首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Coexisting with oxytocin or vasopressin in the cell bodies and nerve terminals of the hypothalamic-neurohypophysial system are smaller amounts of other peptides. For a number of these "copeptides" there is strong evidence of corelease with the major magnocellular hormones. Guided by the location of their specific receptors we have studied the effects of three copeptides, dynorphin, cholecystokinin (CCK), and corticotropin releasing hormone (CRH), on the secretion of oxytocin and vasopressin from isolated rat neural lobe or neurointermediate lobe preparations in vitro. 2. Dynorphin is coreleased with vasopressin from neural lobe nerve terminals and acts on neural lobe kappa-opiate receptors to inhibit the electrically stimulated secretion of oxytocin. Naloxone augments oxytocin release from the neural lobe in a manner directly proportional to the amount of vasopressin (and presumably dynorphin) released. 3. Cholecystokinin, coreleased with oxytocin by neural lobe terminals, has been shown to have high-affinity receptors located in the NL and to stimulate secretion of both oxytocin and vasopressin. CCK's secretagogue effect was independent of electrical stimulation and extracellular Ca2+ and was blocked by an inhibitor of protein kinase C. 4. CRH, coreleased with OT from the neural lobe, has receptors in the intermediate lobe of the pituitary, but not in the neural lobe itself. CRH stimulates the secretion of oxytocin and vasopressin from combined neurointermediate lobes but not from isolated neural lobes. Intermediate lobe peptides, alpha and gamma melanocyte stimulating hormone, induced secretion of oxytocin and vasopressin from isolated neural lobes. Their effect was, like that of CCK, independent of electrical stimulation and extracellular Ca2+ and blocked by an inhibitor of protein kinase C. 5. Among the CRH-producing parvocellular neurons of the paraventricular nucleus, in the normal rat, approximately half also produce and store vasopressin. After removal of glucocorticoid influence by adrenalectomy, virtually all of the CRH neurons contain vasopressin. 6. The two subtypes of CRH neurosecretory cells found in the normal rat possess different topographical distributions in the paraventricular nucleus, suggesting the possibility of differential innervation. Stress selectively activates the vasopressin containing subpopulation of CRH neurons, indicating that there are separate channels of regulatory input controlling the two components of the parvocellular CRH neurosecretory system.  相似文献   

2.
Prejunctional effects of opioids were examined in the perfused mesentery of two species: the rat and rabbit. Use of agonists selective for subtypes of mu, delta, and kappa opioid receptors produced no effect on contractile responses to adrenergic nerve stimulation in the rat perfused mesentery, except for small effects of the kappa agonist EKC, which may be non specific. In contrast, mu, delta and kappa receptors appear to be present in the rabbit. The mu selective agonist, DAMGO, kappa agonist, ethylketocyclazocine, and delta agonists, DPDPE and [Leu5]-enkephalin, all produced significant inhibition of contractile responses to transmural nerve stimulation. The inhibitory effect was greatest for ethylketocyclazocine. To test the possibility that prejunctional activation of alpha 2 adrenoceptors with endogenous norepinephrine might decrease the activity of prejunctional opioid receptors in the rabbit, inhibitory effects of delta and kappa selective agonists were tested in the presence of 10(-7) M yohimbine. Inhibitory responses of the kappa selective agonist ethylketocyclazocine were enhanced, while that of delta selective agonists [Leu5]-enkephalin and DPDPE remained unchanged when yohimbine was present. Thus, the effects of opioids vary and depend on the tissue and receptor subtypes they act upon. Furthermore, the enhanced inhibitory effect of opioid receptor activation in the presence of yohimbine is not found for all opioid receptors.  相似文献   

