首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The total activity of pyruvate dehydrogenase in mitochondria isolated from rat brain and liver was 53.5 and 14.2nmol/min per mg of protein respectively. Pyruvate dehydrogenase in liver mitochondria incubated for 4 min at 37 degrees C with no additions was 30% in the active form and this activity increased with longer incubations until it was completely in the active form after 20 min. Brain mitochondrial pyruvate dehydrogenase activity was initially high and did not increase with addition of Mg2+ plus Ca2+ or partially purified pyruvate dehydrogenase phosphatase or with longer incubations. The proportion of pyruvate dehydrogenase in the active form in both brain and liver mitochondria changed inversely with changes in mitochondrial energy charge, whereas total pyruvate dehydrogenase did not change. The chelators citrate, isocitrate, EDTA, ethanedioxybis(ethylamine)tetra-acetic acid and Ruthenium Red each lowered pyruvate dehydrogenase activity in brain mitochondria, but only citrate and isocitrate did so in liver mitochondria. These chelators did not affect the energy charge of the mitochondria. Mg2+ plus Ca2+ reversed the pyruvate dehydrogenase inactivation in liver, but not brain, mitochondria. The regulation of the activation-inactivation of pyruvate dehydrogenase in mitochondria from rat brain and liver with respect to energy charge is similar and may be at least partially regulated by this parameter, and the effects of chelators differ in the two types of mitochondria.  相似文献   

2.
The uncoupler-induced inactivation of H+-ATPase in hepatoma 22a and mouse liver mitochondria has been studied. The dependence of this process on delta microH, and pH and ATP was established. The inactivated ATPase could be reactivated at alkaline pH values in the absence of ATP. These data indicate that the inactivation is apparently caused by the natural protein inhibitor. ATP- and pH-dependent decrease of ATPase activity is also observed after Lubrol-WX disruption of mitochondria. It can be proposed that practically all ATPase molecules in hepatoma mitochondria are in a catalytically active complex with the protein inhibitor. At low delta microH this complex is inactivated via reversible pH-dependent and irreversible ATP-dependent rearrangements. The pH-dependent rearrangement of the isolated protein inhibitor from hepatoma mitochondria is also observed.  相似文献   

3.
The ATPase complex of submitochondrial particles exhibits activity transitions that are controlled by the natural ATPase inhibitor (Gómez-Puyou, A., Tuena de Gómez-Puyou, M. and Ernster, L. (1979) Biochim. Biophys. Acta 547, 252-257). The ATPase of intact heart mitochondria also shows reversible activity transitions; the activation reaction is induced by the establishment of electrochemical gradients, whilst the inactivation reaction is driven by collapse of the gradient. In addition it has been observed that the influx of Ca2+ into the mitochondria induces a rapid inactivation of the ATPase; this could be due to the transient collapse of the membrane potential in addition to a favorable effect of Ca2+-ATP on the association of the ATPase inhibitor peptide to F1-ATPase. This action of Ca2+ may explain why mitochondria utilize respiratory energy for the transport of Ca2+ in preference to phosphorylation. It is concluded that the mitochondrial ATPase inhibitor protein may exert a fundamental regulatory function in the utilization of electrochemical gradients.  相似文献   

