首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: To investigate the genetic diversity among S. Enteritidis isolates from different geographic regions to evaluate the relationship between phage types (PTs) and variable number tandem repeat analysis (VNTR) loci. Methods and Results: We performed multiple‐locus variable number tandem repeat analysis (MLVA) and phage typing on 245 S. Enteritidis isolates collected from sporadic human clinical cases in Michigan, Minnesota, New York, and Washington states between 2000 and 2007. Ninety‐four MLVA types and 22 different PTs were identified. Specific PTs were associated with a predominant allele for certain VNTR loci. Cluster analysis using a minimum‐spanning tree demonstrated two major clusters (I, II) and one minor cluster of isolates. PTs 8, 13a, 13 and 34 were significantly associated with MLVA cluster I. Phage types 1, 4, 6a, and 18 were significantly associated with MLVA cluster II. Conclusions: We found significant association between MLVA‐based clusters and PTs. Certain VNTR loci were associated with specific PTs and could serve as useful molecular markers for S. Enteritidis in epidemiological investigations. Significance and Impact of the Study: MLVA genotyping in combination with phage typing can be used for effective characterization of S. Enteritidis isolates. It can also be useful for tracing possible sources during investigations of sporadic and outbreak cases of S. Enteritidis.  相似文献   

2.

Background

Salmonella enterica serovar Enteritidis (S. Enteritidis) has caused major epidemics of gastrointestinal infection in many different countries. In this study we investigate genome divergence and pathogenic potential in S. Enteritidis isolated before, during and after an epidemic in Uruguay.

Results

266 S. Enteritidis isolates were genotyped using RAPD-PCR and a selection were subjected to PFGE analysis. From these, 29 isolates spanning different periods, genetic profiles and sources of isolation were assayed for their ability to infect human epithelial cells and subjected to comparative genomic hybridization using a Salmonella pan-array and the sequenced strain S. Enteritidis PT4 P125109 as reference. Six other isolates from distant countries were included as external comparators. Two hundred and thirty three chromosomal genes as well as the virulence plasmid were found as variable among S. Enteritidis isolates. Ten out of the 16 chromosomal regions that varied between different isolates correspond to phage-like regions. The 2 oldest pre-epidemic isolates lack phage SE20 and harbour other phage encoded genes that are absent in the sequenced strain. Besides variation in prophage, we found variation in genes involved in metabolism and bacterial fitness. Five epidemic strains lack the complete Salmonella virulence plasmid. Significantly, strains with indistinguishable genetic patterns still showed major differences in their ability to infect epithelial cells, indicating that the approach used was insufficient to detect the genetic basis of this differential behaviour.

Conclusion

The recent epidemic of S. Enteritidis infection in Uruguay has been driven by the introduction of closely related strains of phage type 4 lineage. Our results confirm previous reports demonstrating a high degree of genetic homogeneity among S. Enteritidis isolates. However, 10 of the regions of variability described here are for the first time reported as being variable in S. Enteritidis. In particular, the oldest pre-epidemic isolates carry phage-associated genetic regions not previously reported in S. Enteritidis. Overall, our results support the view that phages play a crucial role in the generation of genetic diversity in S. Enteritidis and that phage SE20 may be a key marker for the emergence of particular isolates capable of causing epidemics.  相似文献   

3.

Background  

Salmonella enterica serovar Enteritidis has emerged as a significant foodborne pathogen throughout the world and is commonly characterized by phage typing. In Canada phage types (PT) 4, 8 and 13 predominate and in 2005 a large foodborne PT13 outbreak occurred in the province of Ontario. The ability to link strains during this outbreak was difficult due to the apparent clonality of PT13 isolates in Canada, as there was a single dominant pulsed-field gel electrophoresis (PFGE) profile amongst epidemiologically linked human and food isolates as well as concurrent sporadic strains. The aim of this study was to perform comparative genomic hybridization (CGH), DNA sequence-based typing (SBT) genomic analyses, plasmid analyses, and automated repetitive sequence-based PCR (rep-PCR) to identify epidemiologically significant traits capable of subtyping S. Enteritidis PT13.  相似文献   

4.

