首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enalapril maleate (MK-421), an ethyl ester, is an angiotensin-converting enzyme (ACE) inhibitor from a novel series of substituted N-carboxymethyldipeptides. The parent diacid (MK-422) N-[(S)-1-carboxy-3-phenylpropyl]-L-Ala-L-Pro of MK-421 inhibited hog plasma ACE with an I50 of 1.2 nM. Because deesterification occurs slowly or not at all in vitro, the in vitro I50 for enalapril was 1200 nM. However, both enalapril and MK-422 were potent inhibitors of ACE by the i.v. and oral routes in rats and dogs. In rats with experimental hypertension, enalapril was most potent in those models in which the renin-angiotensin system plays a dominant role (salt restriction, two-kidney Grollman) and in models rendered renin dependent by diuretics, although blood pressure reduction did occur in low or normal renin models such as spontaneously hypertensive rats, in which inhibition of ACE as measured by the blockade of angiotensin I pressor responses bore little temporal relationship to the later fall in blood pressure after enalapril.  相似文献   

2.
Enalapril is a highly specific and competitive inhibitor of angiotensin-I converting enzyme (ACE) and thus belongs to the category of ACE inhibitors. The beneficial effects of ACE inhibitors appear to result primarily from the suppression of the plasma renin-angiotensin-aldesterone system. This study was designed to detect the effects of enalapril maleate and cold stress on tyrosine hydroxylase (TH) activity in adrenal medulla, heart and hypothalamus in rat. In cold stress treatment (exposed to 8 degrees C cold for 48 h) TH activity was found to be raised significantly (p < 0.05) in adrenal medulla, hypothalamus and heart tissues. In the adrenal medulla, hypothalamus and heart tissues, TH activity of enalapril maleate treated rats (10 mg kg(-1) body weight) group was not raised significantly (p > 0.05). Following intraperitoneal injection of enalapril maleate (10 mg kg(-1) body weight) the rats were exposed to 8 degrees C cold for 48 h. After cold stress and enalapril maleate treatment no statistically significant change in tyrosine hydroxylase activity was detected in adrenal medulla, hypothalamus or heart (p > 0.05). The results of our studies show that enalapril maleate blocks the effect of cold stress on the regulation of TH activity.  相似文献   

3.
Two endothelium-derived factors, endothelin (ET), a vasoconstrictor, and vascular endothelial growth factor (VEGF), an angiogenic factor are thought to be involved in the pathogenesis of diabetic vascular complications. The aim of this study was to determine the effects of an angiotensin II type I (AT-1) receptor antagonist and an ACE inhibitor on the pathogenesis of VEGF and ET-1-mediated kidney disease in STZ-induced diabetic rats. Two days after STZ administration, diabetic rats were treated for 8 weeks with enalapril maleate, an ACE inhibitor, candesartan cilexetil, an AT-1 receptor antagonist, or saline. Urinary albumin and N-acetyl beta-D glucosaminidase (NAG) excretion as well as the VEGF protein content in the kidney were all found to be elevated in diabetic rats. Administration of enalapril maleate or candesartan cilexetil decreased the level of microalbuminuria and NAG excretion in diabetic rats. Administration of enalapril maleate also suppressed the elevated renal VEGF protein content in these animals while candesartan cilexetil treatment had no effect. Serum ET-1 and VEGF levels were unchanged by these treatments. These data support a role for AT-1 receptor antagonists and ACE inhibitors in the prevention of diabetic nephropathy, and suggest that the former may work by reducing renal VEGF levels.  相似文献   

