首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eryptosis, a suicidal death of mature erythrocytes, is characterized by decrease of cell volume, cell membrane blebbing, and breakdown of cell membrane asymmetry with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increased cytosolic Ca(2+) activity, which could result from activation of Ca(2+)-permeable cation channels. Ca(2+) triggers phosphatidylserine exposure and activates Ca(2+)-sensitive K(+) channels, leading to cellular K(+) loss and cell shrinkage. The cation channels and thus eryptosis are stimulated by Cl(-) removal and inhibited by erythropoietin. The present experiments explored eryptosis in transgenic mice overexpressing erythropoietin (tg6). Erythrocytes were drawn from tg6 mice and their wild-type littermates (WT). Phosphatidylserine exposure was estimated from annexin binding and cell volume from forward scatter in fluorescence-activated cell sorting (FACS) analysis. The percentage of annexin binding was significantly larger and forward scatter significantly smaller in tg6 than in WT erythrocytes. Transgenic erythrocytes were significantly more resistant to osmotic lysis than WT erythrocytes. Cl(-) removal and exposure to the Ca(2+) ionophore ionomycin (1 microM) increased annexin binding and decreased forward scatter, effects larger in tg6 than in WT erythrocytes. The K(+) ionophore valinomycin (10 nM) triggered eryptosis in both tg6 and WT erythrocytes and abrogated differences between genotypes. An increase of extracellular K(+) concentration to 125 mM blunted the difference between tg6 and WT erythrocytes. Fluo-3 fluorescence reflecting cytosolic Ca(2+) activity was larger in tg6 than in WT erythrocytes. In conclusion, circulating erythrocytes from tg6 mice are sensitized to triggers of eryptosis but more resistant to osmotic lysis, properties at least partially due to enhanced Ca(2+) entry and increased K(+) channel activity.  相似文献   

2.
Blebbistatin, a myosin II inhibitor, interferes with myosin-actin interaction and microtubule assembly. By influencing cytoskeletal dynamics blebbistatin counteracts apoptosis of several types of nucleated cells. Even though lacking nuclei and mitochondria, erythrocytes may undergo suicidal cell death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include energy depletion and osmotic shock, which enhance cytosolic Ca(2+) activity with subsequent Ca(2+)-sensitive cell shrinkage and cell membrane scrambling. The present study explored the effect of blebbistatin on eryptosis. Cell membrane scrambling was estimated from binding of annexin V to phosphatidylserine at the erythrocyte surface, cell volume from forward scatter in fluorescence-activated cell sorting analysis and cytosolic Ca(2+) concentration from Fluo3 fluorescence. Exposure to blebbistatin on its own (1-50 μM) did not significantly modify cytosolic Ca(2+) concentration, forward scatter, or annexin V binding. Glucose depletion (48 h) was followed by a significant increase of Fluo3 fluorescence and annexin V binding, effects significantly blunted by blebbistatin (Fluo3 fluorescence ≥ 25 μM, annexin V binding ≥ 10 μM). Osmotic shock (addition of 550 mM sucrose) again significantly increased Fluo3 fluorescence and annexin binding, effects again significantly blunted by blebbistatin (Fluo3 fluorescence ≥ 25 μM, annexin V binding ≥ 25 μM). The present observations disclose a novel effect of blebbistatin, i.e., an influence on Ca(2+) entry and suicidal erythrocyte death following energy depletion and osmotic shock.  相似文献   

3.
Exposure to Ca2+ ionophore ionomycin, osmotic shock, oxidative stress and glucose depletion trigger cell shrinkage and scramblase-mediated phosphatidylserine exposure at the outer leaflet of the erythrocyte cell membrane. The effects are partially due to activation of GARDOS channels and subsequent cellular K+ loss leading not only to cell shrinkage but also participating in the triggering of erythrocyte scramblase. As conductive loss of K+ would depend on the parallel loss of anions we hypothesised that activation of scramblase is similarly dependent on the activity of Cl- channels. To test this hypothesis, we used Cl- channel blockers NPPB and niflumic acid. It is shown here that treatment of erythrocytes with 1 microM ionomycin leads to cellular K+ loss, decrease of hematocrit and decrease of forward scatter in FACS analysis reflecting cell shrinkage as well as increase of annexin positive cells reflecting phosphatidylserine exposure. Those events were significantly blunted in the presence of 100 microM NPPB by 34% (K+ loss), 45% (hematocrit), 32% (forward scatter) and 69% (annexin binding), or in the presence of 100 microM niflumic acid by 15% (forward scatter) and 45% (annexin binding), respectively. Moreover, oxidative stress triggered annexin binding which was again significantly inhibited (by 51%) in the presence of 100 microM NPPB. In conclusion, Cl- channels presumably participate in the regulation of erythrocyte 'apoptosis'.  相似文献   