3.
Although kappa-opiate receptors represent an important fraction of the total opiate receptor capacity in human brain their endocrine function is unknown. We determined the effects of a kappa-opiate receptor agonist on the secretion of vasopressin, ACTH and cortisol and on diuresis. The racemic benzomorphan kappa agonist MR 2033 or its opiate active (-)-isomer, MR 2034, inhibited the release of cortisol and ACTH in 12 trials in a naloxone reversible manner; plasma levels of vasopressin were not altered. The (+)-isomer, MR 2035, did not affect the secretion of cortisol or ACTH. Surprisingly, in five other subjects large increases were observed in vasopressin, ACTH and cortisol following the kappa-agonist, which were probably elicited indirectly by aversive effects of the opioid. The subjects in whom vasopressin release was not altered by MR 2033 and MR 2034 displayed large decreases in urine osmolality which were not antagonized by naloxone. The opiate inactive (+)-isomer, MR 2035, caused no diuretic response. Subjects in whom vasopressin release was stimulated did not show decreases in urine osmolality indicating that vasopressin is capable of antagonizing the diuretic action of the kappa-agonist. Our data show that a kappa-agonist inhibits secretion of cortisol and ACTH by acting at stereospecific opiate receptors and elicits diuresis by acting at stereospecific, but naloxone-insensitive non-classical opioid receptors. These data support the concept that different types of kappa-receptors can be distinguished in man.  相似文献   

4.
Endocrine actions of opioids   总被引:2,自引:0,他引:2  
The widespread occurrence of opioid peptides and their receptors in brain and periphery correlates with a variety of actions elicited by opioid agonists and antagonists on hormone secretion. Opioid actions on pituitary and pancreatic peptides are summarized in Table 1. In rats opioids stimulate ACTH and corticosterone secretion while an inhibition of ACTH and cortisol levels was observed in man. In both species, naloxone, an opiate antagonist, stimulates the release of ACTH suggesting a tonic suppression by endogenous opioids. In rats, a different stimulatory pathway must be assumed through which opiates can stimulate secretion of ACTH. Both types of action are probably mediated within the hypothalamus. LH is decreased by opioid agonists in many adult species while opiate antagonists elicit stimulatory effects, both apparently by modulating LHRH release. A tonic, and in females, a cyclic opioid control appears to participate in the regulation of gonadotropin secretion. Exogenous opiates potently stimulate PRL and GH secretion in many species. Opiate antagonists did not affect PRL or GH levels indicating absence of opioid control under basal conditions, while a decrease of both hormones by antagonists was seen after stimulation in particular situations. In rats, opiate antagonists decreased basal and stress-induced secretion of PRL. Data regarding TSH are quite contradictory. Both inhibitory and stimulatory effects have been described. Oxytocin and vasopressin release were inhibited by opioids at the posterior pituitary level. There is good evidence for an opioid inhibition of suckling-induced oxytocin release. Opioids also seem to play a role in the regulation of vasopressin under some conditions of water balance. The pancreatic hormones insulin and glucagon are elevated by opioids apparently by an action at the islet cells. Somatostatin, on the contrary, was inhibited. An effect of naloxone on pancreatic hormone release was observed after meals which contain opiate active substance. Whether opioids play a physiologic role in glucose homeostasis remains to be elucidated.  相似文献   

5.
Presynaptic autoreceptors regulating transmitter release   总被引:2,自引:1,他引:1  
The discovery that the cytoplasmic membrane of presynaptic nerve terminals possess receptors that modulates release of neurotransmitters was made 35 years ago. This new concept represents a clear departure from the traditional view that neuronal communication was unidirectional, i.e. from the nerve terminal to the postsynaptic receptor, because the transfer of information via presynaptic receptors occurs in the opposite direction: from the synaptic cleft to the nerve terminals which release the neurotransmitter. Presynaptic release-modulating autoreceptors and heteroreceptors represent suitable targets for pharmacological intervention by exogenous compounds acting as agonists, partial agonists or antagonists. Such compounds may be of therapeutic value by influencing transmitter release presynaptically, and having fewer side effects than the well-established approach of using agonists or antagonist drugs to stimulate or block postsynaptic receptors.  相似文献   

6.
It has been demonstrated in experiments on rats that acute myocardial ischemia gives rise to a decrease in diuresis, elevation of antidiuretic activity of blood plasma and the blood concentration of immunoreactive aldosterone. Intraperitoneal injection of a synthetic enkephalin analog D-ala2-leu5-arg6-enkephalin in a dose of 1.25 nmol/kg bw resulted in partial normalization of diuresis, reduction in antidiuretic activity of blood plasma and blood aldosterone level to the control values. Naloxone eliminated the effects described. It is concluded that enkephalins have an inhibitory action on aldosterone and vasopressin secretion, with this action being mediated via opiate receptors.  相似文献   

