共查询到20条相似文献,搜索用时 15 毫秒
1.
In adult rats, a significant portion of brain ethanolamine glycerophospholipids are synthesized by a pathway involving phosphatidylserine decarboxylase, a mitochondrial enzyme. We have now examined whether this enzyme plays a particularly prominent role during development. Activities for both phosphatidylserine decarboxylase and succinate dehydrogenase (another mitochondrial enzyme) were determined in brain homogenates from rats 5 days of age to adulthood. Succinate dehydrogenase activity, expressed on a per unit brain protein basis, increased markedly during development. This pattern has been reported previously and is as expected from the postnatal increase in oxidative metabolism. In contrast, phosphatidylserine decarboxylase activity decreased 40% from 5 to 30 days of age. The apparent Km for brain phosphatidylserine decarboxylase was 85 microM in both young (8- and 20-day-old) and adult animals. Parallel studies in vivo were carried out to determine the contribution of the phosphatidylserine decarboxylase pathway, relative to pathways utilizing ethanolamine directly, to the synthesis of brain ethanolamine glycerophospholipids. Animals were injected intracranially with a mixture of L-[G-3H]serine and [2-14C]ethanolamine and incorporation into the base moieties of the phospholipids determined. The 3H/14C ratio of ethanolamine glycerophospholipids decreased about 50% during development. Our studies in vitro and in vivo both suggest that phosphatidylserine decarboxylase plays a significant role in the synthesis of brain ethanolamine glycerophospholipids at all ages, although it is relatively more prominent early in development. 相似文献
2.
The mechanism of phosphatidylserine (PS) movement from donor membranes into rat brain mitochondria was investigated. Mitochondria
were incubated with liposomes and subjected to density gradient centrifugation. The energized state was monitored by flow
cytometry measuring the fluorescence of membrane-potential-sensitive rhodamine-123 dye. Mitochondria density decreased upon
increase of the respiratory rate, as a consequence of their association with liposomes. After interaction of mitochondria
with 14C-PS containing liposomes, 14C-PS became a substrate of PS decarboxylase, as monitored by the formation of 14C-phosphatidylethanolamine (PE), indicating translocation of 14C-PS to the inner membrane. The kinetics of 14C-PE formation showed a high rate upon addition of ADP, malate and pyruvate (state 3) compared to control (state 1). In state
3, 14C-PE formation decreased in the presence of NaN3. Mitochondria-associated membranes (MAM) are the major site of PS synthesis. However, their role in the translocation of
PS to mitochondria has not been completely elucidated. A crude mitochondrial fraction (P2) containing MAM, synaptosomes and myelin was prelabeled with 14C-PS and incubated in different respiratory states. At a high respiratory rate, low-density labeled mitochondria, whose band
overlaps that of synaptosomes, were obtained by centrifugation. A parallel decrease of both radioactivity and protein in MAM
fraction was observed, indicating that the association of MAM and mitochondria had occurred. Synthesis and translocation of
14C-PS in P2 membranes were also studied by incubating P2 with 14C-serine. In the resting state 14C-PS accumulated in MAM, indicating that the transfer to mitochondria was a limiting step. In state 3 both the transfer rate
of 14C-PS and its conversion to 14C-PE increased. Respiratory mitochondrial activity modulated the association of MAM and mitochondria, triggering a mechanism
that allowed the transport of PS across the outer mitochondrial membrane.
Received: 7 April 1999/Revised: 21 September 1999 相似文献
3.
Effect of Docosahexaenoic Acid on the Synthesis of Phosphatidylserine in Rat Brain Microsomes and C6 Glioma Cells 总被引:7,自引:2,他引:7
†Martha C. Garcia †Glenn Ward †Yee-Chung Ma †Norman Salem Jr. † Hee-Yong Kim 《Journal of neurochemistry》1998,70(1):24-30
Abstract: Docosahexaenoic acid (22:6n-3) is the major polyunsaturated fatty acid (PUFA) in the CNS and accumulates particularly in phosphatidylserine (PS). We have investigated the effect of the 22:6n-3 compositional status on the synthesis of PS. The fatty acid composition of brain microsomes from offspring of rats artificially reared on an n-3-deficient diet showed a dramatic reduction of 22:6n-3 content (1.7 ± 0.1%) when compared with control animals (15.0 ± 0.2%). The decrease was accompanied by an increase in docosapentaenoic acid (22:5n-6) content, which replaced the 22:6n-3 phospholipids with 22:5n-6 molecular species, as demonstrated using HPLC/electrospray mass spectrometry. The n-3 deficiency did not affect the total amount of polyunsaturated phospholipids in brain microsomes; however, it was associated with a decrease in the total polyunsaturated PS content and with increased levels of 1-stearoyl-2-docosapentanoyl (18:0/22:5n-6) species, particularly in phosphatidylcholine. Incorporation of [3 H]serine into PS in rat brain microsomes from n-3-deficient animals was slightly but significantly less than that of the control animals. Similarly, C6 glioma cells cultured for 24 h in 22:6n-3-supplemented media (10–40 µ M ) showed a significant increase in the synthesis of [3 H]PS when compared with unsupplemented cells. Our data show that neuronal and glial PS synthesis is sensitive to changes in the docosahexaenoate levels of phospholipids and suggest that 22:6n-3 may be a modulator of PS synthesis. 相似文献
4.