4.
Protein kinase CK1 (casein kinase 1) isoforms are involved in the regulation of various physiological functions including apoptosis. The specific CK1 inhibitor D4476 may either inhibit or foster apoptosis. Similar to apoptosis of nucleated cells, eryptosis, the suicidal death of erythrocytes, is paralleled by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+) activity following energy depletion (removal of glucose) or oxidative stress (exposure to the oxidant tert-butyl hydroperoxide [TBOOH]). Western blotting was utilized to verify that erythrocytes express the protein kinase CK1α, and FACS analysis to determine whether the CK1 inhibitor D4476 and CK1α activator pyrvinium pamoate modify forward scatter (reflecting cell volume), annexin V binding (reflecting phosphatidylserine exposure), and Fluo3 fluorescence (reflecting cytosolic Ca(2+) activity). As a result, both, human and murine erythrocytes express CK1 isoform α. Glucose depletion (48 hours) and exposure to 0.3 mM TBOOH (30 minutes) both decreased forward scatter, increased annexin V binding and increased Fluo3 fluorescence. CK1 inhibitor D4476 (10 μM) significantly blunted the decrease in forward scatter, the increase in annexin V binding and the increase in Fluo 3 fluorescence. (R)-DRF053, another CK1 inhibitor, similarly blunted the increase in annexin V binding upon glucose depletion. The CK1α specific activator pyrvinium pamoate (10 μM) significantly enhanced the increase in annexin V binding and Fluo3 fluorescence upon glucose depletion and TBOOH exposure. In the presence of glucose, pyrvinium pamoate slightly but significantly increased Fluo3 fluorescence. In conclusion, CK1 isoform α participates in the regulation of erythrocyte programmed cell death by modulating cytosolic Ca(2+) activity.  相似文献   

5.
Effect of anandamide on erythrocyte survival.   总被引:1,自引:0,他引:1  
The endocannabinoid anandamide (Arachidonylethanolamide, AEA) is known to induce apoptosis in a wide variety of nucleated cells. The present study explored whether anandamide induces suicidal death of erythrocytes or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Eryptotic cells are phagocytosed and thus cleared from circulating blood. Triggers of eryptosis include increase of cytosolic Ca2+ activity, formation of PGE(2), oxidative stress and excessive cell shrinkage. Erythrocyte Ca2+ activity was estimated from Fluo3 fluorescence, phosphatidylserine exposure from annexin V binding, and erythrocyte volume from forward scatter in FACS analysis. Exposure of erythrocytes to anandamide (= 2.5 microM) increased cytosolic Ca2+ activity, enhanced the percentage of annexin V binding erythrocytes and decreased erythrocyte forward scatter, effects significantly blunted in the presence of cycloxygenase inhibitors acetylsalicylic acid (50 microM) or ibuprofen (100 microM) and in the nominal absence of extracellular Ca2+. Anandamide further enhanced the stimulating effects of hypertonic (addition of 550 mM sucrose) or isotonic (isosmotic replacement of Cl- with gluconate) cell shrinkage on annexin V binding. The present observations demonstrate that anandamide increases cytosolic Ca2+ activity, thus leading to cell shrinkage and cell membrane scrambling of mature erythrocytes.  相似文献   