7.
Two groups of receptors, one which develops a stimulating effect (alpha 1), the other an inhibitory effect hae recently been isolated in the alpha adrenergic group. In order to type the B cell adrenergic receptor of the endocrine pancreas, which mediates the inhibitory action exerted by the catecholamines on insulin secretion, the release of this hormone was evaluated in the presence of five alpha simpathomimetic substances that have a decreasing degree of efficiency on the adrenergic alpha 2 receptor of the presynaptic sympathic nerve terminal. The order of potency with which the alpha agonists tested depressed IRI secretion is superimposable on that of their potency on the sympathetic nerve and alpha 2 receptor. We concluded that adrenergic inhibition of insulin secretion is mediated by an alpha 2 receptor.  相似文献   

8.
The binding of omega-conotoxin to isolated rat neurohypophysial nerve terminals, its effect on the depolarization-induced increase of cytoplasmic Ca2+ and on the potassium and electrically-induced release of vasopressin (AVP) have been studied. The results show that isolated neurosecretory nerve endings have calcium channels with a high affinity for omega-CgTx and that this toxin inhibits neurohormone release at very low concentration (IC50 = 0. 1nM). Although secretion of vasopressin is inhibited to a great extent by the toxin it is shown that a small but significant amount of the depolarization-induced AVP release is insensitive to omega-CgTx and to the dihydropyridine molecule nicardipine.  相似文献   

9.
Regulation of gastrointestinal function by multiple opioid receptors   总被引:3,自引:0,他引:3  
Agonist and antagonist drugs possessing selectivity for individual types of opioid receptors have been employed in vitro and in vivo to determine the mechanisms by which opioids regulate gastrointestinal functions. Selective mu opioid agonists given by intracerebroventricular (i.c.v.) injection, by intrathecal (i.t.) injection, or by peripheral (s.c. or i.v.) injection in rats or mice decreased gastrointestinal transit and motility, inhibited gastric secretion, and suppressed experimentally-induced diarrhea. Selective delta agonists, by contrast, inhibited gastrointestinal transit after i.t., but not after i.c.v. or s.c. administration. Delta agonists also did not alter gastric secretion after i.c.v. or s.c. injection. However, delta agonists exhibited antidiarrheal effects after i.c.v., i.t., or s.c. administration. Kappa agonists given i.c.v. had no effect on gastrointestinal transit in rats or mice or on gastric secretion in rats, but exhibited antidiarrheal effects in mice. The kappa agonist U-50, 488H given peripherally increased gastric acid secretion. Different types of opioid receptors in different anatomical sites influence differently gastrointestinal motility and propulsion, gastric secretion, and mucosal transport. Brain, spinal cord, enteric neural and smooth muscle opioid receptors represent chemosensitive sites for regulation of gastrointestinal function.  相似文献   

10.
The relationship between the binding of divalent metal (Me) activators Ca and Sr and the secretion of acetylcholine (ACh) was studied quantitatively at frog motor nerve terminals using conventional electrophysiological methods. Experiments were designed to evaluate the assumption that maximal secretion requires occupancy of all receptors by testing for the presence of spare Ca receptors on nerve endings. Such a receptor reserve for Ca would invalidate the simple mass action approach to ACh secretion. Experimental log [Me]-ACh secretion curves constructed to saturation for Ca Sr were consistent with the presence of spare Ca receptors. La3+ (greater than or equal to 0.5 microM) and 2-chloroadenosine (25 microM) were employed as irreversible antagonists of depolarization-secretion coupling. Despite the irreversible occlusion of a proportion of Me receptors increases in the extracellular [Ca] overcame this antagonism while increases in [Sr] did not. These results suggest that Ca can produce maximal ACh release while leaving a proportion of receptors unoccupied or spare. Further support for this contention is provided by the excellent agreement between the values of the equilibrium affinity constant for Sr calculated by methods that do or do not require the assumption of spare receptors. The equilibrium affinity constant for Ca and the efficacies (efficacy reflects the ability of the Me species once bound to evoke ACh secretion) for both Ca and Sr were determined experimentally by using the mathematical framework of receptor theory. These constants were then employed to generate theoretical curves of log [Me]-ACh secretion. The theoretical relationships were similar to the experimental results, which suggests that the motor nerve endings behaves as a pharmacological receptor for Me agonists and antagonists. It is speculated that spare Ca receptors are equivalent to spare Ca channels and the efficacy may reflect the affinity of Me for an intraterminal site associated with ACh release.  相似文献   