Background  

Salmonella enterica serovar Heidelberg ranks amongst the most prevalent causes of human salmonellosis in Canada and an increase in resistance to extended spectrum cephalosporins (ESC) has been observed by the Canadian Integrated Program for Antimicrobial Resistance Surveillance. This study examined the genetic relationship between S. Heidelberg isolates from livestock, abattoir, retail meat, and clinical human specimens to determine whether there was a link between the emergence of MDR S. Heidelberg in chicken agri-food sources and the simultaneous increase of MDR S. Heidelberg in human clinical samples.  相似文献   

5.
Bacterial heat-shock response is a global regulatory system required for effective adaptation to changes (stress) in the environment. An in vitro study was conducted to investigate the impact of a sublethal temperature (42°C) on heat shock protein (HSP) expression in 6 Salmonella strains (Salmonella Enteritidis, S. Typhimurium, S. Virchow, S. Shubra, S. Haifa and S. Eingedi). The 6 Salmonella strains were isolated from the tissues of ducklings that had died from avian salmonellosis. To determine the induction of HSP in the 6 Salmonella strains, they were exposed to the selected temperature level for 24 h and further kept for 48 h at culturing condition of 42°C. Growth under a sublethal temperature of 42°C increased the expression of several proteins of Salmonella, including a 63 kDa protein in addition to the generation and/or overexpression of 143 proteins which were specific to heat shock, concurrent to this acquired thermotolerance. The 6 Salmonella strains responded to 24 h of thermal stress at an elevated temperature 42°C by synthesizing different heat shock proteins (HSP) with molecular weights ranging between 13.62 and 96.61 kDa. At 48 h, the 6 Salmonella strains synthesized different HSPs with molecular weights ranging between 14.53 and 103.43 kDa. It follows that salmonellae would produce HSPs during the course of the infectious process. Salmonellosis produced several proteins after 24 and 48 h of infection. Seven of these proteins (100, 80, 60, 40, 30, 20 and 10 kDa) were recognized in the serum obtained from the ducklings infected with S. Enteritidis, S. Typhimurium, S. Virchow, S. Shubra, S. Haifa and S. Eingedi after 24 h of infection. After 48 h, the 1–7 kDa HSP became more evident and indicated their de novo generation.  相似文献   

6.

Background  

Salmonella Enteritidis is a highly prevalent and persistent foodborne pathogen and is therefore a leading cause of nontyphoidal gastrointestinal disease worldwide. A variety of stresses are endured throughout its infection cycle, including high concentrations of propionate (PA) within food processing systems and within the gut of infected hosts. Prolonged PA exposure experienced in such milieus may have a drastic effect on the proteome of Salmonella Enteritidis subjected to this stress.  相似文献   

7.
Seventy-eight isolates of actinomycetes were isolated from the soil samples collected from alpine zones of Pindari glacier region in Indian Himalaya. Following a plate based rapid screening using two test fungi, five efficient isolates (nos. HA1, HA2, HA6, HA40, and HA142) were selected for further characterization with special reference to their antagonistic properties. Based on phenotypic and genotypic characters, the isolates were identified up to species level. All the isolates belonged to the genus Streptomyces. The isolate nos. HA1 and HA2 were Ssampsonii and HA6, HA40 and HA142 were Sgriseobrunneus, Saurantiacus, and Sgriseoluteus, respectively. The isolates showed strong antifungal properties against phytopathogenic test fungi in plate assays. All the isolates hydrolyzed glycol–chitin as a substrate in denaturing conditions showing variable amount of different isoforms.  相似文献   

8.

Background

In sub-Saharan Africa community-acquired non-typhoidal Salmonella (NTS) is a major cause of high morbidity and death among children under 5 years of age especially from resource poor settings. The emergence of multidrug resistance is a major challenge in treatment of life threatening invasive NTS infections in these settings.