4.
A previous communication (Pereira da Silva, L., Bernardes, C.F. and Vercesi, A.E. (1984) Biochem. Biophys. Res. Commun. 124, 80-86) presented evidence that lasalocid-A, at concentrations far below those required to act as a Ca2+ ionophore, significantly inhibits Ca2+ efflux from liver mitochondria. In the present work we have studied the mechanism of this inhibition in liver and heart mitochondria. It was observed that lasalocid-A (25-250 nM), like nigericin, promotes the electroneutral exchange of K+ for H+ across the inner mitochondrial membrane and as a consequence can cause significant alterations in delta pH and delta psi. An indirect effect of these changes that might lead to inhibition of mitochondrial Ca2+ release was ruled out by experiments showing that the three observed patterns of lasalocid-A effect depend on the size of the mitochondrial Ca2+ load. At low Ca2+ loads (5-70 nmol Ca2+/mg protein), under experimental conditions in which Ca2+ release is supposed to be mediated by a Ca2+/2H+ antiporter, the kinetic data indicate that lasalocid-A inhibits the efflux of the cation by a competitive mechanism. The Ca2+/2Na+ antiporter, the dominant pathway for Ca2+ efflux from heart mitochondria, is not affected by lasalocid-A. At intermediate Ca2+ loads (70-110 nmol Ca2+/mg protein), lasalocid-A slightly stimulates Ca2+ release. This effect appears to be due to an increase in membrane permeability caused by the displacement of a pool of membrane bound Mg2+ possibly involved in the maintenance of membrane structure. Finally, at high Ca2+ loads (110-140 nmol Ca2+/mg protein) lasalocid-A enhances Ca2+ retention by liver mitochondria even in the presence of Ca2(+)-releasing agents such as phosphate and oxidants of the mitochondrial pyridine nucleotides. The maintenance of a high membrane potential under these conditions may indicate that lasalocid-A is a potent inhibitor of the Ca2(+)-induced membrane permeabilization. Nigericin, whose chemical structure resembles that of lasalocid-A, caused similar results.  相似文献   

5.
The mechanism of N-acetyl-p-benzoquinone imine (NAPQI)-induced release of Ca2+ from rat liver mitochondria was investigated. The addition of NAPQI or 3,5-Me2-NAPQI (a dimethylated analogue of NAPQI with only oxidizing properties) to mitochondria resulted in the rapid and extensive oxidation of NADH and NADPH. High-performance liquid chromatographic analysis of mitochondrial pyridine nucleotides revealed that the formation of NAD+ and NADP+ was followed by a time-dependent net loss of total pyridine nucleotides as a result of their hydrolysis, with the formation of nicotinamide. Preincubation of the mitochondria with cyclosporin A completely prevented the quinone imine-stimulated release of sequestered Ca2+ from mitochondria. Cyclosporin A did not affect the ability of NAPQI or 3,5-Me2-NAPQI to oxidize NAD(P)H but prevented the quinone imine-induced hydrolysis of the pyridine nucleotides. Although there was no detectable change in total protein-bound ADP-ribose content during quinone imine-induced Ca2+ release from mitochondria, meta-iodobenzylguanidine, a competitive inhibitor of protein mono(ADP-ribosylation), prevented Ca2+ release by NAPQI and 3,5-Me2-NAPQI; meta-iodobenzylguanidine did not inhibit the quinone imine-induced NAD(P)H oxidation and only partially blocked hydrolysis of the oxidized pyridine nucleotides. It is concluded that NAPQI causes the oxidation of mitochondrial NADH and NADPH, and stimulates Ca2+ release as a result of the further hydrolysis of the oxidized pyridine nucleotides and protein mono(ADP-ribosylation).  相似文献   

6.
Rat liver plasma membranes contain (Ca2+-Mg2+)-ATPase sensitive to inhibition by both glucagon and Mg2+. We have previously shown that Mg2+ inhibition is mediated by a 30,000-dalton inhibitor, originally identified as a membrane-bound protein. In fact, this inhibitor is also present in the 100,000 X g supernatant of the total liver homogenate. Its purification was achieved from this fraction by a combination of ammonium sulfate washing, gel filtration, and cationic exchange chromatography. N-Ethylmaleimide (NEM) treatment caused the inactivation of the purified inhibitor, which suggested that this protein possesses at least one NEM-sensitive sulfhydryl group essential for its activity. Treatment of the liver plasma membranes with NEM resulted in a 2- and 5-fold decrease in the affinity of the (Ca2+-Mg2+)-ATPase for glucagon and Mg2+, respectively, while the basal enzyme activity remained unchanged. This effect of NEM was concentration-, pH-, and time-dependent, optimal conditions being obtained by a 60-min treatment of plasma membranes with 50 mM NEM, at pH 7 and at 4 degrees C. The presence of 0.5 mM Mg2+ during NEM treatment of the plasma membranes prevented NEM inactivation. Reconstitution experiments showed that addition of the purified inhibitor to NEM-treated plasma membranes restored the inhibitions of the (Ca2+-Mg2+)-ATPase by both magnesium and glucagon. It is proposed that the (Ca2+-Mg2+)-ATPase inhibitor not only confers its sensitivity of the liver (Ca2+-Mg2+)-ATPase to Mg2+, but also mediates the inhibition of this system by glucagon.  相似文献   