11.
In addition to cytosolic efflux, reversal of excitatory amino acid (EAA) transporters evokes glutamate exocytosis from the striatum in vivo. Both kappa-opioid and muscarinic receptor agonists suppress this calcium-dependent response. These data led to the hypothesis that the calcium-independent efflux of striatal glutamate evoked by transporter reversal may activate a transsynaptic feedback loop that promotes glutamate exocytosis from thalamo- and/or corticostriatal terminals in vivo and that this activation is inhibited by presynaptic kappa and muscarinic receptors. Corollaries to this hypothesis are the predictions that agonists for these putative presynaptic receptors will selectively inhibit the calcium-dependent component of glutamate released from striatal synaptosomes, whereas the calcium-independent efflux evoked by an EAA transporter blocker, L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-PDC), will be insensitive to such receptor ligands. Here we report that a muscarinic agonist, oxotremorine (0.01-10 microM), and a kappa-opioid agonist, U-69593 (0.1-100 microM), suppressed the calcium-dependent release of glutamate that was evoked by exposing striatal synaptosomes to the potassium channel blocker 4-aminopyridine. The presynaptic inhibition produced by these ligands was concentration dependent, blocked by appropriate receptor antagonists, and not mimicked by the delta-opioid agonist [D-Pen2,5]-enkephalin. The finding that glutamate efflux evoked by L-trans-PDC from isolated striatal nerve endings was entirely calcium independent supports the notion that intact basal ganglia circuitry mediates the calcium-dependent effects of this agent on glutamate efflux in vivo. Furthermore, because muscarinic or kappa-opioid receptor activation inhibits calcium-dependent striatal glutamate release in vitro as it does in vivo, it is likely that both muscarinic and kappa receptors are inhibitory presynaptic heteroceptors expressed by striatal glutamatergic terminals.  相似文献   

12.
The present study was designed to investigate basal and LH-induced steroidogenesis in porcine theca cells from large follicles in response to various concentrations (1-1000 nM) of mu opioid receptor agonists (beta-endorphin, DAMGO, FK 33-824), delta receptor agonists (met-enkephalin, leu-enkephalin, DPLPE) and kappa receptor agonists (dynorphin A, dynorphin B, U 50488). Agonists of mu opioid receptors suppressed basal androstenedione (A4), testosterone (T) and oestradiol-17beta (E2) secretion and enhanced LH-induced A4 and T release by theca cells. The inhibitory effect of the agonists on E2 secretion was abolished in the presence of LH. All delta receptor agonists depressed basal progesterone (P4) output. However, the influence of these agents on LH-treated cells was negligible. Among delta receptor agonist used only leu-enkephalin and DPLPE at the lowest concentrations inhibited basal A4 release. The presence of LH in culture media changed the influence of these opioids from inhibitory to stimulatory. Similarly, DPLPE reduced T secretion by non-stimulated theca cells and enhanced T secretion of stimulated cells. All of delta agonists inhibited basal E2 secretion and unaffected its release from LH-treated theca cells. Agonists of kappa receptors inhibited basal, non-stimulated, P4 secretion and two of them (dynorphin B, U 50488) potentiated LH-induced P4 output. Basal A4 and T release remained unaffected by kappa agonist treatment, but the cells cultured in the presence of LH generally increased both androgen production in response to these opioids. Basal secretion of E2 was also suppressed by kappa agonists. This inhibitory effect was not observed when the cells were additionally treated with LH. In view of these findings we suggest that opioid peptides derived from three major opioid precursors may directly participate in the regulation of porcine theca cell steroidogenesis.  相似文献   