In brain, phosphatidylethanolamine can be synthesized from free ethanolamine either by a pathway involving the formation of CDP-ethanolamine and its transfer to diglyceride, or by base-exchange of ethanolamine with existing phospholipids. Although de novo synthesis from serine has also been demonstrated, the metabolic pathway involved is not known. The enzyme phosphatidylserine decarboxylase appears to be involved in the synthesis of much of the phosphatidylethanolamine in liver, but the significance of this route in brain has been challenged. Our in vitro studies demonstrate the existence of phosphatidylserine decarboxylase activity in rat brain and characterize some of its properties. This enzyme is localized in the mitochondrial fraction, whereas the enzymes involved in base-exchange and the cytidine pathway are localized to microsomal membranes. Parallel in vivo studies showed that after the intracranial injection of L-[G-3H]serine, the specific activity of phosphatidylserine was greater in the microsomal fractions than in the mitochondrial fraction, whereas the opposite was true for phosphatidylethanolamine. When L-[U-14C]serine and [1-3H]ethanolamine were simultaneously injected, the 14C/3H ratio in mitochondrial phosphatidylethanolamine was 10 times that in microsomal phosphatidylethanolamine. The results demonstrate that serine is incorporated into the base moiety of phosphatidylethanolamine primarily through the decarboxylation of phosphatidylserine in brain mitochondria. A minimal value of 7% for the contribution of phosphatidylserine decarboxylase to whole-brain phosphatidylethanolamine synthesis can be estimated from the in vivo data. 相似文献
5.
Abstract: The subcellular distribution of acyl-CoA: sn -glycerol-3-phosphate O-acyltransferase between brain mitochondria and microsomes was investigated. The activities associated with purified rat brain mitochondrial and microsomal preparations could be distinguished by differences in their acyl-CoA specificity, products of acylation, and sensitivity to N -ethylmaleimide, trypsin, acetone, and polymyxin B. It was concluded that both brain mitochondria and microsomes possess the acyltransferase. 相似文献
6.
The effects of the polyamines spermine and spermidine on rat brain mitochondrial calcium transport were examined using a variety of techniques for measuring the kinetics of calcium uptake and the buffering capabilities of isolated mitochondria. Spermine both increased the rate of calcium accumulation and decreased the set-point to which isolated mitochondria buffer free calcium concentration. In the presence of physiological concentrations of sodium and magnesium, spermine lowered the extramitochondrial calcium level to approximately 0.3 microM, a value close to the resting intracellular calcium concentration. The effect of polyamines was concentration dependent, with a half-maximal effect of spermine observed at approximately 0.1-0.4 mM (respiratory substrate dependent), whereas spermidine was approximately 10 times less potent. Calcium transport by hippocampal mitochondria was stimulated markedly more by spermine than was calcium transport by mitochondria isolated from brainstem. The stimulatory effect of spermine was not due to an increase in the transport of respiratory substrates inside the mitochondria nor to an effect on the enzymes using these respiratory substrates. An examination of the effect of spermine on the kinetics of calcium uptake indicated that spermine increased calcium uptake maximally at low calcium concentrations. Beyond that level, the stimulatory effect of spermine decreases, and spermine can even inhibit calcium uptake. These results are in good agreement with previous reports on the effects of polyamines on calcium transport in mitochondria from peripheral tissue. They support the hypothesis that spermine increases the rate of calcium uptake by mitochondria by increasing the affinity of the uniporter for calcium.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
The Fusion of Liposomes to Rat Brain Microsomal Membranes Regulates Phosphatidylserine Synthesis 总被引:4,自引:1,他引:3
Rat brain microsomal membranes were fused to liposomes prepared with several pure lipids, namely, phosphatidylserine, phosphatidylinositol, phosphatidic acid, and mixtures of phosphatidic acid and phosphatidylcholine or phosphatidylethanolamine. The fusion between liposomes and microsomes was measured by the octadecyl rhodamine B chloride method. The extent and other properties of fusion largely depend on the lipid used to prepare liposomes; phosphatidic acid and phosphatidylinositol fuse more extensively than other lipid classes. The activity of serine base exchange is affected by the fusion between rat brain microsomes and lipids. It is strongly inhibited by phosphatidylserine, but it is activated by phosphatidic acid. The inhibition produced by phosphatidylserine on its own synthesis is proposed as a mechanism for controlling the formation of phosphatidylserine in rat brain microsomes. 相似文献
8.