7.
The uptake of Ca2+ by liver mitochondria, when phosphate movement is inhibited, occurs when Co2 is present and not in its absence. Uptake of Ca2+ to form CaCO3 yields 2H+/Ca2+. Heart mitochondria, when phosphate movement is inhibited, will take up Ca2+ with the exact equivalent of hydroxybutyrate, lactate or acetate. By providing a carrier for Cl- with tributyltin, a stoicheiometric uptake of Cl- with the Ca2+ takes place. The uptakes appear to occur without significant pH change; there appears to be no CO2-dependent uptake into heart mitochondria. Oxygenation of anaerobic heart mitochondria, in the presence of an inhibitor of phosphate movement and of generation of phosphate from internal ATP, does not yield significant change of external acidity in relation to the amount of O2 added. Use of Bromothymol Blue as an indicator of the distribution of a weak acid anion confirms that the transient nature of the response of the dye distribution to Ca2+ is connected with movement of endogenous phosphate. Bromothymol Blue accumulated in response to Ca2+ is discharged when entry of the Ca2+ (in the presence of mersalyl) is mediated with nigericin. It is concluded that Ca2+ uptakes will occur alternatively with the equivalent of anions or in exchange for endogenous K+ and that proton production is connected with the changes of ionization of phosphate (unless phosphate movement is inhibited) and in liver mitochondria with the hydration of CO2.  相似文献   

8.
A decrease in the rate of ATP hydrolysis was observed after preincubation of intact mitochondria from hepatoma 22a with an uncoupler. This effect is due both to a decrease in the rate of ATP transport and to an inactivation of the F0F1-ATPase. The former effect is shown to result from an uncoupler-induced ADP efflux. In de-energized mitochondria from hepatoma (but not from mice liver), the concentration of adenine nucleotides in the matrix equilibrates with the medium concentration via a carboxyatractyloside (CATR)-insensitive transport system. CATR-insensitive accumulation of medium ADP and stoichiometric exchange of added ATP are observed in energized hepatoma mitochondria. The dependence of the uncoupler-induced inactivation of ATPase activity on delta mu H+, pH, and ATP is consistent with the effect being caused by the natural protein inhibitor (IF1) of F0F1. ATP- and pH-dependent inactivation of the enzyme is also observed after disruption of mitochondria with the detergent Lubrol-WX. Almost all F0F1 in hepatoma mitochondria have IF1 bound in a noninhibitory manner. In the presence of uncoupler, this complex converts, via a reversible pH-dependent and an irreversible ATP-dependent process, to an inhibitory complex. The pH-dependent step can be blocked by Zn2+ and Cd2+ ions which probably bind to negatively charged residues on IF1, thereby preventing their protonation and conversion of the protein to an inhibitory conformation.  相似文献   