13.
Opiate alkaloids and opioid peptides have been shown to suppress plasma LH and FSH levels via a naloxone sensitive mechanism in several species including man. Three subtypes of opiate receptors have been characterized: mu, delta and kappa. The present study was designed to investigate their role in gonadotropin release. Three highly selective opioid ligands, DAGO, MRZ and DTE12 (a dimeric tetrapeptide enkephalin), were injected intraventricularly into chronically ovariectomized rats. Injection of the mu-agonist at doses of 1 and 10 nmol produced a significant suppression of LH secretion, while the delta- and kappa-agonists had no significant effect. Thus, the mu-receptor seems to be the primary opiate receptor involved in the regulation of LH secretion. None of the opiate agonists employed had an effect on FSH secretion.  相似文献   

14.
Relatively selective dopamine receptor agonists, like bromocriptine, lergotrile, pergolide and N,N-di-n-propyl-dopamine, lower arterial pressure in conscious spontaneously hypertensive rats and in several anesthetized animal preparations. This effect has been attributed to stimulation of dopamine receptors since it can be specifically antagonized by several dopamine receptor blocking agents (domperidone, haloperidol, pimozide, sulpiride). The two main mechanisms which can theoretically intervene in the antihypertensive effects of dopamine agonists are direct smooth muscle relaxation mediated by stimulation of post junctional DA1-dopamine receptors and the reduction of the neural release of norepinephrine resulting from activation of of DA2-dopamine receptors on ganglionic bodies or sympathetic nerve terminals. Other accessory mechanisms of undoubted interest might be a natriuretic effect or a decrease of aldosterone release. On the basis of the presently available pharmacological results in experimental animals, it is not unreasonable to advance the hypothesis that agonists of DA1- and DA2-dopamine receptors produce cardiovascular changes most compatible with an antihypertensive activity being due to a fall in peripheral resistance. However, before any of these compounds can become of therapeutic interest further research in this field is necessary to explore whether it is possible to minimize or even entirely avoid certain unwanted effects (vomiting, nausea, endocrinological alterations) that appear to be intimately associated particularly with those agents stimulating the DA2-dopamine receptors subtype. A more thorough pharmacological characterization of human dopamine receptors would be useful to provide an insight into whether novel chemical approaches can solve some of these problems. Finally, the ideal profits of future dopamine receptor agonists aimed at the treatment of elevated arterial pressure is discussed.  相似文献   

15.
Presynaptic nicotinic acetylcholine receptors on striatal nerve terminals modulate the release of dopamine. We have compared the effects of a number of nicotinic agonists and antagonists on a perfused synaptosome preparation preloaded with [3H]dopamine. (-)-Nicotine, acetylcholine, and the nicotinic agonists cytisine and 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP), at micromolar concentrations, stimulated the release of [3H]dopamine from striatal nerve terminals. Carbamylcholine was a much weaker agonist. The actions of (-)-nicotine, cytisine, and DMPP were inhibited by low concentrations of the nicotinic antagonists dihydro-beta-erythroidine, mecamylamine, pempidine, and neosurugatoxin; alpha-bungarotoxin was without effect, and extending the time of exposure to this toxin resulted in only very modest inhibition. This pharmacology points to a specific nicotinic receptor mechanism that is clearly distinct from that at the neuromuscular junction. Atropine failed to antagonise the effects of acetylcholine and carbamylcholine, suggesting that no muscarinic component is involved. The nicotinic receptor ligands (-)-[3H]nicotine and 125I-alpha-bungarotoxin bound to specific sites enriched in the synaptosome preparation. Drugs tested on the perfused synaptosomes were examined for their ability to interact with these two ligand binding sites in brain membranes. The differential sensitivity to the neurotoxins alpha-bungarotoxin and neosurugatoxin of the 125I-alpha-bungarotoxin and (-)-[3H]nicotine binding sites, respectively, leads to a tentative correlation of the (-)-[3H]nicotine site with the presynaptic nicotinic receptor on striatal nerve terminals.  相似文献   