6.
In erythrocytes, spermine concentration decreases gradually with age, which is paralleled by increases of cytosolic Ca2+ concentration, with subsequent cell shrinkage and cell membrane scrambling. Cytosolic Ca2+ was estimated from fluo-3 fluorescence, cell volume from forward scatter, cell membrane scrambling from annexin V binding and cation channel activity with whole-cell patch-clamp in human erythrocytes. Extracellular spermine exerted a dual effect on erythrocyte survival. At 200 μM spermine blunted the increase of intracellular Ca2+, cell shrinkage and annexin V binding following 48 h exposure of cells at +37 °C. In contrast, short exposure (10-30 min) of cells to 2 mM spermine was accompanied by increased cytosolic Ca2+ and annexin binding. Intracellular addition of spermine at subphysiological concentration (0.2 μM) significantly decreased the conductance of monovalent cations (Na+, K+, NMDG+) and of Ca2+. Moreover, spermine (0.2 μM) blunted the stimulation of voltage-independent cation channels by Cl? removal. Spermine (0.2 and 200 μM) added to the extracellular bath solution similarly inhibited the cation conductance in Cl?-containing bath solution. The effect of 0.2 μM spermine, but not the effect of 200 μM, was rapidly reversible. Acute addition (250 μM) of a naphthyl acetyl derivative of spermine (200 μM) again significantly decreased basal cation conductance in NaCl bath solution and inhibited voltage-independent cation channels. Spermine is a powerful regulator of erythrocyte cation channel cytosolic Ca2+ activity and, thus, cell survival.  相似文献   

7.
p38 protein kinase is activated by hyperosmotic shock, participates in the regulation of cell volume sensitive transport and metabolism and is involved in the regulation of various physiological functions including cell proliferation and apoptosis. Similar to apoptosis of nucleated cells, erythrocytes may undergo suicidal death or eryptosis, which is paralleled by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include hyperosmotic shock, which increases cytosolic Ca(2+) activity and ceramide formation. The present study explored whether p38 kinase is expressed in human erythrocytes, is activated by hyperosmotic shock and participates in the regulation of eryptosis. Western blotting was utilized to determine phosphorylation of p38 kinase, forward scatter to estimate cell volume, annexin V binding to depict phosphatidylserine exposure and Fluo3 fluorescence to estimate cytosolic Ca(2+) activity. As a result, erythrocytes express p38 kinase, which is phosphorylated upon osmotic shock (+550 mM sucrose). Osmotic shock decreased forward scatter, increased annexin V binding and increased Fluo3 fluorescence, all effects significantly blunted by the p38 kinase inhibitors SB203580 (2 μM) and p38 Inh III (1 μM). In conclusion, p38 kinase is expressed in erythrocytes and participates in the machinery triggering eryptosis following hyperosmotic shock.  相似文献   

8.
Erythrocytes are devoid of mitochondria and nuclei and were considered unable to undergo apoptosis. As shown recently, however, the Ca(2+)-ionophore ionomycin triggers breakdown of phosphatidylserine asymmetry (leading to annexin binding), membrane blebbing and shrinkage of erythrocytes, features typical for apoptosis in nucleated cells. In the present study, the effects of osmotic shrinkage and oxidative stress, well-known triggers of apoptosis in nucleated cells, were studied. Exposure to 850 mOsm for 24 h, to tert-butyl-hydroperoxide (1 mM) for 15 min, or to glucose-free medium for 48 h, all elicit erythrocyte shrinkage and annexin binding, both sequelae being blunted by removal of extracellular Ca(2+) and mimicked by ionomycin (1 microM). Osmotic shrinkage and oxidative stress activate Ca(2+)-permeable cation channels and increase cytosolic Ca(2+) concentration. The channels are inhibited by amiloride (1 mM), which further blunts annexin binding following osmotic shock, oxidative stress and glucose depletion. In conclusion, osmotic and oxidative stress open Ca(2+)-permeable cation channels in erythrocytes, thus increasing cytosolic Ca(2+) activity and triggering erythrocyte apoptosis.  相似文献   

9.
The natural nutrient component Curcumin with anti-inflammatory and antitumor activity has previously been shown to stimulate apoptosis of several nucleated cell types. The present study has been performed to explore whether Curcumin could similarly induce suicidal death of erythrocytes or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Phosphatidylserine exposing cells are phagocytosed and thus rapidly cleared from circulating blood. Erythrocyte membrane scrambling may be triggered by increase of cytosolic Ca(2+) activity or formation of ceramide. To test for eryptosis, erythrocyte phosphatidylserine exposure has been estimated from annexin V binding, and erythrocyte volume from forward scatter in FACS analysis. Exposure of erythrocytes to Curcumin (= 1 microM) increased annexin V binding and decreased forward scatter, pointing to phosphatidylserine exposure at the cell surface and cell shrinkage. According to Fluo3 fluorescence Curcumin increased cytosolic Ca(2+) activity and according to immunofluorescence Curcumin increased ceramide formation. As shown previously, hypertonic shock (addition of 550mM sucrose), chloride removal and glucose depletion decreased the forward scatter and increased annexin V binding. The effects on annexin binding were enhanced in the presence of Curcumin. Exposure to Curcumin did, however, not significantly enhance the shrinking effect of hypertonic shock or Cl(-) removal and reversed the shrinking effect of glucose withdrawal. The present observations disclose a proeryptotic effect of Curcumin which may affect the life span of circulating erythrocytes.  相似文献   