9.
Earlier it has been demonstrated that inactivation of inorganic pyrophosphatase (PPase) of S. cerevisiae by 7-chloro-4-nitronbenzofurasane is due to modification of Tyr89. The effect of pH and active center ligands on this reaction has been studied. It was found that pK for Tyr89 does not exceed 8.5; the phosphate-metal complex binding to the high affinity center protects Tyr89 from inactivation. Activating ions (Mg2+ and Zn2+) do not influence the inactivation, whereas the PPase inhibitor, Ca2+, enhances this process after saturation of the high affinity binding site. Saturation of two binding sites with Ca2+ has a protective effect on the enzyme. An increase in the rate of Tyr89 binding to the inhibitor in the presence of low concentrations of Ca2+ is due to the decrease of Tyr89 pK. The data obtained suggest that Tyr89 is located near the high affinity binding site for phosphate. The high reactivity of Tyr89 and its tight binding in the active center point to the presence of a hydrogen bondage with the substrate and suggest a role of a proton donor whose acceptor is the product of the enzymatic reaction, i.e., phosphate.  相似文献   

10.
It has been shown by using o-phthalic acid--a concurrent inhibitor of the transport of oxalacetic acid in mitochondria that the effect of the latter on the mechanism of 2H+/Ca2+-metabolism is realized at the inner side of the inner mitochondrial membrane. Oxalacetic acid was shown to induce not only the release of Ca2+ ions but also those of strontium and manganese accumulated in the mitochondria (100-150 nmol/mg of protein). Mechanism of the effect of oxalacetic acid on permeability of the mitochondria membranes are discussed.  相似文献   

11.
The effect of Ca(2+)-binding protein regucalcin on Ca(2+)-ATPase activity in isolated rat liver mitochondria was investigated. The presence of regucalcin (0.1, 0.25, and 0.5 microM) in the enzyme reaction mixture led to a significant increase in Ca(2+)-ATPase activity. Regucalcin significantly stimulated ATP-dependent (45)Ca(2+) uptake by the mitochondria. Ruthenium red (10(-5) M) or lanthanum chloride (10(-4) M), an inhibitor of mitochondrial Ca(2+) uptake, completely inhibited regucalcin (0.25 microM)-increased mitochondrial Ca(2+)-ATPase activity and (45)Ca(2+) uptake. The effect of regucalcin (0.25 microM) in increasing Ca(2+)-ATPase activity was completely inhibited by the presence of digitonin (10(-2)%), a solubilizing reagent of membranous lipids, or vanadate (10(-5) M), an inhibitor of phosphorylation of ATPase. The activatory effect of regucalcin (0.25 microM) on Ca(2+)-ATPase activity was not further enhanced in the presence of dithiothreitol (2.5 mM), a protecting reagent of the sulfhydryl (SH) group of the enzyme, or calmodulin (0.60 microM), a modulator protein of Ca(2+) action that could increase mitochondrial Ca(2+)-ATPase activity. The present study demonstrates that regucalcin can stimulate Ca(2+) pump activity in rat liver mitochondria, and that the protein may act on an active site (SH group)-related to phosphorylation of mitochondrial Ca(2+)-ATPase.  相似文献   

12.
The regulatory properties of the Ca2+-sensitive intramitochondrial enzymes (pyruvate dehydrogenase phosphate phosphatase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase) in extracts of rat liver mitochondria appeared to be essentially similar to those described previously for other mammalian tissues. In particular, the enzymes were activated severalfold by Ca2+, with half-maximal effects at about 1 microM-Ca2+ (K0.5 value). In intact rat liver mitochondria incubated in a KCl-based medium containing 2-oxoglutarate and malate, the amount of active, non-phosphorylated, pyruvate dehydrogenase could be increased severalfold by increasing extramitochondrial [Ca2+], provided that some degree of inhibition of pyruvate dehydrogenase kinase (e.g. by pyruvate) was achieved. The rates of 14CO2 production from 2-oxo-[1-14C]glutarate at non-saturating, but not at saturating, concentrations of 2-oxoglutarate by the liver mitochondria (incubated without ADP) were similarly enhanced by increasing extramitochondrial [Ca2+]. The rates and extents of NAD(P)H formation in the liver mitochondria induced by non-saturating concentrations of 2-oxoglutarate, glutamate, threo-DS-isocitrate or citrate were also increased in a similar manner by Ca2+ under several different incubation conditions, including an apparent 'State 3.5' respiration condition. Ca2+ had no effect on NAD(P)H formation induced by beta-hydroxybutyrate or malate. In intact, fully coupled, rat liver mitochondria incubated with 10 mM-NaCl and 1 mM-MgCl2, the apparent K0.5 values for extramitochondrial Ca2+ were about 0.5 microM, and the effective concentrations were within the expected physiological range, 0.05-5 microM. In the absence of Na+, Mg2+ or both, the K0.5 values were about 400, 200 and 100 nM respectively. These effects of increasing extramitochondrial [Ca2+] were all inhibited by Ruthenium Red. When extramitochondrial [Ca2+] was increased above the effective ranges for the enzymes, a time-dependent deterioration of mitochondrial function and ATP content was observed. The implications of these results on the role of the Ca2+-transport system of the liver mitochondrial inner membrane are discussed.  相似文献   