Susanne E. Horvath Lena B?ttinger F.-Nora V?gtle Nils Wiedemann Chris Meisinger Thomas Becker Günther Daum 《The Journal of biological chemistry》2012,287(44):36744-36755
The inner mitochondrial membrane plays a crucial role in cellular lipid homeostasis through biosynthesis of the non-bilayer-forming lipids phosphatidylethanolamine and cardiolipin. In the yeast Saccharomyces cerevisiae, the majority of cellular phosphatidylethanolamine is synthesized by the mitochondrial phosphatidylserine decarboxylase 1 (Psd1). The biogenesis of Psd1 involves several processing steps. It was speculated that the Psd1 precursor is sorted into the inner membrane and is subsequently released into the intermembrane space by proteolytic removal of a hydrophobic sorting signal. However, components involved in the maturation of the Psd1 precursor have not been identified. We show that processing of Psd1 involves the action of the mitochondrial processing peptidase and Oct1 and an autocatalytic cleavage at a highly conserved LGST motif yielding the α- and β-subunit of the enzyme. The Psd1 β-subunit (Psd1β) forms the membrane anchor, which binds the intermembrane space-localized α-subunit (Psd1α). Deletion of a transmembrane segment in the β-subunit results in mislocalization of Psd1 and reduced enzymatic activity. Surprisingly, autocatalytic cleavage does not depend on proper localization to the inner mitochondrial membrane. In summary, membrane integration of Psd1 is crucial for its functionality and for maintenance of mitochondrial lipid homeostasis. 相似文献
9.
Abstract: The localization of phosphatidylethanolamine and phosphatidylcholine biosynthetic enzymes within the transverse plane of chicken brain microsomes was investigated by using proteases (trypsin and pronase) and neuraminidase. Treatment of intact microsomes with the proteases inactivated the phosphocholine transferase completely and the ethanolamine phosphotransferase only slightly. This latter enzyme was, however, completely inactivated when deoxycholate-treated microsomes were exposed to proteases. Treatment of intact microsomes with neuraminidase had no effect on both phosphotransferases, although 65% of the sialic acid of sialoglycoproteins and 37% of that of gangliosides were removed. With deoxycholate-disrupted microsomes nearly all sialic acid from the sialoglycoproteins and about 70% of that of gangliosides were released. In parallel, the phosphoethanolamine transferase was 90% inactivated. It is suggested that phosphocholine transferase is localized on the outer face of the microsomal vesicle, whereas the phosphoethanolamine transferase could be a sialoglycoprotein, possibly situated on the inner face of the vesicle, or perhaps a transmembrane protein. 相似文献
10.
Mitochondria can synthesize phosphatidyl-ethanolamine (PE) through phosphatidylserine decarboxylase (PS decarboxylase) activity or can import this lipid from the endoplasmic reticulum. In this work, we studied the factors influencing the import of PE in brain mitochondria and its utilization for the assembly of mitochondrial membranes. Incubation of rat brain homogenate with [1-3H]ethanolamine resulted in the synthesis and distribution of 3H-PE to subcellular fractions. T-wenty-one percent of labeled PE was recovered in purified mitochondria. The import of PE in mitochondria was studied in a reconstituted system made of microsomes (donor particles) and purified mitochondria (acceptor particles). Ca+2 and nonspecific lipid transfer protein purified from liver tissue (nsL-TP) enhanced the translocation process. 3H-PE synthesized in membrane associated to mitochondria (MAM) could also translocate to mitochondria in the reconstituted system. Exposure of mitochondria to trinitrobenzensulfonic acid (TNBS) resulted in the reaction of more than 60% of 3H-PE imported from endoplasmic reticulum and of about 25% of 14C-PE produced in mitochondria by decarboxylation of 14C-PS. Moreover, the removal of the outer mitochondrial membrane by digitonin treatment, resulted in the loss of 3H-PE, but not 14C-PE. These results indicate that labeled PE imported in mitochondria is mainly localized in the outer mitochondrial membrane, whereas PE produced by PS decarboxylase activity is confined to the inner mitochondrial membrane. Phospholipase C hydrolyzed 25–30% of both PE radioactivity and mass of the outer mitochondrial membrane indicating an asymmetrical distribution of this lipid across the membrane.Mr. Carlo Ricci is thanked for his skillful technical assistance. This work has been supported by a grant from the Ministry of Education, Rome, Italy. 相似文献
11.