Results

Overall 170 (51.2%) of children presented with bacteraemia alone, 28 (8.4%) with gastroenteritis and bacteraemia and 134 (40.4%) with gastroenteritis alone. NTS serotypes obtained from all the cases included S. Typhimurium (196; 59%), S. Enteritidis (94; 28.3%) and other serotypes in smaller numbers (42; 12.7%); distribution of these serotypes among cases with bacteremia or gastroenteritis was not significantly different. A significantly higher proportion of younger children (< 3 years of age) and those from the slums presented with invasive NTS compared to older children and those from upper socio-economic groups (p < 0.001). One hundred and forty-seven (44.3%) NTS were resistant to 3 or more antibiotics, and out of these 59% were resistant to ampicillin, chloramphenicol and tetracycline. There was no significant difference in antibiotic resistance between the two serotypes, S. Typhimurium and S. Enteritidis. Ceftriaxone and ciprofloxacin were the only antibiotics tested to which all the NTS were fully susceptible. Using Pulsed Field Gel Electrophoresis (PFGE) there were 3 main patterns of S. Typhimurium and 2 main patterns of S. Enteritidis among cases of bacteraemia and gastroenteritis.

Conclusion

Serotype distribution, antibiotic susceptibility and PFGE patterns of NTS causing bacteraemia and gastroenteritis did not differ significantly. The high prevalence of NTS strains resistant to most of the commonly used antimicrobials is of major public health concern.  相似文献   

9.
In the present study, Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis were transferred into Luria–Bertani medium without NaCl (LBWS) and adjusted to various pHs (4, 5, 6 and 7) with lactic acid containing 0·75, 5, 10 and 30% NaCl, and stored at 25°C until the bacterial populations reached below detectable levels on tryptic soy agar (TSA). Although Ecoli O157:H7 and S. Enteritidis did not grow on TSA when incubated in LBWS with 30% NaCl for 35 and 7 days, more than 60 and 70% of the bacterial cells were shown to be viable via fluorescent staining with SYTO9 and propidium iodide (PI), respectively, suggesting that a number of cells could be induced into the viable but nonculturable (VBNC) state. These bacteria that were induced into a VBNC state were transferred to a newly prepared tryptic soy broth (TSB) and then incubated at 37°C for several days. After more than 7 days, Ecoli O157:H7 and S. Enteritidis regained their culturability. We, therefore, suggest that Ecoli O157:H7 and S. Enteritidis entered the VBNC state under the adverse condition of higher salt concentrations and were revived when these conditions were reversed.  相似文献   

10.

Background

Non‐Helicobacter pylori helicobacters (NHPHs) besides H. pylori infect human stomachs and cause chronic gastritis and mucosa‐associated lymphoid tissue lymphoma. Cholesteryl‐α‐glucosides have been identified as unique glycolipids present in H. pylori and some Helicobacter species. Cholesterol‐α‐glucosyltransferase (αCgT), a key enzyme for the biosynthesis of cholesteryl‐α‐glucosides, plays crucial roles in the pathogenicity of H. pylori. Therefore, it is important to examine αCgTs of NHPHs.

Materials and Methods

Six gastric NHPHs were isolated from Japanese patients and maintained in mouse stomachs. The αCgT genes were amplified by PCR and inverse PCR. We retrieved the αCgT genes of other Helicobacter species by BLAST searches in GenBank.

Results

αCgT genes were present in most Helicobacter species and in all Japanese isolates examined. However, we could find no candidate gene for αCgT in the whole genome of Helicobacter cinaedi and several enterohepatic species. Phylogenic analysis demonstrated that the αCgT genes of all Japanese isolates show high similarities to that of a zoonotic group of gastric NHPHs including Helicobacter suis, Helicobacter heilmannii, and Helicobacter ailurogastricus. Of 6 Japanese isolates, the αCgT genes of 4 isolates were identical to that of H. suis, and that of another 2 isolates were similar to that of H. heilmannii and H. ailurogastricus.