4.
A rapid, sensitive assay for angiotensin-converting enzyme (ACE) inhibitors is described. Biological samples were diluted with methanol to precipitate endogenous ACE and centrifuged. Supernatants were further diluted with 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, pH 8. Diluted samples were incubated at 37 degrees C with the substrate [3H]hippurylglycylglycine and rabbit lung ACE for 45 min. Acid (1.0 N HCl) was then added, and the product, [3H]hippuric acid, was extracted into a water-immiscible scintillation cocktail. Drug standards were prepared in the biological matrix to correct for drug recovery. A computer program was used to convert radioactivity (dpm) to units of enzyme activity and then correlate enzyme activity with drug concentration. The ester prodrugs fosenopril and enalapril could be assayed down to 4 ng/ml in plasma after ester hydrolysis with NaOH. Drug disposition studies in rats, dogs, and monkeys have demonstrated that the method can be readily adapted to any ACE inhibitor and is suitable for determining drug bioavailability and pharmacokinetics.  相似文献   

5.
Angiotensin‐converting enzyme (ACE) is upregulated in the diabetic kidney and contributes to renal injury. This study investigates the possible beneficial effects of the ACE inhibitor (ACEI), enalapril and the AT1 receptor blocker (ARB), valsartan, on renal ACE expression, renal structure, and function in streptozotocin (STZ)‐induced diabetic rats. Male Wistar rats were allocated into four groups: control, STZ‐diabetic rats, and STZ‐diabetic rats treated with either enalapril (10 mg/kg/day) or valsartan (50 mg/kg/day) for 8 weeks. Enalapril and valsartan reduced renal ACE mRNA and protein expression, Na+/K+‐ATPase activity, oxidative stress, and serum transforming growth factor‐β1 levels compared to the diabetic group. Both treatments normalized renal nitrate/nitrite levels and ameliorated the observed histopathological changes. In conclusion, ACE downregulation by ACEI and ARB indicates that angiotensin II upregulates ACE through AT1 receptor. Prevention of diabetes‐induced changes in ACE expression and Na+/K+‐ATPase activity could be a new explanation of the renoprotective effects of ACEIs and ARBs. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:378‐387, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21500  相似文献   

6.
Structural remodeling of the left ventricular (LV) myocardium develops in a time-dependent fashion following acute myocardial infarction and may be an integral component in the transition toward overt heart failure. Globally, the remodeling process is characterized by progressive LV enlargement and increased chamber sphericity. At the cellular level, the remodeling process is associated with myocyte slippage, hypertrophy, and accumulation of collagen in the interstitial compartment. In the present study, we examined the effects of early, long-term monotherapy with the angiotensin converting enzyme (ACE) inhibitor, enalapril, on the progression of LV remodeling in dogs with LV dysfunction (ejection fractions 30–40%) produced by multiple sequential intracoronary microembolizations. Dogs were randomized to 3 months oral therapy with enalapril (n=7) or to no treatment (n=7). In untreated dogs, LV end-systolic volume index (ESVI), end-diastolic volume index (EDVI) and chamber sphericity increased significantly during the 3 months follow-up period. In contrast, in dogs treated with enalapril ESVI, EDVI and chamber sphericity remained essentially unchanged. Treatment with enalapril attenuated myocyte hypertrophy and the accumulation of interstitial collagen in comparison to untreated dogs. These data indicate that early treatment with ACE inhibitors can prevent the progression of LV remodeling in dogs with LV dysfunction. Afterload reduction, inhibition of direct action of angiotensin-II and possibly the decrease in bradykinin degradation elicited by ACE inhibition may act in concert in preventing the progression LV chamber remodeling.  相似文献   

7.
Because optimal overload-induced skeletal muscle hypertrophy requires ANG II, we aimed to determine the effects of blocking ANG II production [via angiotensin-converting enzyme (ACE) inhibition] on potential mediators of hypertrophy in overloaded skeletal muscle, namely, myonuclear addition and fibroblast content. In a 2 x 2 design, adult (200-225 g) female Sprague-Dawley rats were placed into one of four groups (n = 8/group): 7-day skeletal muscle overload, sham operation, 7-day skeletal muscle overload with ACE inhibition, or sham operation with ACE inhibition. Functional overloads of the plantaris and soleus muscles were produced via bilateral surgical ablation of the synergistic gastrocnemius muscle, and ACE inhibition was accomplished by the addition of the ACE inhibitor enalapril maleate to the animals' daily drinking water (0.3 mg/ml). Myonuclear addition and extrasarcolemmal nuclear proliferation, as measured by in vivo 5-bromo-2'-deoxyuridine labeling, were significantly (P < or = 0.05) increased by overload in both the slow-twitch soleus and fast-twitch plantaris muscles. Furthermore, ACE inhibition attenuated these overload-induced increases in the soleus muscle but not in the plantaris muscle. However, the effect of ACE inhibition on soleus extrasarcolemmal nuclei was not likely due to differences in fibroblast content because overload elicited significant increases in vimentin-positive areas in soleus and plantaris muscles, and these areas were unaffected by ACE inhibition in either muscle. There was no effect of ACE inhibition on any measure in sham-operated muscles. Collectively, these data indicate that ANG II may mediate the satellite cell response to overload in slow-twitch soleus but not in fast-twitch plantaris muscles and that this effect may occur independently of changes in fibroblast content.  相似文献   