《Journal of liposome research》2013,23(4):477-489
AbstractWe established a quantitative assay (fluorescamine-assay) to determine the distribution of phosphatidylserine (PS) in the outer and inner monolayer of mixed phosphatidylcholine/phosphatidylserine liposomes. Fluorescamine (a non-fluorescent compound) reacts with primary amino groups resulting in a fluorescent product. Fluorescamine is not able to penetrate through the liposomal membrane so only the amount of PS located in the outer monolayer is accessible for the reaction. This assay was used to study the influence of several factors in liposome preparation on liposome asymmetry. An increase in the amount of PS in the liposomal preparation leads to a decrease in the outer to inner PS ratio. This was also the case for unilamellar vesicles of decreasing size. The asymmetry of PS is only slightly influenced by the addition of phos-phatidylinositol or phosphatidylgycerol, whereas small amounts of phosphati-dylethanolamine-rhodamine-B induce a dramatic shift of PS to the inner monolayer. NBD-labeled PS shows a asymmetric distribution different from that of unlabeled PS. 相似文献
12.
Identification of a Mitochondrial Phosphoprotein in Brain Synaptic Membrane Preparations 总被引:4,自引:4,他引:0
Gilbert Magilen Adrienne Gordon Alice Au Ivan Diamond 《Journal of neurochemistry》1981,36(5):1861-1864
Abstract: A 41,000-dalton phosphoprotein in crude synaptosomal membrane fractions is characterized by its unique divalent and monovalent cation regulation. It is identified by two-dimensional gel electrophoresis as the phosphoprotein whose phosphorylation is enhanced by repetitive electrical stimulation of hippocampal brain slices. After sucrose-gradient ultracentrifugation, this phosphoprotein is found in the mitochondrial subfraction. This suggests that the electrically produced changes in the level of phosphorylation of the 41,000-dalton polypeptide are probably effects on cellular energetics rather than on specialized neural membrane function. 相似文献
13.
Crude subcellular fractions were prepared from adult rat brains by differential centrifugation of brain homogenates. Greater than 98% of the cellular mitochondrial marker enzyme activity sedimented in the heavy and light mitochondrial pellets, and less than 1% of the activity sedimented in microsomal pellets. Lysosomal marker enzyme activities mainly (71-78% of cellular activity) sedimented in the heavy and light mitochondrial pellets. Significant amounts of the lysosomal marker enzyme activity also sedimented in the crude microsomal pellets (9-13% of total) and high-speed supernatants (14-16% of total). The specific activities of microsomal and peroxisomal marker enzyme activities were highest in the crude microsomal pellets. Fractionation of the crude microsomal pellets on Nycodenz gradients resulted in the separation of the bulk of the remaining mitochondrial, lysosomal, and microsomal enzyme activities from peroxisomes. Fatty acyl-CoA synthetase activities separated on Nycodenz gradients as two distinct peaks, and the minor peak of the activities was in the peroxisomal enriched fraction. Fatty acid beta-oxidation activities also separated as two distinct peaks, and the activities were highest in the peroxisomal enriched fractions. Mitochondria were purified from the heavy mitochondrial pellets by Percoll density gradients. Fatty acyl-CoA synthetase and fatty acid beta-oxidation activities were present in both the purified mitochondrial and peroxisomal enriched fractions. Stearoyl-CoA synthetase activities were severalfold greater compared to lignoceroyl-CoA synthetase, and stearic acid beta-oxidation was severalfold greater compared to lignoceric acid beta-oxidation in purified mitochondrial and peroxisomal enriched fractions.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
《Molecular membrane biology》2013,30(4):253-261
The fusion between rat brain microsomes and liposomes is investigated by measuring the release of octadecylrhodamine B (R18) fluorescence self-quenching. In the experimental conditions used in this work, the method allows a rapid and quantitative evaluation of the mixing of microsome and liposome lipid phases. The decrease of pH below 7 produces an extensive fusion between microsomes and acidic phospholipid liposomes. Microsomal protein is necessary for fusion, which is inactivated by exposure of microsomes to pronase. Therefore, H+-induced fusion differs from Ca2+-induced fusion since the latter does not require microsomal protein. The pretreatment of microsomes with trinitrobenzenesulfonic acid (TNBS) in nonpenetrating conditions does not affect the extent of fusion. On the other hand, N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), a reagent able to react with carboxyl groups, causes an extensive inactivation of fusion. Therefore, the H+-induced fusion described here depends on some microsomal protein and may have physiological significance because it occurs at pH values present in the living cell. H+-dependent fusion can be also considered as a means to enrich membranes in some selected lipid. 相似文献
15.