Conclusions

All gastric NHPHs examined showed presence of αCgT genes, indicating that αCgT may be beneficial for these helicobacters to infect human and possibly animal stomachs. Our study indicated that NHPHs could be classified into 2 groups, NHPHs with αCgT genes and NHPHs without αCgT genes.  相似文献   

11.

Background  

MLVA (multiple-locus variable-number tandem repeat analysis) is a reliable typing technique introduced recently to differentiate also isolates of Enterococcus faecium. We used the established VNTR (variable number of tandem repeats) scheme to test its suitability to differentiate 58 E. faecium isolates representing mainly outbreaks and clusters of infections and colonizations among patients from 31 German hospitals. All isolates were vancomycin-resistant (vanA type). Typing results for MLVA are compared with results of macrorestriction analysis in PFGE (pulsed-field gel electrophoresis) and MLST (multi-locus sequence typing).  相似文献   

12.

Background  

Salmonella enterica serovar Hadar (S. Hadar) is a highly prevalent foodborne pathogen and therefore a major cause of human gastroenteritis worldwide. Outer membrane proteins whose production is often regulated by environmental conditions also play important roles in the adaptability of bacterial pathogens to various environments.  相似文献   

13.

Background  

Salmonella enterica serotype Gallinarum (S. Gallinarum) remains an important pathogen of poultry, especially in developing countries. There is a need to develop effective and safe vaccines. In the current study, the effect of crp deletion was investigated with respect to virulence and biochemical properties and the possible use of a deletion mutant as vaccine candidate was preliminarily tested.  相似文献   

14.
Nontyphoidal Salmonellae, principally S. Typhimurium and S. Enteritidis, are a major cause of invasive bloodstream infections in sub-Saharan Africa with no vaccine currently available. Conjugation of lipopolysaccharide O-antigen to a carrier protein constitutes a promising vaccination strategy. Here we describe a rational process to select the most appropriate isolates of Salmonella as source of O-antigen for developing a bivalent glycoconjugate vaccine. We screened a library of 30 S. Typhimurium and 21 S. Enteritidis in order to identify the most suitable strains for large scale O-antigen production and generation of conjugate vaccines. Initial screening was based on growth characteristics, safety profile of the isolates, O-antigen production, and O-antigen characteristics in terms of molecular size, O-acetylation and glucosylation level and position, as determined by phenol sulfuric assay, NMR, HPLC-SEC and HPAEC-PAD. Three animal isolates for each serovar were identified and used to synthesize candidate glycoconjugate vaccines, using CRM197 as carrier protein. The immunogenicity of these conjugates and the functional activity of the induced antibodies was investigated by ELISA, serum bactericidal assay and flow cytometry. S. Typhimurium O-antigen showed high structural diversity, including O-acetylation of rhamnose in a Malawian invasive strain generating a specific immunodominant epitope. S. Typhimurium conjugates provoked an anti-O-antigen response primarily against the O:5 determinant. O-antigen from S. Enteritidis was structurally more homogeneous than from S. Typhimurium, and no idiosyncratic antibody responses were detected for the S. Enteritidis conjugates. Of the three initially selected isolates, two S. Typhimurium (1418 and 2189) and two S. Enteritidis (502 and 618) strains generated glycoconjugates able to induce high specific antibody levels with high breadth of serovar-specific strain coverage, and were selected for use in vaccine production. The strain selection approach described is potentially applicable to the development of glycoconjugate vaccines against other bacterial pathogens.  相似文献   

15.

Background  

In this study we were interested in the colonisation and early immune response of Balb/C mice to infection with Salmonella Enteritidis and isogenic pathogenicity island free mutants.  相似文献   

16.

Background  

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative pathogen that must successfully adapt to the broad fluctuations in the concentration of dissolved dioxygen encountered in the host. In Escherichia coli, ArcA (Aerobic Respiratory Control) helps the cells to sense and respond to the presence of dioxygen. The global role of ArcA in E. coli is well characterized; however, little is known about its role in anaerobically grown S. Typhimurium.  相似文献   

17.