13.
Mechanism of sodium independent calcium efflux from rat liver mitochondria   总被引:1,自引:0,他引:1  
On the basis of primarily two types of observations, it has been suggested that the Na+-independent Ca2+ efflux mechanism of rat liver mitochondria is a passive Ca2+-2H+ exchanger. First, when a pulse of acid is added to a suspension of mitochondria loaded with Ca2+, a pulse of intramitochondrial Ca2+ is often released, even in the presence of the inhibitor of mitochondrial Ca2+ influx, ruthenium red. Second, at a pH near 7, the stoichiometry of Ca2+ released to H+ taken up by Ca2+-loaded mitochondria, following treatment with ruthenium red, has been observed to be 1:2. This evidence for a Ca2+-2H+ exchanger is reexamined here by studying the release of Ca2+ upon acidification of the medium by addition of buffer, the dependence of liver mitochondrial Ca2+ efflux on external medium pH and intramitochondrial pH, and the Ca2+-Ca2+ exchange properties of the Ca2+ efflux mechanism. These studies show no pulse of mitochondrial Ca2+ efflux when pH is abruptly lowered by addition of buffer. The stoichiometry between Ca2+ and H+ fluxes is found to be highly pH dependent. The reported 1:2 stoichiometry between Ca2+ efflux and H+ influx is only observed at one pH. Furthermore, the rate of Ca2+ efflux from mitochondria is found to increase only very slightly at most as suspension pH is decreased. The rate of Ca2+ efflux is not found to increase with increasing intramitochondrial pH. Finally, no Ca2+-Ca2+ isotope exchange can be demonstrated over the Na+-independent efflux mechanism (i.e., in the presence of ruthenium red). It is concluded that these data do not support the hypothesis that the Na+-independent Ca2+ efflux mechanism is a passive Ca2+-2H+ exchanger.  相似文献   

14.
In the presence of oligomycin, EGTA, and magnesium ions, the protonophore uncoupling activity of palmitate (V(Pal)) is determined as the ratio of the acceleration of respiration with palmitate to its concentration. Under these conditions, V(Pal) in liver mitochondria of one-month-old rats with the body weight of 50 g is 1.46-fold higher than in liver mitochondria of adult rats with the body weight of 250 g, whereas the uncoupling activity of FCCP does not depend on the age of the animals. The difference in V(Pal) is mainly due to its component insensitive to carboxyatractylate and glutamate (V(Ins)). This value is 2.9-fold higher in mitochondria of one-month-old rats than in those of adult rats. The protonophore activity of palmitate is similar in liver mitochondria of four-day-old and adult rats. In liver mitochondria of adult mammals (mouse, rat, guinea pig, rabbit), V(Pal) decreases with increase in the body weight of the animals. In double logarithmic coordinates, the dependence of the V(Pal) value on the body weight is linear with slope angle tangent of -0.18. The V(Pal) value is mainly contributed by its component V(Ins). In the presence of calcium ions, palmitate induces the nonspecific permeability of the inner membrane of liver mitochondria (pore opening). This Ca2+-dependent uncoupling effect of palmitate is less pronounced in mitochondria of one-month-old rats than in those of adult rats. In mitochondria of adult animals (mice, rats, and guinea pigs), the Ca2+-dependent uncoupling activity of palmitate is virtually the same. It is concluded that the protonophore uncoupling effect of palmitate in liver mitochondria of mammals, unlike its Ca2+-dependent effect, is associated with thermogenesis at rest and also with production of additional heat on cooling of the animals.  相似文献   