10.
Loss-of-function mutations in human adenomatous polyposis coli (APC) lead to multiple colonic adenomatous polyps eventually resulting in colonic carcinoma. Similarly, heterozygous mice carrying defective APC (apc(Min/+)) suffer from intestinal tumours. The animals further suffer from anaemia, which in theory could result from accelerated eryptosis, a suicidal erythrocyte death triggered by enhanced cytosolic Ca(2+) activity and characterized by cell membrane scrambling and cell shrinkage. To explore, whether APC-deficiency enhances eryptosis, we estimated cell membrane scrambling from annexin V binding, cell size from forward scatter and cytosolic ATP utilizing luciferin-luciferase in isolated erythrocytes from apc(Min/+) mice and wild-type mice (apc(+/+)). Clearance of circulating erythrocytes was estimated by carboxyfluorescein-diacetate-succinimidyl-ester labelling. As a result, apc(Min/+) mice were anaemic despite reticulocytosis. Cytosolic ATP was significantly lower and annexin V binding significantly higher in apc(Min/+) erythrocytes than in apc(+/+) erythrocytes. Glucose depletion enhanced annexin V binding, an effect significantly more pronounced in apc(Min/+) erythrocytes than in apc(+/+) erythrocytes. Extracellular Ca(2+) removal or inhibition of Ca(2+) entry with amiloride (1 mM) blunted the increase but did not abrogate the genotype differences of annexin V binding following glucose depletion. Stimulation of Ca(2+) -entry by treatment with Ca(2+) -ionophore ionomycin (10 μM) increased annexin V binding, an effect again significantly more pronounced in apc(Min/+) erythrocytes than in apc(+/+) erythrocytes. Following retrieval and injection into the circulation of the same mice, apc(Min/+) erythrocytes were more rapidly cleared from circulating blood than apc(+/+) erythrocytes. Most labelled erythrocytes were trapped in the spleen, which was significantly enlarged in apc(Min/+) mice. The observations point to accelerated eryptosis and subsequent clearance of apc(Min/+) erythrocytes, which contributes to or even accounts for the enhanced erythrocyte turnover, anaemia and splenomegaly in those mice.  相似文献   

11.
Prostaglandin-E2 (PGE2) is known to trigger suicidal death of nucleated cells (apoptosis) and enucleated erythrocytes (eryptosis). In erythrocytes PGE2 induced suicidal cell death involves activation of nonselective cation channels leading to Ca2+ entry followed by cell shrinkage and triggering of Ca2+ sensitive cell membrane scrambling with phosphatidylserine (PS) exposure at the cell surface. The present study was performed to explore whether PGE2 induces apoptosis of nucleated cells similarly through cation channel activation and to possibly disclose the molecular identity of the cation channels involved. To this end, Ca2+ activity was estimated from Fluo3 fluorescence, mitochondrial potential from DePsipher fluorescence, phosphatidylserine exposure from annexin binding, caspase activation from caspAce fluorescence, cell volume from FACS forward scatter, and DNA fragmentation utilizing a photometric enzyme immunoassay. Stimulation of K562 human leukaemia cells with PGE2 (50 microM) increased cytosolic Ca2+ activity, decreased forward scatter, depolarized the mitochondrial potential, increased annexin binding, led to caspase activation and resulted in DNA fragmentation. Gene silencing of the Ca2+-permeable transient receptor potential cation channel TRPC7 significantly blunted PGE2-induced triggering of PS exposure and DNA fragmentation. In conclusion, K562 cells express Ca2+-permeable TRPC7 channels, which are activated by PGE2 and participate in the triggering of apoptosis.  相似文献   