8.
In spontaneously hypertensive rats (SHR), after 1 day of dosing with an angiotensin-converting enzyme (ACE) inhibitor (captopril or enalapril) plus a diuretic (hydrochlorothiazide), a synergistic antihypertensive effect was observed when a second dose of the combination or ACE inhibitor alone but not the diuretic alone was given the next day. Bilateral ureteral ligation did not prevent the synergism, which indicates that diuresis per se was not the mechanism. Vascular responses to various agonists did not differ in SHR given ACE inhibitor or ACE inhibitor plus diuretic. SHR given combination treatment had higher and more prolonged increases in plasma renin activity. Aprotinin or indomethacin did not alter the synergism, which suggests that endogenous kinins and prostaglandins did not play a role. These data suggest that the mechanism for the synergistic antihypertensive effect resulted from the combination treatment's shifting the blood pressure regulation system to be renin dependent and responding more to drugs affecting the renin-angiotensin system (RAS). Evidence was presented that the RAS can be shifted rapidly to assume a greater role in blood pressure regulation in SHR as well as in normotensive and two-kidney, one-clip Goldblatt renal hypertensive dogs by restricting sodium intake. The data may partly explain the various degrees of antihypertensive responsiveness of essential hypertensive patients to ACE inhibitors.  相似文献   

9.
The angiotensin I converting enzyme (ACE) inhibitor enalapril (MK-421), at a dose of 1 mg/kg or more by gavage twice daily, effectively inhibited the pressor response to angiotensin I for more than 12 h and less than 24 h. Plasma renin activity (PRA) did not change after 2 or 4 days of treatment at 1 mg/kg twice daily despite effective ACE inhibition, whereas it rose significantly at 10 mg/kg twice daily. Blood pressure fell significantly and heart rate increased in rats treated with 10 mg/kg of enalapril twice daily, a response which was abolished by concomitant angiotensin II infusion. However, infusion of angiotensin II did not prevent the rise in plasma renin. Enalapril treatment did not change urinary immunoreactive prostaglandin E2 (PGE2) excretion and indomethacin did not modify plasma renin activity of enalapril-treated rats. Propranolol significantly reduced the rise in plasma renin in rats receiving enalapril. None of these findings could be explained by changes in the ratio of active and inactive renin. Water diuresis, without natriuresis and with a decrease in potassium urinary excretion, occurred with the higher dose of enalapril. Enalapril did not potentiate the elevation of PRA in two-kidney one-clip Goldblatt hypertensive rats. In conclusion, enalapril produced renin secretion, which was in part beta-adrenergically mediated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The present study was designed to evaluate the learning and memory, in an altered physiological state associated with increased blood pressure and activated renin angiotensin system in Wistar rats. The role of angiotensin in cognitive function was assessed by treatment with angiotensin converting enzyme (ACE) inhibitor enalapril (2 mg/kg), angiotensin 1 receptor (AT(1)) antagonist losartan (5 mg/kg) and their combination. The experimental renal hypertension was induced by the method of Goldblatt. Learning and memory was assessed using the radial arm maze test. Acetylcholine esterase (AChE) levels in the pons medulla, hippocampus, striatum and frontal cortex were measured as a cholinergic marker of learning and memory. Results indicate that in comparison to normotensive rats, renal hypertensive rats committed significantly higher number of errors and took more trials and days to learn the radial arm maze learning and exhibited memory deficit in the radial arm maze retrieval after two weeks of retention interval, indicating impaired acquisition and memory. Treatment with enalapril, losartan and their combination attenuated the observed memory deficits indicating a possible role of renin angiotensin system in cognitive function. AChE level was reduced in hippocampus and frontal cortex of renal hypertensive rats which could be attributed to the observed memory deficit in hypertensive rats. It can be concluded that, renal hypertensive rats had a poor acquisition, retrieval of the learned behavior, perhaps a possible disturbance in memory consolidation process and that this state was reversed with ACE inhibitor enalapril and AT 1 receptor antagonist losartan.  相似文献   