16.
Nitric oxide (NO), previously demonstrated to participate in the regulation of the resting membrane potential in skeletal muscles via muscarinic receptors, also regulates non-quantal acetylcholine (ACh) secretion from rat motor nerve endings. Non-quantal ACh release was estimated by the amplitude of endplate hyperpolarization (H-effect) following a blockade of skeletal muscle post-synaptic nicotinic receptors by (+)-tubocurarine. The muscarinic agonists oxotremorine and muscarine lowered the H-effect and the M1 antagonist pirenzepine prevented this effect occurring at all. Another muscarinic agonist arecaidine but-2-ynyl ester tosylate (ABET), which is more selective for M2 receptors than for M1 receptors and 1,1-dimethyl-4-diphenylacetoxypiperidinium (DAMP), a specific antagonist of M3 cholinergic receptors had no significant effect on the H-effect. The oxotremorine-induced decrease in the H-effect was calcium and calmodulin-dependent. The decrease was negated when either NO synthase was inhibited by N(G)-nitro-L-arginine methyl ester or soluble guanylyl cyclase was inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. The target of muscle-derived NO is apparently nerve terminal guanylyl cyclase, because exogenous hemoglobin, acting as an NO scavenger, prevented the oxotremorine-induced drop in the H-effect. These results suggest that oxotremorine (and probably also non-quantal ACh) selectively inhibit the non-quantal secretion of ACh from motor nerve terminals acting on post-synaptic M1 receptors coupled to Ca(2+) channels in the sarcolemma to induce sarcoplasmic Ca(2+)-dependent synthesis and the release of NO. It seems that a substantial part of the H-effect can be physiologically regulated by this negative feedback loop, i.e., by NO from muscle fiber; there is apparently also Ca(2+)- and calmodulin-dependent regulation of ACh non-quantal release in the nerve terminal itself, as calmidazolium inhibition of the calmodulin led to a doubling of the resting H-effect.  相似文献   

17.
Both A1 and A2a Purine Receptors Regulate Striatal Acetylcholine Release   总被引:2,自引:2,他引:0  
The receptors responsible for the adenosine-mediated control of acetylcholine release from immunoaffinity-purified rat striatal cholinergic nerve terminals have been characterized. The relative affinities of three analogues for the inhibitory receptor were (R)-phenylisopropyladenosine greater than cyclohexyladenosine greater than N-ethylcarboxamidoadenosine (NECA), with binding being dependent of the presence of Mg2+ and inhibited by 5'-guanylylimidodiphosphate [Gpp(NH)p] and adenosine receptor antagonists. Adenosine A1 receptor agonists inhibited forskolin-stimulated cholinergic adenylate cyclase activity, with an IC50 of 0.5 nM for (R)-phenylisopropyladenosine and 500 nM for (S)-phenylisopropyladenosine. A1 agonists inhibited acetylcholine release at concentrations approximately 10% of those required to inhibit the cholinergic adenylate cyclase. High concentrations (1 microM) of adenosine A1 agonists were less effective in inhibiting both adenylate cyclase and acetylcholine release, due to the presence of a lower affinity stimulatory A2 receptor. Blockade of the A1 receptor with 8-cyclopentyl-1,3-dipropylxanthine revealed a half-maximal stimulation by NECA of the adenylate cyclase at 10 nM, and of acetylcholine release at approximately 100 nM. NECA-stimulated adenylate cyclase activity copurified with choline acetyltransferase in the preparation of the cholinergic nerve terminals, suggesting that the striatal A2 receptor is localized to cholinergic neurones. The possible role of feedback inhibitory and stimulatory receptors on cholinergic nerve terminals is discussed.  相似文献   