Mitochondrial Calcium Transport and Mitochondrial Dysfunction After Global Brain Ischemia in Rat Hippocampus 总被引:1,自引:0,他引:1
Peter Racay Zuzana Tatarkova Maria Chomova Jozef Hatok Peter Kaplan Dusan Dobrota 《Neurochemical research》2009,34(8):1469-1478
Here we report effect of ischemia-reperfusion on mitochondrial Ca2+ uptake and activity of complexes I and IV in rat hippocampus. By performing 4-vessel occlusion model of global brain ischemia,
we observed that 15 min ischemia led to significant decrease of mitochondrial capacity to accumulate Ca2+ to 80.8% of control whereas rate of Ca2+ uptake was not significantly changed. Reperfusion did not significantly change mitochondrial Ca2+ transport. Ischemia induced progressive inhibition of complex I, affecting final electron transfer to decylubiquinone. Minimal
activity of complex I was observed 24 h after ischemia (63% of control). Inhibition of complex IV activity to 80.6% of control
was observed 1 h after ischemia. To explain the discrepancy between impact of ischemia on rate of Ca2+ uptake and activities of both complexes, we performed titration experiments to study relationship between inhibition of particular
complex and generation of mitochondrial transmembrane potential (ΔΨm). Generation of a threshold curves showed that complex I and IV activities must be decreased by approximately 40, and 60%,
respectively, before significant decline in ΔΨm was documented. Thus, mitochondrial Ca2+ uptake was not significantly affected by ischemia-reperfusion, apparently due to excess capacity of the complexes I and IV.
Inhibition of complex I is favourable of reactive oxygen species (ROS) generation. Maximal oxidative modification of membrane
proteins was documented 1 h after ischemia. Although enhanced formation of ROS might contribute to neuronal injury, depressed
activities of complex I and IV together with unaltered rate of Ca2+ uptake are conditions favourable of initiation of other cell degenerative pathways like opening of mitochondrial permeability
transition pore or apoptosis initiation, and might represent important mechanism of ischemic damage to neurones. 相似文献
16.
L-Aspartate Transport into Plasma Membrane Vesicles Derived from Rat Brain Synaptosomes 总被引:1,自引:8,他引:1
J. G. Marvizón F. Mayor Jr. M. C. Aragón C. Giménez F. Valdivieso 《Journal of neurochemistry》1981,37(6):1401-1406
Abstract: Aspartate uptake by membrane vesicles derived from rat brain was investigated. The uptake is dependent on a Na+ gradient ([Na+ ] outside > [Na+ ] inside). Active transport of aspartate is strictly dependent upon the presence of sodium and maximal extent of transport is reached when both Na+ and Cl− ions are present. The uptake is transport into an osmotically active space and not a binding artifact as indicated by the effect of increasing the medium osmolarity. The uptake of aspartate is stimulated by a membrane potential (negative inside), as demonstrated by the effect of the ionophore carbonyl cyanide m -chlorophenylhydrazone and anions with different permeabilities. The presence of ouabain, an inhibitor of (Na+ + K+ )-ATPase, does not affect aspartate transport. The kinetic analysis shows that aspartate is accumulated by two systems with different affinities, showing K m and V max values of similar order to those found in slightly "cruder" preparations. Inhibition of the l -aspartate uptake by d -aspartate and d - and l -glutamate indicates that a common carrier is involved in the process, this being stereospecific for the d - and l -glutamate stereoisomers. 相似文献
17.
