytic rate (>100 mM) are required to produce interference effects because of modification of nucleotide bases. An examination of the pH dependence of the reaction rate at 1.25 mM Mg2+ indicates that the increased sensitivity to analogue interference is not due to a change in the rate-limiting step. The nucleotide positions detected by NAIM under these conditions are located exclusively in the catalytic domain, consistent with the proposed global structure of the ribozyme, and predominantly occur within the highly conserved P1-P4 multihelix junction. Several sensitive positions in J3/4 and J2/4 are proximal to a previously identified site of divalent metal ion binding in the P1-P4 element. Kinetic analysis of ribozymes with site-specific N7-deazaadenosine and deazaguanosine modifications in J3/4 was, in general, consistent with the interference results and also permitted the analysis of sites not accessible by NAIM. These results show that, in this region only, modification of the N7 positions of A62, A65, and A66 resulted in measurable effects on reaction rate and modification at each position displayed distinct sensitivities to Mg2+ concentration. These results reveal a restricted subset of individual functional groups within the catalytic domain that are particularly important for substrate cleavage and demonstrate a close association between catalytic function and metal ion-dependent structure in the highly conserved P1-P4 multihelix junction.  相似文献   

3.
Jones FD  Strobel SA 《Biochemistry》2003,42(14):4265-4276
The Varkud Satellite (VS) ribozyme catalyzes a site-specific self-cleavage reaction that generates 5'-OH and 2',3'-cyclic phosphate products. Other ribozymes that perform an equivalent reaction appear to employ ionization of an active site residue, either to neutralize the negatively charged transition state or to act as a general acid-base catalyst. To test for important base ionization events in the VS ribozyme ligation reaction, we performed nucleotide analogue interference mapping (NAIM) with a series of ionization-sensitive adenosine and cytidine analogues. A756, a catalytically critical residue located within the VS active site, was the only nucleotide throughout the VS ribozyme that displayed the pH-dependent interference pattern characteristic of functional base ionization. We observed unique rescue of 8-azaadenosine (pK(a) 2.2) and purine riboside (pK(a) 2.1) interference at A756 at reduced reaction pH, suggestive of an ionization-specific effect. These results are consistent with protonation and/or deprotonation of A756 playing a direct role in the VS ribozyme reaction mechanism. In addition, NAIM experiments identified several functional groups within the RNA that play important roles in ribozyme folding and/or catalysis. These include residues in helix II, helix VI (730 loop), the II-III-VI and III-IV-V helix junctions, and loop V.  相似文献   

4.
Despite the central role of group II introns in eukaryotic gene expression and their importance as biophysical and evolutionary model systems, group II intron tertiary structure is not well understood. In order to characterize the architectural organization of intron ai5gamma, we incorporated the photoreactive nucleotides s(4)U and s(6)dG at specific locations within the intron core and monitored the formation of cross-links in folded complexes. The resulting data reveal the locations for many of the most conserved, catalytically important regions of the intron (i.e., the J2/3 linker region, the IC1(i-ii) bulge in domain 1, the bulge of D5, and the 5'-splice site), showing that all of these elements are closely colocalized. In addition, we show by nucleotide analog interference mapping (NAIM) that a specific functional group in J2/3 plays a role in first-step catalysis, which is consistent with its apparent proximity to other first-step components. These results extend our understanding of active-site architecture during the first step of group II intron self-splicing and they provide a structural basis for spliceosomal comparison.  相似文献   

5.
We have analyzed by nucleotide analog interference mapping (NAIM) pools of precursor or mature tRNA molecules, carrying a low level of Rp-RMPalphaS (R = A, G, I) or Rp-c7-deaza-RMPalphaS (R = A, G) modifications, to identify functional groups that contribute to the specific interaction with and processing efficiency by Escherichia coli RNase P RNA. The majority of interferences were found in the acceptor stem, T arm, and D arm, including the strongest effects observed at positions G19, G53, A58, and G71. In some cases (interferences at G5, G18, and G71), the affected functional groups are candidates for direct contacts with RNase P RNA. Several modifications disrupt intramolecular tertiary contacts known to stabilize the authentic tRNA fold. Such indirect interference effects were informative as well, because they allowed us to compare the structural constraints required for ptRNA processing versus product binding. Our ptRNA processing and mature tRNA binding NAIM analyses revealed overlapping but nonidentical patterns of interference effects, suggesting that substrate binding and cleavage involves binding modes or conformational states distinct from the binding mode of mature tRNA, the product of the reaction.  相似文献   