15.
The state of adenylate system and intensity of oxidative phosphorylation in liver mitochondria of active and hibernating ground squirrels were studied depending on the concentration of extramitochondrial Ca2+ ([Ca2+]ex). It was shown that at [Ca2+]ex.10(-7) M, the content of ATP as well as ATP/ADP ratio are slightly lower in the mitochondria of hibernating ground squirrels than in the mitochondria of active animals. The other parameters of the adenylate system under the same conditions differ insignificantly. [Ca2+]ex increase to 10(-6) M has little effect on the parameters of the adenylate system of active animals. On the contrary, the mitochondria of hibernating ground squirrels are strongly affected: the level of ATP is 1.5-fold and the ratio of ATP/ADP is almost 2-fold decreased. At both [Ca2+]ex the intensity of oxidative phosphorylation is essentially higher in the mitochondria of active ground squirrels. With increasing [Ca2+]ex the rate of ATP synthesis decreases, and in the mitochondria of hibernating animals the decrease is more pronounced than in the mitochondria of active animals. Thus, oxidative phosphorylation and adenylate system of mitochondria from hibernating ground squirrels are more sensitive to [Ca2+]ex increase than those of the mitochondria of active animals.  相似文献   

16.
1. The administration of dexamethasone to intact fed rats by intraperitoneal injection for 3h was associated with a 6-fold increase in the time for which mitochondria subsequently isolated from the liver retain a given load of exogenous Ca2+. This effect was blocked by the co-administration of cycloheximide with dexamethasone, and partially blocked by the co-administration of puromycin. Daily administration of dexamethasone for periods of 4--7 days resulted in liver mitochondria that exhibited a decreased ability to retain exogenous Ca2+. 2. When glucagon was administered to fed adrenalectomized rats, the increase in mitochondrial Ca2+-retention time that results from the action of this hormone was reduced by 50% when compared with its effect on intact animals. The administration of dexamethasone to adrenalectomized rats partially restored the full effect of glucagon. 3. Dexamethasone did not enhance the effect of glucagon on mitochondrial Ca2+-retention time when administered to intact fed rats. 4. It is concluded that these data support the hypothesis that the hormone-induced modification of liver mitochondria, which results in an increase in the time for which exogenous Ca2+ is retained, involves a step in which new protein is synthesized.  相似文献   

17.
The pharmacologic agents verapamil, nifedipine, diltiazem, prenylamine, N-oleoylethanolamine, R 24571, trifluoperazine, dibucaine, and quinacrine are examined as potential inhibitors of rat liver mitochondrial phospholipase A2 acting on endogenous phospholipid. Their potency as inhibitors of the enzyme is compared to their activities as inhibitors of phospholipase A2-dependent swelling and ruthenium red-induced Ca2+ release in intact mitochondria. For verapamil, diltiazem, trifluoperazine, dibucaine, and quinacrine, there is complete agreement between the relative potencies as inhibitors of phospholipase A2 and the two other processes. Nifedipine and prenylamine, which are weak inhibitors of phospholipase A2, produce a permeable inner membrane, provided that the mitochondrial have accumulated Ca2+. R 24571, which strongly inhibits the enzyme, disrupts mitochondria by a Ca2+-independent mechanism. N-Oleoylethanolamine, which is an effective inhibitor of swelling, does not inhibit phospholipase A2 or ruthenium red-induced Ca2+ release. The results support a proposed scheme wherein ruthenium red-induced Ca2+ release is viewed as reverse activity of the Ca2+-uptake uniporter occurring subsequent to decline in the proton motive force. The latter effect is proposed to arise from a specific phospholipase A2-dependent increase in inner-membrane H+ conductance of mitochondrial subpopulations. It is further shown that mitochondrial membranes display cyclic oscillations in free fatty acid content which are not dependent on the presence of Ca2+ or on the capacity to generate acylcoenzyme A.  相似文献   