18.
Opioids modulate the electrical activity of magnocellular neurons (MCN) and inhibit neuropeptide release at their terminals in the neurohypophysis. We have previously shown that µ‐opioid receptor (MOR) activation induces a stronger inhibition of oxytocin (OT) than vasopressin (AVP) release from isolated MCN terminals. This higher sensitivity of OT release is due, at least in part, to the selective targeting of R‐type calcium channels. We now describe the underlying basis for AVP's weaker inhibition by MOR activation and provide a more complete explanation of the complicated effects on neuropeptide release. We found that N‐type calcium channels in AVP terminals are differentially modulated by MOR; enhanced at lower concentrations but increasingly inhibited at higher concentrations of agonists. On the other hand, N‐type calcium channels in OT terminals were always inhibited. The response pattern in co‐labeled terminals was analogous to that observed in AVP‐containing terminals. Changes in intracellular calcium concentration and neuropeptide release corroborated these results as they showed a similar pattern of enhancement and inhibition in AVP terminals contrasting with solely inhibitory responses in OT terminals to MOR agonists. We established that fast translocation of Ca2+ channels to the plasma membrane was not mediating current increments and thus, changes in channel kinetic properties are most likely involved. Finally, we reveal a distinct Ca‐channel β‐subunit expression between each type of nerve endings that could explain some of the differences in responses to MOR activation. These results help advance our understanding of the complex modulatory mechanisms utilized by MORs in regulating presynaptic neuropeptide release. J. Cell. Physiol. 225: 276–288, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Although glycine receptors are found in most areas of the brain, including the hippocampus, their functional significance remains largely unknown. In the present study, we have investigated the role of presynaptic glycine receptors on excitatory nerve terminals in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs) were recorded in mechanically dissociated rat dentate hilar neurons attached with native presynaptic nerve terminals using a conventional whole-cell patch recording technique under voltage-clamp conditions. Exogenously applied glycine or taurine significantly increased the frequency of sEPSCs in a concentration-dependent manner. This facilitatory effect of glycine was blocked by 1 μM strychnine, a specific glycine receptor antagonist, but was not affected by 30 μM picrotoxin. In addition, Zn2+ (10 μM) potentiated the glycine action on sEPSC frequency. Pharmacological data suggested that the activation of presynaptic glycine receptors directly depolarizes glutamatergic terminals resulting in the facilitation of spontaneous glutamate release. Bumetanide (10 μM), a specific Na-K-2C co-transporter blocker, gradually attenuated the glycine-induced sEPSC facilitation, suggesting that the depolarizing action of presynaptic glycine receptors was due to a higher intraterminal Cl concentration. The present results suggest that presynaptic glycine receptors on excitatory nerve terminals might play an important role in the excitability of the dentate gyrus-hilus-CA3 network in physiological and/or pathological conditions.  相似文献   

20.
Inverse agonism and neutral antagonism at cannabinoid CB1 receptors   总被引:14,自引:0,他引:14  
Pertwee RG 《Life sciences》2005,76(12):1307-1324
There are at least two types of cannabinoid receptor, CB1 and CB2, both G protein coupled. CB1 receptors are expressed predominantly at nerve terminals and mediate inhibition of transmitter release whereas CB2 receptors are found mainly on immune cells, one of their roles being to modulate cytokine release. Endogenous cannabinoid receptor agonists also exist and these "endocannabinoids" together with their receptors constitute the "endocannabinoid system". These discoveries were followed by the development of a number of CB1- and CB2-selective antagonists that in some CB1 or CB2 receptor-containing systems also produce "inverse cannabimimetic effects", effects opposite in direction from those produced by cannabinoid receptor agonists. This review focuses on the CB1-selective antagonists, SR141716A, AM251, AM281 and LY320135, and discusses possible mechanisms by which these ligands produce their inverse effects: (1) competitive surmountable antagonism at CB1 receptors of endogenously released endocannabinoids, (2) inverse agonism resulting from negative, possibly allosteric, modulation of the constitutive activity of CB1 receptors in which CB1 receptors are shifted from a constitutively active "on" state to one or more constitutively inactive "off" states and (3) CB1 receptor-independent mechanisms, for example antagonism of endogenously released adenosine at A1 receptors. Recently developed neutral competitive CB1 receptor antagonists, which are expected to produce inverse effects through antagonism of endogenously released endocannabinoids but not by modulating CB1 receptor constitutive activity, are also discussed. So too are possible clinical consequences of the production of inverse cannabimimetic effects, there being convincing evidence that released endocannabinoids can have "autoprotective" roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号