6.
7.
B B Konforti  Q Liu    A M Pyle 《The EMBO journal》1998,17(23):7105-7117
Group II introns are ribozymes with a complex tertiary architecture that is of great interest as a model for RNA folding. Domain 5 (D5) is a highly conserved region of the intron that is considered one of the most critical structures in the catalytic core. Despite its central importance, the means by which D5 interacts with other core elements is unclear. To obtain a map of potential interaction sites, dimethyl sulfate was used to footprint regions of the intron that are involved in D5 binding. These studies were complemented by measurements of D5 binding to a series of truncated intron derivatives. In this way, the minimal region of the intron required for strong D5 association was defined and the sites most likely to represent thermodynamically significant positions of tertiary contact were identified. These studies show that ground-state D5 binding is mediated by tertiary contacts to specific regions of D1, including a tetraloop receptor and an adjacent three-way junction. In contrast, D2 and D3 are not found to stabilize D5 association. These data highlight the significance of D1-D5 interactions and will facilitate the identification of specific tertiary contacts between them.  相似文献   

8.
A new category of self-splicing group I introns with conserved structural organization and function is found among the eukaryotic microorganisms Didymium and Naegleria. These complex rDNA introns contain two distinct ribozymes with different functions: a regular group I splicing-ribozyme and a small internal group I-like ribozyme (GIR1), probably involved in protein expression. GIR1 was found to cleave at two internal sites in an obligate sequential order. Both sites are located 3' of the catalytic core. GIR1-catalyzed transesterification reactions could not be detected. We have compared all available GIR1 sequences and propose a common RNA secondary structure resembling that of group I splicing-ribozymes, but with some important differences. The GIR1s lack most peripheral sequence components, as well as a P1 segment, and, at approximately 160-190 nt, they are the smallest functional group I ribozymes known from nature. All GIR1s were found to contain a novel 6-bp pseudoknot (P15) within their catalytic core region. Experimental support of the proposed structure was obtained from the Didymium GIR1 by RNA structure probing and site-directed mutagenesis. Three-dimensional modeling indicates a compactly folded ribozyme with the functionally essential P15 exposed in the cleft between the two principal domains P3-P8 and P4-P6.  相似文献   

9.
10.
The glmS ribozyme resides in the 5' untranslated region of glmS mRNA and functions as a catalytic riboswitch that regulates amino sugar metabolism in certain Gram-positive bacteria. The ribozyme catalyzes self-cleavage of the mRNA and ultimately inhibits gene expression in response to binding of glucosamine-6-phosphate (GlcN6P), the metabolic product of the GlmS protein. We have used nucleotide analog interference mapping (NAIM) and suppression (NAIS) to investigate backbone and nucleobase functional groups essential for ligand-dependent ribozyme function. NAIM using GlcN6P as ligand identified requisite structural features and potential sites of ligand and/or metal ion interaction, whereas NAIS using glucosamine as ligand analog revealed those sites that orchestrate recognition of ligand phosphate. These studies demonstrate that the ligand-binding site lies in close proximity to the cleavage site in an emerging model of ribozyme structure that supports a role for ligand within the catalytic core.  相似文献   

11.
We have characterized the structural organization and catalytic properties of the large nucleolar group I introns (NaSSU1) of the different Naegleria species N. jamiesoni, N. andersoni, N. italica, and N. gruberi. NaSSU1 consists of three distinct RNA domains: an open reading frame encoding a homing-type endonuclease, and a small group I ribozyme (NaGIR1) inserted into the P6 loop of a second group I ribozyme (NaGIR2). The two ribozymes have different functions in RNA splicing and processing. NaGIR1 is an unusual self-cleaving group I ribozyme responsible for intron processing at two internal sites (IPS1 and IPS2), both close to the 5' end of the open reading frame. This processing is hypothesized to lead to formation of a messenger RNA for the endonuclease. Structurally, NaGIR2 is a typical group IC1 ribozyme, catalyzing intron excision and exon ligation reactions. NaGIR2 is responsible for circularization of the excised intron, a reaction that generates full-length RNA circles of wild-type intron. Although it is only distantly related in primary sequence, NaSSU1 RNA has a predicted organization and function very similar to that of the mobile group I intron DiSSU1 of Didymium, the only other group I intron known to encode two ribozymes. We propose that these twin-ribozyme introns define a distinct category of group I introns with a conserved structural organization and function.  相似文献   