12.
Eryptosis or apoptosis-like death of erythrocytes is characterized by phosphatidylserine exposure and erythrocyte shrinkage, both typical features of nucleated apoptotic cells. Eryptosis is triggered by activation of nonselective Ca2+-permeable cation channels with subsequent entry of Ca2+ and stimulation of Ca2+-sensitive scrambling of the cell membrane. The channels are activated and thus eryptosis is triggered by Cl removal, osmotic shock, oxidative stress, or glucose deprivation. The present study has been performed to compare cation channel activity and susceptibility to eryptosis in neonatal and adult erythrocytes. Channel activity was determined by patch-clamp analysis, cytosolic Ca2+ activity by fluo-3 fluorescence, phosphatidylserine exposure by FITC-labeled annexin V binding, and cell shrinkage by decrease in forward scatter in fluorescence-activated cell sorting analysis. Prostaglandin E2 (PGE2) formation, cation channel activity, Ca2+ entry, annexin V binding, and decreased forward scatter were triggered by removal of Cl in both adult and neonatal erythrocytes. The effects were, however, significantly blunted in neonatal erythrocytes. Osmotic shock, PGE2, and platelet-activating factor similarly increased annexin V binding and decreased forward scatter, effects again significantly reduced in neonatal erythrocytes. On the other hand, spontaneous and oxidative (addition of tert-butylperoxide) stress-induced eryptosis was significantly larger in neonatal erythrocytes. In conclusion, cation channel activity, Ca2+ leakage, and thus channel-dependent triggering of eryptosis are blunted, whereas spontaneous and oxidative stress-induced eryptosis is more pronounced in neonatal erythrocytes. annexin V; osmotic cell shrinkage; calcium; apoptosis  相似文献   

13.
Haemolysin Kanagawa, a toxin from Vibrio parahaemolyticus, is known to trigger haemolysis. Flux studies indicated that haemolysin forms a cation channel. In the present study, channel properties were elucidated by patch clamp and functional significance of ion fluxes by fluorescence-activated cell sorting (FACS) analysis. Treatment of human erythrocytes with 1 U ml-1 haemolysin within minutes induces a non-selective cation permeability. Moreover, haemolysin activates clotrimazole-sensitive K+ channels, pointing to stimulation of Ca2+-sensitive Gardos channels. Haemolysin (1 U ml-1) leads within 5 min to slight cell shrinkage, which is reversed in Ca2+-free saline. Erythrocytes treated with haemolysin (0.1 U ml-1) do not undergo significant haemolysis within the first 60 min. Replacement of extracellular Na+ with NMDG+ leads to slight cell shrinkage, which is potentiated by 0.1 U ml-1 haemolysin. According to annexin binding, treatment of erythrocytes with 0.1 U ml-1 haemolysin leads within 30 min to breakdown of phosphatidylserine asymmetry of the cell membrane, a typical feature of erythrocyte apoptosis. The annexin binding is significantly blunted at increased extracellular K+ concentrations and by K+ channel blocker clotrimazole. In conclusion, haemolysin Kanagawa induces cation permeability and activates endogenous Gardos K+ channels. Consequences include breakdown of phosphatidylserine asymmetry, which depends at least partially on cellular loss of K+.  相似文献   

14.
Role of Ca2+-activated K+ channels in human erythrocyte apoptosis   总被引:10,自引:0,他引:10  
Exposure of erythrocytes to the Ca2+ ionophore ionomycin has recently been shown to induce cell shrinkage, cell membrane blebbing, and breakdown of phosphatidylserine asymmetry, all features typical of apoptosis of nucleated cells. Although breakdown of phosphatidylserine asymmetry is thought to result from activation of a Ca2+-sensitive scramblase, the mechanism and role of cell shrinkage have not been explored. The present study was performed to test whether ionomycin-induced activation of Ca2+-sensitive Gardos K+ channels and subsequent cell shrinkage participate in ionomycin-induced breakdown of phosphatidylserine asymmetry of human erythrocytes. According to on-cell patch-clamp experiments, ionomycin (1 µM) induces activation of inwardly rectifying K+-selective channels in the erythrocyte membrane. Fluorescence-activated cell sorter analysis reveals that ionomycin leads to a significant decrease of forward scatter, reflecting cell volume, an effect blunted by an increase of extracellular K+ concentration to 25 mM and exposure to the Gardos K+ channel blockers charybdotoxin (230 nM) and clotrimazole (5 µM). As reflected by annexin binding, breakdown of phosphatidylserine asymmetry is triggered by ionomycin, an effect again blunted, but not abolished, by an increase of extracellular K+ concentration and exposure to charybdotoxin (230 nM) and clotrimazole (5 µM). Similar to ionomycin, glucose depletion leads (within 55 h) to annexin binding of erythrocytes, an effect again partially reversed by an increase of extracellular K+ concentration and exposure to charybdotoxin. K-562 human erythroleukemia cells similarly respond to ionomycin with cell shrinkage and annexin binding, effects blunted by antisense, but not sense, oligonucleotides against the small-conductance Ca2+-activated K+ channel isoform hSK4 (KCNN4). The experiments disclose a novel functional role of Ca2+-sensitive K+ channels in erythrocytes, i.e., their participation in regulation of erythrocyte apoptosis. cell volume; charybdotoxin; osmolarity; phosphatidylserine; annexin  相似文献   