11.
Inhibition of angiotensin I-converting enzyme (ACE) (kininase II) provides a powerful new method for evaluating the role of the renin-angiotensin-aldosterone and kallikrein-kinin systems in the control of aldosterone secretion, renal function, and arterial blood pressure. This study compares the effects of long-term administration of a sulfhydryl inhibitor, captopril, with a nonsulfhydryl inhibitor, enalapril (1-[N-[1-(ethoxycarbonyl-3-phenylpropyl]-L-alanyl]-L-proline), in conscious sodium-deficient dogs. Plasma aldosterone concentration (PAC), plasma renin activity (PRA), urinary sodium excretion (UNaV), arterial pressure (AP), blood kinins (BK), urinary kinins (UK), and urinary kallikrein activity (UKA) were determined during long-term inhibition of ACE in sodium-deficient dogs. In response to captopril administration (20 mg/(kg . day], PAC decreased from 38.9 +/- 6.7 to 14.3 +/- 2.3 ng/dl, PRA increased from 3.58 +/- 0.53 to 13.7 +/- 1.6 ng/(ml . h), UNaV increased from 0.65 +/- 0.27 to 6.4 +/- 1.2 meq/day, AP decreased from 102 +/- 3 to 65 +/- 2 mm Hg, BK increased from 0.17 +/- 0.02 to 0.41 +/- 0.04 ng/ml, UK increased from 7.2 +/- 1.5 to 31.4 +/- 3.2 micrograms/day, and UKA decreased from 23.6 +/- 3.1 to 5.3 +/- 1.2 EU/day. Quantitatively similar changes in AP, UNaV, and PAC were observed in sodium-deficient dogs in response to long-term enalapril administration (4 mg/(kg X day]. In sodium-deficient dogs maintained on captopril or enalapril for several days, angiotensin II (AngII) infusion (3 ng/(kg X min] restored PAC, UNaV, and AP to levels observed in untreated sodium-deficient dogs. These data indicate that the long-term hypotensive and natriuretic actions of inhibitors of ACE are mediated by inhibition of AngII formation and that the renin-angiotensin system plays an essential role in regulating aldosterone secretion, renal function, and AP during sodium deficiency.  相似文献   

12.
The kidney NO synthase is one of the most important renal controlling systems. This paper aims the quantification of renal cortical components involved in blood pressure regulation under NOs blockade. Spontaneous hypertensive rats (SHRs) are submitted to chronic blockade of NOs by L-nitro-arginine-methyl-ester (L-NAME) and an ACE inhibitor (enalapril) in comparison with the normotensive Wistar rats. Twenty SHRs and 5 Wistar rats were divided in 5 groups and observed for 21 days for blood pressure (BP) and serum creatinine: control Wistar (5) (C-W), control SHR (5) (C-SHR), L-SHR (5) - received L-NAME 30 mg/kg/day, L+E-SHR (5) - received L-NAME and Enalapril maleate 15 mg/kg/day, E-SHR (5) - received Enalapril maleate. A quantitative morphometric study (glomerular density, QA[g1], interstitium volume density, Vv[i], tubular surface and length densities, Sv[t] and Lv[t]) were performed at the end. The BP reached 226±15 mmHg in L-SHR group. The BP difference between the L-SHR and the C-SHR groups was significant from the first week while the E-SHR group became significant from the second week. At the end of the experiment the BP of the E-SHR group was similar to the BP in the C-W group. The QA[g1] was similar among C-SHR, L-SHR and L+E-SHR groups and no difference was found between E-SHR and C-W groups. In the L-SHRs serum creatinine was greatly increased, and microscopy showed thickening of arteriolar tunica media with an increase of the wall-to-lumen ratio, perivascular fibrosis, inflammatory infiltrated, tubular atrophy and interstitial fibrosis with focal segmental glomerulosclerosis. The use of enalapril was not completely efficient in reducing BP and morphological injury when the hypertension of SHRs was increased with the NOs blockade suggesting that NO deficiency-induced hypertension is not entirely mediated by the RAAS.  相似文献   