12.
The hairpin ribozyme is a small, naturally occurring RNA capable of folding into a distinct three-dimensional structure and catalyzing a specific phosphodiester transfer reaction. We have adapted a high throughput screening procedure entitled nucleotide analog interference mapping (NAIM) to identify functional groups important for proper folding and catalysis of this ribozyme. A total of 18 phosphorothioate-tagged nucleotide analogs were used to determine the contribution made by individual ribose 2'-OH and purine functional groups to the hairpin ribozyme ligation reaction. Substitution with 2'-deoxy-nucleotide analogs disrupted activity at six sites within the ribozyme, and a unique interference pattern was observed at each of the 11 conserved purine nucleotides. In most cases where such information is available, the NAIM data agree with the previously reported single-site substitution results. The interference patterns are interpreted in comparison to the isolated loop A and loop B NMR structures and a model of the intact ribozyme. These data provide biochemical evidence in support of many, but not all, of the non-canonical base-pairs observed by NMR in each loop, and identify the functional groups most likely to participate in the tertiary interface between loop A and loop B. These groups include the 2'-OH groups of A10, G11, U12, C25, and A38, the exocyclic amine of G11, and the minor groove edge of A9 and A24. The data also predict non-A form sugar pucker geometry at U39 and U41. Based upon these results, a revised model for the loop A tertiary interaction with loop B is proposed. This work defines the chemical basis of purine nucleotide conservation in the hairpin ribozyme, and provides a basis for the design and interpretation of interference suppression experiments.  相似文献   

13.
Fedorova O  Pyle AM 《The EMBO journal》2005,24(22):3906-3916
Despite its importance for group II intron catalytic activity, structural information on conserved domain 3 (D3) is extremely limited. This domain is known to specifically stimulate the chemical rate of catalysis and to function as a 'catalytic effector'. Of all the long-range tertiary contacts that have been identified within group II introns, none has included D3 residues. Furthermore, little is known about the atoms and functional groups in D3 that contribute to catalysis. Using a nucleotide analog interference mapping assay with an extended repertoire of nucleotide analogs, we have identified functional groups in D3 that are critical for ribozyme activity. These data, together with mutational analysis, suggest the formation of noncanonical base pairs within the phylogenetically conserved internal loop at the base of D3. Finally, a related nucleotide analog interference suppression study resulted in the identification of a direct tertiary interaction between D3 and catalytic domain 5, which sheds new light on D3 function in the group II intron structure and mechanism.  相似文献   

14.
J L Jestin  E Dème    A Jacquier 《The EMBO journal》1997,16(10):2945-2954
Thus far, conventional biophysical techniques, such as NMR spectroscopy or X-ray crystallography, allow the determination, at atomic resolution, of only structural domains of large RNA molecules such as group I introns. Determination of their overall spatial organization thus still relies on modeling. This requires that a relatively high number of tertiary interactions are defined in order to get sufficient topological constraints. Here, we report the use of a modification interference assay to identify structural elements involved in interdomain interactions. We used this technique, in a group II intron, to identify the elements involved in the interactions between domain V and the rest of the molecule. Domain V contains many of the active site components of these ribozymes. In addition to a previously identified 11 nucleotide motif involved in the binding of the domain V terminal GAAA tetraloop, a small number of elements were shown to be essential for domain V binding. In particular, we show that domain III is specifically required for the interaction with sequences encompassing the conserved 2 nucleotide bulge of domain V.  相似文献   

