首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Lipid lateral organization is increasingly found to modulate membrane-bound enzymes. We followed in real time the reaction course of sphingomyelin (SM) degradation by Bacillus cereus sphingomyelinase (SMase) of lipid monolayers by epifluorescence microscopy. There is evidence that formation of ceramide (Cer), a lipid second messenger, drives structural reorganization of membrane lipids. Our results provide visual evidence that SMase activity initially alters surface topography by inducing phase separation into condensed (Cer-enriched) and expanded (SM-enriched) domains. The Cer-enriched phase grows steadily as the reaction proceeds at a constant rate. The surface topography derived from the SMase-driven reaction was compared with, and found to differ from, that of premixed SM/Cer monolayers of the same lipid composition, indicating that substantial information content is stored depending on the manner in which the surface was generated. The long-range topographic changes feed back on the kinetics of Smase, and the onset of condensed-phase percolation is temporally correlated with a rapid drop of reaction rate. These observations reveal a bidirectional influence and communication between effects taking place at the local molecular level and the supramolecular organization. The results suggest a novel biocatalytic-topographic mechanism in which a surface enzymatic activity can influence the function of amphitropic proteins important for cell function.  相似文献   

5.
The serotonin1A receptor is an important member of the G-protein coupled receptor family, and is involved in the generation and modulation of a variety of cognitive, behavioral, and developmental functions. We have monitored the ligand binding of the human serotonin1A receptor stably expressed in CHO cells (termed CHO-5-HT1AR) following treatment with sphingomyelinase (SMase), an enzyme that specifically catalyzes the hydrolysis of sphingomyelin into ceramide and phosphorylcholine. Our results show, for the first time, that the specific ligand binding activity of the serotonin1A receptor in membranes isolated from CHO-5-HT1AR cells is increased upon sphingomyelinase treatment. Saturation binding analysis reveals increase in binding affinity of the receptor under these conditions. This is accompanied by a reduction in membrane order, as monitored by fluorescence anisotropy of the membrane probe 1-[4-(trimethylammonio)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) in intact cells. These results represent the first report on the effect of sphingomyelinase treatment on the ligand binding activity of this important neurotransmitter receptor.  相似文献   

6.
The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes.  相似文献   

7.
Membranes made of dimyristoylphosphatidylcholine and cholesterol, one of the simplest paradigms for the study of liquid ordered-disordered phase separation, were investigated using a pulse-EPR spin-labeling method in which bimolecular collision of molecular oxygen with the nitroxide spin label is measured. This method allowed discrimination of liquid-ordered, liquid-disordered, and solid-ordered domains because the collision rates (OTP) differ in these domains. Furthermore, the oxygen transport parameter (OTP) profile across the bilayer provides unique information about the three-dimensional dynamic organization of the membrane domains. First, the OTP in the bilayer center in the liquid-ordered domain was comparable to that in the liquid-disordered domain without cholesterol, but the OTP near the membrane surface (up to carbon 9) was substantially smaller in the ordered domain, i.e., the cholesterol-based liquid-ordered domain is ordered only near the membrane surface, still retaining high levels of disorder in the bilayer center. This property may facilitate lateral mobility in ordered domains. Second, in the liquid-disordered domain, the domains with ~5 mol % cholesterol exhibited higher OTP than those without cholesterol, everywhere across the membrane. Third, the transmembrane OTP profile in the liquid-ordered domain that contained 50 mol % cholesterol dramatically differed from that which contained 27 mol % cholesterol.  相似文献   

8.
D. A. Jans  I. Pavo 《Amino acids》1995,9(2):93-109
Summary Lateral diffusion of membrane-integral receptors within the plane of the membrane has been postulated to be mechanistically important for signal transduction. Direct measurement of polypeptide hormone receptor lateral mobility using fluorescence photobleaching recovery techniques indicates that tyrosine kinase receptors are largely immobile at physiological temperatures. This is presumably due to their signal transduction mechanism which requires intermolecular autophosphorylation through receptor dimerization and thus immobilization for activation. In contrast, G-protein coupled receptors must interact with other membrane components to effect signal transduction, and consistent with this, the phospholipase C-activating vasopressin V1- and adenylate cyclase activating V2-receptors are highly laterally mobile at 37°C. Modulation of the V2-receptor mobile fraction (f) has demonstrated a direct correlation between f and receptor-agonist-dependent maximal cAMP productionin vivo at 37°C. This indicates that f is a key parameter in hormone signal transduction especially at physiological hormone concentrations, consistent with mobile receptors being required to effect V2-agonist-dependent activation of G-proteins. Measurements using a V2-specific antagonist show that antagonist-occupied receptors are highly mobile at 37°C, indicating that receptor immobilization is not the basis of antagonism. In contrast to agonist-occupied receptor however, antagonistoccupied receptors are not immobilized prior to endocytosis and down-regulation. Receptors may thus be freely mobile in the absence of agonistic ligand; stimulation by hormone agonist results in receptor association with other proteins, probably including cytoskeletal components, and immobilization. Receptor immobilization may be one of the important steps of desensitization subsequent to agonistic stimulation, through terminating receptor lateral movement which is instrumental in generating and amplifying the initial stimulatory signal within the plane of the membrane.Abbreviations FBR fluorescence photobleaching recovery - EGF epidermal growth factor - AC adenylate cyclase - D apparent lateral diffusion coefficient - f mobile fraction - G- GTP-binding protein - Gs stimulatory G-protein - TKR tyrosine kinase receptor - PDGF platelet-derived growth factor - IL interleukin  相似文献   