13.
The objective of this study was to compare the effect of an angiotensin-converting enzyme (ACE) inhibitor and a calcium channel blocker on the development of renal changes in diabetic rats. Diabetes was induced by an intravenous injection of streptozotocin in normotensive Wistar rats. Treatment was commenced immediately in 1 set of rats with 4 treatment arms: nitrendipine (250 mg/kg fodder), enalapril (35 mg/L drinking water), both treatments in combination, or placebo. Treatment was continued for 9 weeks. Another set of rats was left with untreated diabetes for 3 months followed by 7 weeks treatment as above. When starting treatment right after induction of diabetes, nitrendipine significantly reduced urinary albumin excretion (UAE) to the nondiabetic level (P < .05) without reducing blood pressure (BP), whereas enalapril failed to significantly reduce UAE despite a reduction in BP. Combining the two treatments showed no further reduction in UAE compared to monotherapy with nitrendipine, despite a lower BP. When leaving diabetic rats untreated for 3 months, only the coadministration of nitrendipine and enalapril showed a significant reduction in UAE compared to monotherapy and placebo treatment, but showed no significant effect on BP.  相似文献   

14.
Relationship between serum ACE activity and mean blood pressure (MAP) after administration of a single oral dose of the ACE inhibitor enalapril 10 and 20 mg tablets was investigated in 19 Iranian normotensive male subjects. Enalapril at doses, which maximally inhibit ACE activity, reduced MAP dose dependently. The t(max) of ACE inhibition decreased significantly by increasing the enalapril doses, but t(max) of MAP reduction did not change by increasing the dose. The AUC (area under the curve) of ACE inhibition versus time was significantly larger in 20 mg enalapril group compare to 10mg enalapril group (p<0.001). A significant correlation was found between log of residual ACE activity and MAP (r=0.4927; p<0.001). It is concluded that in Iranian normal subjects, after administration of a single oral dose of enalapril, MAP related to residual ACE activity.  相似文献   

15.
No data are available about the effects of AT1 receptor antagonist losartan on the skeleton and there is also little information on the activity of an ACE inhibitor enalapril on bone metabolism. It is widely believed that the vasculature plays an important role in bone remodeling under normal and pathological conditions. We treated 14-week-old female Wistar rats with losartan, enalapril or saline. Administration of the ACE inhibitor enalapril and angiotensin II antagonist losartan had no effect on total malondialdehyde (MDA) in the blood and on urinary excretion of some eicosanoids and their metabolites. The administration of enalapril and losartan in a dose recommended for the treatment of hypertension did not cause significant changes in bone density, the ash and mineral content or morphometric parameters of the femur compared to the values found in control female rats.  相似文献   