15.
Group II introns are self-splicing RNA molecules that also behave as mobile genetic elements. The secondary structure of group II intron RNAs is typically described as a series of six domains that project from a central wheel. Most structural and mechanistic analyses of the intron have focused on domains 1 and 5, which contain the residues essential for catalysis, and on domain 6, which contains the branch-point adenosine. Domains 2 and 3 (D2, D3) have been shown to make important contributions to intronic activity; however, information about their function is quite limited. To elucidate the role of D2 and D3 in group II ribozyme catalysis, we built a series of multi-piece ribozyme constructs based on the ai5gamma group II intron. These constructs are designed to shed light on the roles of D2 and D3 in some of the major reactions catalyzed by the intron: 5'-exon cleavage, branching, and substrate hydrolysis. Reactions with these constructs demonstrate that D3 stimulates the chemical rate constant of group II intron reactions, and that it behaves as a form of catalytic effector. However, D3 is unable to associate independently with the ribozyme core. Docking of D3 is mediated by a short duplex that is found at the base of D2. In addition to recruiting D3 into the core, the D2 stem directs the folding of the adjacent j(2/3) linker, which is among the most conserved elements in the group II intron active site. In turn, the D2 stem contributes to 5'-splice site docking and ribozyme conformational change. Nucleotide analog interference mapping suggests an interaction between the D2 stem and D3 that builds on the known theta-theta' interaction and extends it into D3. These results establish that D3 and the base of D2 are key elements of the group II intron core and they suggest a hierarchy for active-site assembly.  相似文献   

16.
Tertiary structure in globular RNA folds can create local environments that lead to pKa perturbation of specific nucleotide functional groups. To assess the prevalence of functionally relevant adenosine-specific pKa perturbation in RNA structure, we have altered the nucleotide analog interference mapping (NAIM) approach to include a series of a phosphorothioate-tagged adenosine analogs with shifted N1 pKa values. We have used these analogs to analyze the hairpin ribozyme, a small self-cleaving/ligating RNA catalyst that is proposed to employ a general acid-base reaction mechanism. A single adenosine (A10) within the ribozyme active site displayed an interference pattern consistent with a functionally significant base ionization. The exocyclic amino group of a second adenosine (A38) contributes substantially to hairpin catalysis, but ionization of the nucleotide does not appear to be important for activity. Within the hairpin ribozyme crystal structure, A10 and A38 line opposite edges of a solvent-excluded cavity adjacent to the 5'-OH nucleophile. The results are inconsistent with the model of ribozyme chemistry in which A38 acts as a general acid-base catalyst, and suggest that the hairpin ribozyme uses an alternative mechanism to achieve catalytic rate enhancement that utilizes functional groups within a solvent-excluded cleft in the ribozyme active site.  相似文献   

17.
18.
Four small RNA self-cleaving domains, the hammerhead, hairpin, hepatitis delta virus and Neurospora VS ribozymes, have been identified previously in naturally occurring RNAs. The secondary structures of these ribozymes are reasonably well understood, but little is known about long-range interactions that form the catalytically active tertiary conformations. Our previous work, which identified several secondary structure elements of the VS ribozyme, also showed that many additional bases were protected by magnesium-dependent interactions, implying that several tertiary contacts remained to be identified. Here we have used site-directed mutagenesis and chemical modification to characterize the first long-range interaction identified in VS RNA. This interaction contains a 3 bp pseudoknot helix that is required for tertiary folding and self-cleavage activity of the VS ribozyme.  相似文献   

19.
ABSTRACT

Hammerhead ribozymes are a model system for studying molecular mechanism of RNA catalysis. Physicochemical data-driven mechanistic studies are an indispensable step towards understanding the catalysis of hammerhead ribozymes. Here we characterized a model RNA duplex with catalytically important sheared-type G12-A9 base pair and A9-G10.1 metal ion-binding motif in hammerhead ribozymes. By using high magnetic field NMR, all base proton signals, including catalytic residues, were unambiguously assigned. We further characterized structural features of this RNA molecule and found that it reflects the structural features of the A9-G10.1 motif of hammerhead ribozymes. Therefore, this RNA molecule is suitable for extracting an intrinsic physicochemical properties of catalytically important residues.  相似文献   

20.
The recently identified glmS ribozyme revealed that RNA enzymes, like protein enzymes, are capable of using small molecules as catalytic cofactors to promote chemical reactions. Flavin mononucleotide (FMN), S-adenosyl methionine (SAM), adenosyl cobalamin (AdoCbl), and thiamine pyrophosphate (TPP) are known ligands for RNA riboswitches in the control of gene expression, but are also catalytically powerful and ubiquitous cofactors in protein enzymes. If RNA, instead of just binding these molecules, could harness the chemical potential of the cofactor, it would significantly expand the enzymatic repertoire of ribozymes. Here we review the chemistry of AdoCbl, SAM, FMN, and TPP in protein enzymology and speculate on how these cofactors might have been used by ribozymes in the prebiotic RNA World or may still find application in modern biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号