Background  

Campylobacter jejuni is the most common bacterial cause of human gastroenteritis worldwide. Due to the sporadic nature of infection, sources often remain unknown. Multilocus sequence typing (MLST) has been successfully applied to population genetics of Campylobacter jejuni and mathematical modelling can be applied to the sequence data. Here, we analysed the population structure of a total of 250 Finnish C. jejuni isolates from bovines, poultry meat and humans collected in 2003 using a combination of Bayesian clustering (BAPS software) and phylogenetic analysis.  相似文献   

18.

Background

Pullorum disease, caused by Salmonella enterica serovar Pullorum (S. Pullorum), is one of the most important bacterial infections in the poultry industry in developing countries, including China. To examine the prevalence and characteristics of S. Pullorum, the Multilocus Sequence Typing (MLST) genotypes, fluoroquinolones resistance, and biofilm-forming abilities of S. Pullorum isolates were investigated, collected from 2011 to 2016 in China.

Results

Thirty S. Pullorum isolates collected from 2011 to 2016 were analyzed. Quinolones susceptibility testing showed that 90% of the isolates were resistant to the first generation of quinolines nalidixic acid, but the resistance rates to different fluoroquinolones agents were lower than 13.3%; for some there was even no resistance. Multilocus sequence typing (MLST) showed that ST-92 was the dominating genotype, accounting for 90.0% of all S. pullorum strains. The remaining three isolates were of the new reported sequence type ST-2151. Interestingly, the Asp87Gly substitution in quinolone resistance-determining regions (QRDR) of GyrA was only observed in the three strains of ST-2151, suggesting a potential correlation between Asp87Gly substitution and sequence type (p?<?0.05). However, Asp87Gly substitution could not confer the resistant to ofloxacin and ciprofloxacin of these isolates. The plasmid-mediated quinolone resistance (PMQR) gene was not found in any of the tested isolates. Furthermore, an assay measuring biofilm-forming abilities showed that 46.7% of the isolates were non-biofilm producers, while 53.3% could form very weak biofilms, which might explain the relatively lower resistance to fluoroquinolones.

Conclusions

We reported a high resistance rate to the first generation of quinolines nalidixic acid and relatively low resistance rates to fluoroquinolones in S. Pullorum isolates. In addition, weak biofilm-forming abilities were found, which might be an important reason of the low fluoroquinolones resistance rates of S. Pullorum isolates. ST-92 was the dominating genotype demonstrated by MLST, and the new sequence type ST-2151 showed a potential correlation with Asp87Gly substitution in QRDR of GyrA. We believe the characterization of these S. Pullorum isolates will be helpful to develop prevention and control strategies.
  相似文献   