15.
Side effects of amiodarone, an effective antiarrhythmic drug, include anemia, which may be caused by decreased formation or accelerated death of erythrocytes. Suicidal erythrocyte death (eryptosis) is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the cell surface. Stimulators of erythrocyte membrane scrambling include increase of cytosolic Ca2+ concentration ([Ca2+]i) following activation of Ca2+-permeable cation channels. Moreover, eryptosis is triggered by ceramide. The present study has been performed to test for an effect of amiodarone on eryptosis. Erythrocytes from healthy volunteers were exposed to amiodarone and phosphatidylserine exposure (annexin V binding), cell volume (forward scatter), [Ca2+]i (Fluo3-dependent fluorescence), and ceramide formation (anti-ceramide-FITC antibody and radioactive labelling) determined by flow cytometry. Exposure of erythrocytes to amiodarone (1 microM) increased [Ca2+]i and triggered annexin V binding, but did not significantly decrease forward scatter and did not significantly influence ceramide formation. Amiodarone augmented the increase of annexin binding following hypertonic shock (addition of 550 mM sucrose) but did not significantly alter the enhanced annexin binding following Cl- removal (replacement with gluconate). Amiodarone did not significantly modify the decrease of forward scatter following hypertonic shock or Cl- removal. The present observations disclose a novel action of amiodarone which may contribute to the side effects of the drug.  相似文献   

16.
Amyloid peptides are known to induce apoptosis in a wide variety of cells. Erythrocytes may similarly undergo suicidal death or eryptosis, which is characterized by scrambling of the cell membrane with subsequent exposure of phosphatidylserine (PS) at the cell surface. Eryptosis is triggered by increase of cytosolic Ca(2+) activity and by activation of acid sphingomyelinase with subsequent formation of ceramide. Triggers of eryptosis include energy depletion and isosmotic cell shrinkage (replacement of extracellular Cl(-) by impermeable gluconate for 24 h). The present study explored whether amyloid peptide Abeta (1-42) could trigger eryptosis and to possibly identify underlying mechanisms. Erythrocytes from healthy volunteers were exposed to amyloid and PS-exposure (annexin V binding), cell volume (forward scatter), cytosolic Ca(2+) activity (Fluo3 fluorescence) and ceramide formation (anti-ceramide antibody) were determined by FACS analysis. Exposure of erythrocytes to the amyloid peptide Abeta (1-42) (> or = 0.5 microM) for 24 h significantly triggered annexin V binding, an effect mimicked to a lesser extent by the amyloid peptide Abeta (1-40) (1 microM). Abeta (1-42) (> or = 1.0 microM) further significantly decreased forward scatter of erythrocytes. The effect of Abeta (1-42) (> or = 0.5 microM) on erythrocyte annexin V binding was paralleled by formation of ceramide but not by significant increase of cytosolic Ca(2+) activity. The presence of Abeta (1-42) further significantly enhanced the eryptosis following Cl(-) depletion but not of glucose depletion for 24 hours. The present observations disclose a novel action of Abeta (1-42), which may well contribute to the pathophysiological effects of amyloid peptides, such as vascular complications in Alzheimer's disease.  相似文献   