16.
Systolic blood pressure responses to enalapril maleate (MK 421, a new angiotensin converting enzyme inhibitor (CEI] and hydrochlorothiazide (HTZ) were studied in conscious Dahl salt-sensitive (DS) and salt-resistant (DR) rats maintained on a high salt (8.0% NaCl) and a normal salt (0.4% NaCl) diet. The DS rats were severely hypertensive after 3 weeks on the high salt diet whereas the systolic blood pressure (SBP) of the DR rats were normotensive. Oral treatment with enalapril (15-100 mg X kg-1 X day-1) and HTZ (60-400 mg X kg-1 X day-1) caused a significant reduction of SBP in the DS rats with the high salt diet (P less than 0.001); however, this was not observed until after 4 weeks of treatment when the dosage was 30 and 150 mg X kg-1 X day-1, respectively. Furthermore, enalapril therapy alone significantly reduced the SBP of all groups of rats regardless of diet or Dahl strain (P less than 0.001), but this was not observed until the end of the 7th week of therapy in DR rats on 8.0% NaCl and the end of the 3rd week of therapy for DR and DS rats on 0.4% NaCl. These results suggest that enalapril may lower SBP by mechanisms other than those related to an action as a CEI.  相似文献   

17.
We have previously shown that acute intravenous injection of the angiotensin-converting enzyme (ACE) inhibitor enalapril in diabetic rats evokes a baroreflex-independent sympathoexcitatory effect that does not occur with angiotensin receptor blockade alone. As ACE inhibition also blocks bradykinin degradation, we sought to determine whether bradykinin mediated this effect. Experiments were performed in conscious male Sprague-Dawley rats, chronically instrumented to measure mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA), 2 wk after streptozotocin (55 mg/kg iv, diabetic, n = 11) or citrate vehicle (normal, n = 10). Enalapril (2.5 mg/kg iv) decreased MAP in normal rats (-15 +/- 3 mmHg), while a smaller response (-4 +/- 1 mmHg) occurred in diabetic rats. Despite these different depressor responses to enalapril, HR (+44 +/- 8 vs. +26 +/- 7 bpm) and RSNA (+90 +/- 21 vs +71 +/- 8% baseline) increased similarly between the groups (P > or = 0.22 for both). Pretreatment with the bradykinin B2 receptor antagonist Hoe 140 (10 microg/kg bolus followed by 0.8.mug(-1)kg.min(-1) infusion) attenuated the decrease in MAP observed with enalapril in normal rats but had no effect in diabetic rats. Moreover, the normal group had smaller HR and RSNA responses (HR: +13 +/- 8 bpm; RSNA: +32 +/- 13% baseline) that were abolished in the diabetic group (HR: -4 +/- 5 bpm; RSNA: -5 +/- 9% baseline; P < 0.05 vs. preenalapril values). Additionally, bradykinin (20 microg/kg iv) evoked a larger, more prolonged sympathoexcitatory effect in diabetic compared with normal rats that was further potentiated after treatment with enalapril. We conclude that enhanced bradykinin signaling mediates the baroreflex-independent sympathoexcitatory effect of enalapril in diabetic rats.  相似文献   

18.
We investigated whether inhibition of neutral endopeptidase 24.11 (NEP) and/or angiotensin-converting enzyme (ACE) modifies vagally induced nonadrenergic noncholinergic (NANC) airflow obstruction and airway microvascular leakage as measured by extravasation of Evans blue dye (intravenous) in anesthetized guinea pigs. We gave phosphoramidon to inhibit NEP and enalapril maleate or captopril to inhibit ACE. Animals pretreated with inhaled phosphoramidon (7.5 or 75 nmol), enalapril maleate (87 or 870 nmol), or captopril (350 nmol) reached higher peak lung resistance (RL) values (14.3 +/- 2.7, 15.7 +/- 3.8, 16.7 +/- 3.8, 11.4 +/- 1.6, and 24.6 +/- 3.5 cmH2O.ml-1.s, respectively) than saline-treated animals (5.9 +/- 1.1; P less than 0.05) after bilateral vagus nerve stimulation (5 Hz, 10 V, 10 ms, 150 s). Intravenous phosphoramidon (1 mg/kg), but not intravenous captopril (6 mg/kg), potentiated peak RL (22.9 +/- 6.9 and 7.1 +/- 1.5 cmH2O.ml-1.s, respectively). Vagal nerve stimulation (1 and 5 Hz) increased the extravasation of Evans blue dye in tracheobronchial tissues compared with sham-stimulated animals, but this was not potentiated by inhaled enzyme inhibitors or intravenous captopril. However, intravenous phosphoramidon significantly augmented the extravasation of Evans blue dye in main bronchi and intrapulmonary airways. We conclude that degradative enzymes regulate both NANC-induced airflow obstruction and airway microvascular leakage.  相似文献   