19.
In 2000 to 2001, 2003 to 2004, and 2005 to 2006, three outbreaks of Salmonella enterica serovar Enteritidis were linked with the consumption of raw almonds. The S. Enteritidis strains from these outbreaks had rare phage types (PT), PT30 and PT9c. Clinical and environmental S. Enteritidis strains were subjected to pulsed-field gel electrophoresis (PFGE), multilocus variable-number tandem repeat analysis (MLVA), and DNA microarray-based comparative genomic indexing (CGI) to evaluate their genetic relatedness. All three methods differentiated these S. Enteritidis strains in a manner that correlated with PT. The CGI analysis confirmed that the majority of the differences between the S. Enteritidis PT9c and PT30 strains corresponded to bacteriophage-related genes present in the sequenced genomes of S. Enteritidis PT4 and S. enterica serovar Typhimurium LT2. However, PFGE, MLVA, and CGI failed to discriminate between S. Enteritidis PT30 strains related to outbreaks from unrelated clinical strains or between strains separated by up to 5 years. However, metabolic fingerprinting demonstrated that S. Enteritidis PT4, PT8, PT13a, and clinical PT30 strains metabolized l-aspartic acid, l-glutamic acid, l-proline, l-alanine, and d-alanine amino acids more efficiently than S. Enteritidis PT30 strains isolated from orchards. These data indicate that S. Enteritidis PT9c and 30 strains are highly related genetically and that PT30 orchard strains differ from clinical PT30 strains metabolically, possibly due to fitness adaptations.Salmonella enterica is one of the major causes of bacterial food-borne illness worldwide. Many serovars of S. enterica serovar Enteritidis emerged as serious problems in the human food supply during the 1980s, and these cases were associated mostly with undercooked eggs and poultry (26). The phage typing of S. Enteritidis strains associated with egg-associated outbreaks had indicated that phage types 8 (PT8) and PT13a were the most common PTs in the United States (12), and PT4 was the most common in Europe (22). Through education and quality improvements, the incidence of S. Enteritidis due to egg products has decreased in the United States (18). However, several recent outbreaks have identified new sources for S. Enteritidis, specifically mung bean sprouts, tomatoes, and raw whole almonds (3, 13, 31).At the time of the 2001 outbreak, almonds and other low-moisture foods were considered an unlikely source of food-borne illness. Almonds are California''s major tree nut crop and have ranked first in California agricultural exports for many years, accounting for 60% of world production in 2000 (14) and 80% in 2008 (http://www.almondboard.com/AboutTheAlmondBoard/Documents/2008-Almond-Board-Almanac.pdf). However, no outbreaks associated with almonds had been reported before 2001. In the spring of 2001, Canadian health officials identified a link between illnesses caused by S. Enteritidis and the consumption of raw almonds (6). Outbreak-related cases were identified from November 2001 to July 2001 in several provinces across Canada and in several regions in the United States (13). During the traceback investigation, almond retailers, processors, and growers were identified, and S. Enteritidis PT30 was cultured from almond samples, a huller/sheller facility, and environmental samples from the orchards (30). The ability to identify the contaminated food source for this outbreak was aided significantly by the previously rare occurrence of S. Enteritidis PT30. S. Enteritidis PT30 continued to be isolated from one of the outbreak-associated orchards during a 5-year period, suggesting that this organism was highly fit for persistence in this environment (30).In 2004, another rare S. Enteritidis PT (PT9c) was linked to a second outbreak associated with raw almonds. Similarly to the first outbreak, both phage typing and pulsed-field gel electrophoresis (PFGE) aided the identification of related cases caused by S. Enteritidis PT9c that occurred over a large geographical region of the United States and Canada (3). A third S. Enteritidis PT30 outbreak associated with raw almonds was reported in Sweden in 2005 to 2006 (15).We have characterized, by molecular methods, S. Enteritidis strains recovered from clinical, almond, and orchard samples related to these three outbreaks to determine whether they were related genotypically. Additional S. Enteritidis strains representing some common phage types also were examined for comparison. Strains were genotyped by PFGE profiling, multilocus variable-number tandem repeat analysis (MLVA), and comparative genomic indexing (CGI) with a S. enterica serovar Typhimurium LT2/Enteritidis PT4 microarray to determine relatedness and whether an association with the source could be determined.  相似文献   

20.

Background  

Salmonella enterica serovar Typhi and Typhimurium are closely related serovars as indicated by >96% DNA sequence identity between shared genes. Nevertheless, S. Typhi is a strictly human-specific pathogen causing a systemic disease, typhoid fever. In contrast, S. Typhimurium is a broad host range pathogen causing only a self-limited gastroenteritis in immunocompetent humans. We hypothesize that these differences have arisen because some genes are unique to each serovar either gained by horizontal gene transfer or by the loss of gene activity due to mutation, such as pseudogenes. S. Typhi has 5% of genes as pseudogenes, much more than S. Typhimurium which contains 1%. As a consequence, S. Typhi lacks several protein effectors implicated in invasion, proliferation and/or translocation by the type III secretion system that are fully functional proteins in S. Typhimurium. SseJ, one of these effectors, corresponds to an acyltransferase/lipase that participates in SCV biogenesis in human epithelial cell lines and is needed for full virulence of S. Typhimurium. In S. Typhi, sseJ is a pseudogene. Therefore, we suggest that sseJ inactivation in S. Typhi has an important role in the development of the systemic infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号