18.
The role of ADP in the regulation of Ca2+ efflux in rat brain mitochondria was investigated. ADP was shown to inhibit Ruthenium-Red-insensitive H+- and Na+-dependent Ca2+-efflux rates if Pi was present, but had no effect in the absence of Pi. The primary effect of ADP is an inhibition of Pi efflux, and therefore it allows the formation of a matrix Ca2+-Pi complex at concentrations above 0.2 mM-Pi and 25 nmol of Ca2+/mg of protein, which maintains a constant free matrix Ca2+ concentration. ADP inhibition of Pi and Ca2+ efflux is nucleotide-specific, since in the presence of oligomycin and an inhibitor of adenylate kinase ATP does not substitute for ADP, is dependent on the amount of ADP present, and requires ADP concentrations in excess of the concentrations of translocase binding sites. Brain mitochondria incubated with 0.2 mM-Pi and ADP showed Ca2+-efflux rates dependent on Ca2+ loads at Ca2+ concentrations below those required for the formation of a Pi-Ca2+ complex, and behaved as perfect cytosolic buffers exclusively at high Ca2+ loads. The possible role of brain mitochondrial Ca2+ in the regulation of the tricarboxylic acid-cycle enzymes and in buffering cytosolic Ca2+ is discussed.  相似文献   

19.
It has been previously reported (L?tscher, H. R., Winterhalter, K. H., Carafoli, E., and Richter, C. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 4340-4344) that in Ca2+-loaded mitochondria hydroperoxides induce a release of Ca2+ from mitochondria and an irreversible oxidation of mitochondrial pyridine nucleotides. Here we show that in the presence of Ca2+ oxidized mitochondrial pyridine nucleotides are hydrolyzed inside mitochondria and that nicotinamide is released from mitochondria. The extent of the hydrolysis of NAD(P)+ is dependent on the amount of both hydroperoxide and Ca2+. The hydrolysis is reversible in the presence of added nicotinamide. The release of Ca2+ from mitochondria is electroneutral, and is directly or indirectly dependent on oxidized mitochondrial pyridine nucleotides. By contrast, the uptake of Ca2+ most probably does not require the present of reduced pyridine nucleotides. Control experiments show that even under the most drastic conditions employed in this study (100 nmol of Ca2+ and 85 nmol of t-butylhydroperoxide/mg of protein) mitochondria retain a considerable degree of functional integrity.  相似文献   

20.
A novel mitochondrial Ca2+ release phenomenon is reported. When rat liver mitochondria (oxidizing succinate) are allowed to accumulate Ca2+ in excess of 40 nmol/mg protein and are then treated with excess EGTA, a fraction of the accumulated cation is rapidly (approximately 1 nmol/s/mg protein) released. The size of the released fraction is an apparent function of the extramitochondrial Ca2+ concentration at the time of EGTA addition and can attain a maximal value of approximately 30 nmol/mg protein. Release is inhibited by ruthenium red (I50 approximately 50 pmol/mg protein) and is not dependent on the presence of Na+ or K+ in the medium. During the period of rapid release, O2 consumption is inhibited, membrane potential increases, and apparent H+ accumulation occurs at a ratio of approximately 2H+ per Ca2+ released. It is proposed that this chelator-induced Ca2+ release occurs by reverse uniport with H+ back diffusion to the matrix space providing charge movement compensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号