19.
Objective: Obese Zucker rats, animal model for the metabolic syndrome, develop a diabetes‐like neuropathy that is independent of hyperglycemia. The purpose of this study was to determine whether drugs used to treat cardiovascular dysfunction in metabolic syndrome also protect nerve function. Methods and Procedures: Obese Zucker rats at 20 weeks of age were treated for 12 weeks with enalapril or rosuvastatin. Lean rats were used as controls. Vasodilation in epineurial arterioles was measured by videomicroscopy. Endoneurial blood flow (EBF) was measured by hydrogen clearance and nerve conduction velocity was measured following electrical stimulation of motor or sensory nerves. Results: Enalapril treatment decreased serum angiotensin‐converting enzyme (ACE) activity and both drugs reduced serum cholesterol levels. In obese Zucker rats at 32 weeks of age superoxide levels were elevated in the aortas and epineurial arterioles, which were reduced by treatment with either drug. Nitrotyrosine levels were increased in epineurial arterioles and reduced with enalapril treatment. EBF was decreased and corrected by treatment with either drug. Motor nerve conduction velocity was decreased and significantly improved with enalapril treatment. Obese Zucker rats were hypoalgesic in response to a thermal stimulus and this was significantly improved with either treatment. Treatment with either enalapril or rosuvastatin significantly reversed the decrease in acetylcholine‐mediated vascular relaxation of epineurial arterioles in obese Zucker rats. Discussion: Even though obese Zucker rats have normal glycemia vascular and neural dysfunctions develop with age and can be improved by treatment with either enalapril or rosuvastatin.  相似文献   

20.
Angiotensin-converting enzyme (ACE) inhibitors ameliorate the progression of renal disease. In combination with vitamin D receptor activators, they provide additional benefits. In the present study, uremic (U) rats were treated as follows: U+vehicle (UC), U+enalapril (UE; 25 mg/l in drinking water), U+paricalcitol (UP; 0.8 μg/kg ip, 3 × wk), or U+enalapril+paricalcitol (UEP). Despite hypertension in UP rats, proteinuria decreased by 32% vs. UC rats. Enalapril alone, or in combination with paricalcitol, further decreased proteinuria (≈70%). Glomerulosclerosis and interstitial infiltration increased in UC rats. Paricalcitol and enalapril inhibited this. The increase in cardiac atrial natriuretic peptide (ANP) seen in UC rats was significantly decreased by paricalcitol. Enalapril produced a more dramatic reduction in ANP. Renal oxidative stress plays a critical role in inflammation and progression of sclerosis. The marked increase in p22(phox), a subunit of NADPH oxidase, and decrease in endothelial nitric oxide synthase were inhibited in all treated groups. Cotreatment with both compounds inhibited the uremia-induced increase in proinflammatory inducible nitric oxide synthase (iNOS) and glutathione peroxidase activity better than either compound alone. Glutathione reductase was also increased in UE and UP rats vs. UC. Kidney 4-hydroxynonenal was significantly increased in the UC group compared with the normal group. Combined treatment with both compounds significantly blunted this increase, P < 0.05, while either compound alone had no effect. Additionally, the expression of Mn-SOD was increased and CuZn-SOD decreased by uremia. This was ameliorated in all treatment groups. Cotreatment with enalapril and paricalcitol had an additive effect in increasing CuZn-SOD expression. In conclusion, like enalapril, paricalcitol alone can improve proteinuria, glomerulosclerosis, and interstitial infiltration and reduce renal oxidative stress. The effects of paricalcitol may be amplified when an ACE inhibitor is added since cotreatment with both compounds seems to have an additive effect on ameliorating uremia-induced changes in iNOS and CuZn-SOD expression, peroxidase activity, and renal histomorphometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号