17.
Erythrocytes lack nuclei and mitochondria, the organelles important for apoptosis of nucleated cells. However, following increase of cytosolic Ca(2+) activity, erythrocytes undergo cell shrinkage, cell membrane blebbing and breakdown of phosphatidylserine asymmetry, all features typical for apoptosis in nucleated cells. The same events are observed following osmotic shock, an effect mediated in part by activation of Ca(2+)-permeable cation channels. However, erythrocyte death following osmotic shock is blunted but not prevented in the absence of extracellular Ca(2+) pointing to additional mechanisms. As shown in this study, osmotic shock (950 mOsm) triggers sphingomyelin breakdown and formation of ceramide. The stimulation of annexin binding following osmotic shock is mimicked by addition of ceramide or purified sphingomyelinase and significantly blunted by genetic (aSM-deficient mice) or pharmacologic (50 microM 3,4-dichloroisocoumarin) knockout of sphingomyelinase. The effect of ceramide is blunted but not abolished in the absence of Ca(2+). Conversely, osmotic shock-induced annexin binding is potentiated in the presence of sublethal concentrations of ceramide. In conclusion, ceramide and Ca(2+) entry through cation channels concert to trigger erythrocyte death during osmotic shock.  相似文献   

18.
In most mammalian cells, regulatory volume decrease (RVD) is mediated by swelling-activated Cl(-) and K(+) channels. Previous studies in the human neuroblastoma cell line CHP-100 have demonstrated that exposure to hypoosmotic solutions activates Cl(-) channels which are sensitive to Ca(2+). Whether a Ca(2+)-dependent K(+) conductance is activated after cell swelling was investigated in the present studies. Reducing the extracellular osmolarity from 290 to 190 mOsm/kg H(2)O rapidly activated 86Rb effluxes. Hypoosmotic stress also increased cytosolic Ca(2+) in fura-2 loaded cells. Pretreatment with 2.5 mM EGTA and nominally Ca(2+) free extracellular solution significantly decreased the hypoosmotically induced rise in cytosolic Ca(2+) and the swelling-activated 86Rb efflux. In cell-attached patch-clamp studies, decreasing the extracellular osmolarity activated a K(+) conductance that was blocked by Ba(2+). In addition, the swelling-activated K(+) channels were significantly inhibited in the presence of nominally free extracellular Ca(2+) and 2.5mM EGTA. These results suggest that in response to hypoosmotic stress, a Ca(2+)-dependent K(+) conductance is activated in the human neuroblastoma cell line CHP-100.  相似文献   

19.
The effect of extracellular calcium (Ca2+) on the cellular action of forskolin was studied using a Na+, K(+)-ATPase inhibitor ouabain in rat renal papillary collecting tubule cells in culture. Forskolin-induced cAMP production was enhanced by the pretreatment of cells with ouabain, providing that a dose-dependent curve with forskolin shifted to the left. The enhancement by ouabain of cellular cAMP production in response to forskolin was totally blunted by cotreatment with cobalt, verapamil, or Ca2(+)-free medium containing 1 mM EGTA. In addition, two dissimilar antagonists of calmodulin, namely trifluoperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W - 7), attenuated the ouabain's effect on cAMP production in response to forskolin. These results therefore indicate that ouabain enhances the activation of adenylate cyclase by forskolin, mediated through cellular free Ca2+, in renal papillary collecting tubule cells, and that extracellular Ca2+ is an important source for cellular Ca2+ mobilization by ouabain.  相似文献   

20.
Ceramide is known to trigger apoptosis of nucleated cells and eryptosis of erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Besides ceramide, stimulators of eryptosis include increase of cytosolic Ca2+‐activity ([Ca2+]i) and oxidative stress. Ceramide is degraded by acid ceramidase and inhibition of the enzyme similarly triggers apoptosis. The present study explored, whether ceramidase inhibitor Ceranib‐2 induces eryptosis. Flow cytometry was employed to quantify phosphatidylserine‐exposure at the cell surface from annexin‐V‐binding, cell volume from forward scatter, [Ca2+]i from Fluo3‐fluorescence, reactive oxygen species (ROS) from DCF dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was estimated from hemoglobin concentration in the supernatant. A 48 h exposure of human erythrocytes to Ceranib‐2 significantly increased the percentage of annexin‐V‐binding cells (≥50 μM) and the percentage of hemolytic cells (≥10 μM) without significantly modifying forward scatter. Ceranib‐2 significantly increased Fluo3‐fluorescence, DCF fluorescence and ceramide abundance. The effect of Ceranib‐2 on annexin‐V‐binding was not significantly blunted by removal of extracellular Ca2+. Ceranib‐2 triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to increase of ceramide abundance and induction of oxidative stress, but not dependent on Ca2+ entry. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号