Sergei A. Novgorodov Christopher L. Riley Jin Yu Keith T. Borg Yusuf A. Hannun Richard L. Proia Mark S. Kindy Tatyana I. Gudz 《The Journal of biological chemistry》2014,289(19):13142-13154
In addition to immediate brain damage, traumatic brain injury (TBI) initiates a cascade of pathophysiological events producing secondary injury. The biochemical and cellular mechanisms that comprise secondary injury are not entirely understood. Herein, we report a substantial deregulation of cerebral sphingolipid metabolism in a mouse model of TBI. Sphingolipid profile analysis demonstrated increases in sphingomyelin species and sphingosine concurrently with up-regulation of intermediates of de novo sphingolipid biosynthesis in the brain. Investigation of intracellular sites of sphingosine accumulation revealed an elevation of sphingosine in mitochondria due to the activation of neutral ceramidase (NCDase) and the reduced activity of sphingosine kinase 2 (SphK2). The lack of change in gene expression suggested that post-translational mechanisms are responsible for the shift in the activities of both enzymes. Immunoprecipitation studies revealed that SphK2 is complexed with NCDase and cytochrome oxidase (COX) subunit 1 in mitochondria and that brain injury hindered SphK2 association with the complex. Functional studies showed that sphingosine accumulation resulted in a decreased activity of COX, a rate-limiting enzyme of the mitochondrial electron transport chain. Knocking down NCDase reduced sphingosine accumulation in mitochondria and preserved COX activity after the brain injury. Also, NCDase knockdown improved brain function recovery and lessened brain contusion volume after trauma. These studies highlight a novel mechanism of secondary TBI involving a disturbance of sphingolipid-metabolizing enzymes in mitochondria and suggest a critical role for mitochondrial sphingosine in promoting brain injury after trauma. 相似文献
18.
19.
Wayne R. Riekhof Wen-I Wu Jennifer L. Jones Mrinalini Nikrad Mallory M. Chan Christopher J. R. Loewen Dennis R. Voelker 《The Journal of biological chemistry》2014,289(9):5809-5819
Saccharomyces cerevisiae uses multiple biosynthetic pathways for the synthesis of phosphatidylethanolamine. One route involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), the transport of this lipid to endosomes, and decarboxylation by PtdSer decarboxylase 2 (Psd2p) to produce phosphatidylethanolamine. Several proteins and protein motifs are known to be required for PtdSer transport to occur, namely the Sec14p homolog PstB2p/Pdr17p; a PtdIns 4-kinase, Stt4p; and a C2 domain of Psd2p. The focus of this work is on defining the protein-protein and protein-lipid interactions of these components. PstB2p interacts with a protein encoded by the uncharacterized gene YPL272C, which we name Pbi1p (PstB2p-interacting 1). PstB2p, Psd2, and Pbi1p were shown to be lipid-binding proteins specific for phosphatidic acid. Pbi1p also interacts with the ER-localized Scs2p, a binding determinant for several peripheral ER proteins. A complex between Psd2p and PstB2p was also detected, and this interaction was facilitated by a cryptic C2 domain at the extreme N terminus of Psd2p (C2-1) as well the previously characterized C2 domain of Psd2p (C2-2). The predicted N-terminal helical region of PstB2p was necessary and sufficient for promoting the interaction with both Psd2p and Pbi1p. Taken together, these results support a model for PtdSer transport involving the docking of a PtdSer donor membrane with an acceptor via specific protein-protein and protein-lipid interactions. Specifically, our model predicts that this process involves an acceptor membrane complex containing the C2 domains of Psd2p, PstB2p, and Pbi1p that ligate to Scs2p and phosphatidic acid present in the donor membrane, forming a zone of apposition that facilitates PtdSer transfer. 相似文献
20.
Sita Awasthi Poonam Kakkar P. N. Viswanathan R. Bhardwaj 《Journal of neurochemistry》1991,57(1):277-281
Administration of phenobarbitone caused a marked increase in the capacity of rat brain microsomes to produce thiobarbituric acid-reactive substances in vitro. Enzymatic peroxidation of lipids was more affected than the nonenzymatic processes occurring in heat-inactivated preparations. Analysis of the phospholipid profile showed a drastic decrease in phosphatidylcholine and total phospholipid contents in the exposed animals, but about a fivefold increase in the lysophosphatidylcholine fraction. Data for in vivo incorporation of [14C]choline showed a similar pattern of high radioactivity in lysolecithin. The increase in lipid peroxidation could be related to the higher level of lysolecithin and the accompanying structural and functional changes in microsomes resulting from the neurotoxic effects of phenobarbitone. 相似文献