9.
The objective of this study was to define how the quality of the buffer/membrane interface influences the activity of bacterial sphingomyelinase acting at the interface. The enzyme reaction was carried out in a zero-order trough using a surface barostat. This approach allowed for proper control of the physico-chemical properties of the substrate molecules. Since the molecular area of ceramide is smaller than that of sphingomyelin, the hydrolysis reaction could be followed `on-line' from the monolayer area decrease at constant surface pressure. The hydrolysis reaction could be divided into two separate phases, the first being the lag-phase (time between enzyme addition and commencement of the monolayer area change), and the second phase being the actual hydrolysis reaction (from which a maximal degradation rate could be determined). The activity of sphingomyelinase (Staphylococcus aureus) toward bovine brain sphingomyelin (bb-SM) was markedly enhanced by Mg2+ (maximal activation at 5 mM). Mg2+ also influenced the lag-phase of the reaction (the lag-time increased markedly when the Mg2+ concentration decreased below 1 mM). Saturated sphingomyelins (bb-SM and N-palmitoyl sphingomyelin [N-P-SM]) were more slowly degraded than the mono-unsaturated N-oleoyl sphingomyelin (N-O-SM). Both bb-SM and N-P-SM monolayers underwent a phase-transition at room temperature, whereas the N-O-SM monolayer did not. The phase-transition (liquid-expanded to liquid-condensed) was observed to greatly increase the lag-time of the hydrolysis reaction. The activity of sphingomyelinase was also sensitive to the lateral surface pressure of the monolayer membrane. Maximal degradation rate was achieved at 20 mN/m (with bb-SM, 30°C); above this pressure the lag-time of the reaction increased sharply. The inclusion of 4 mol% of cholesterol into a [3H]sphingomyelin monolayer markedly increased the extent of [3H]sphingomyelin degradation, and shortened the lag-time of the reaction. The inclusion of 10 mol% of zwitterionic or negatively charged phospholipids to the [3H]sphingomyelin monolayer did not affect the sphingomyelinase reaction significantly. In conclusion, this study has demonstrated that the physico-chemical properties of the substrate molecules have a dominating influence on the activity of a bacterial sphingomyelinase acting at the buffer/membrane interface.  相似文献   

10.
Sphingomyelinase activity against pure sphingomyelin monolayers is constant up to a surface pressure of 18 mN/m and falls above it. Sphingomyelinase- and phospholipase A2-mediated phosphohydrolytic pathways are mutually modulated by the presence of their respective substrates and products. At 15 mN/ m non-substrate lipids such as ceramide at a mole fraction of 0·1 in mixed films with the pure substrate, inhibit the sphingomyelinase activity. Ganglioside GM1, another ceramide-containing complex sphingolipid, also inhibits sphingomyelinase activity, while a chemically related glycosphingolipid such as asialo-GM1 has no effect. The activity is unaltered by dipalmitoylphosphatidylcholine and by an equimolar mixture of its products of hydrolysis by phospholipase A2, fatty acid and lysoderivative, but it is inhibited by only one of them or by dilauroylphosphatidylcholine. Phospholipase A2 is inhibited by sphingomyelin, and activated by ceramide and by palmitic acid, one of the products of its own phosphohydrolytic reaction.  相似文献   

11.
Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compounds) have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds in vivo.  相似文献   

12.
Although cortical actin plays an important role in cellular mechanics and morphogenesis, there is surprisingly little information on cortex organization at the apical surface of cells. In this paper, we characterize organization and dynamics of microvilli (MV) and a previously unappreciated actomyosin network at the apical surface of Madin–Darby canine kidney cells. In contrast to short and static MV in confluent cells, the apical surfaces of nonconfluent epithelial cells (ECs) form highly dynamic protrusions, which are often oriented along the plane of the membrane. These dynamic MV exhibit complex and spatially correlated reorganization, which is dependent on myosin II activity. Surprisingly, myosin II is organized into an extensive network of filaments spanning the entire apical membrane in nonconfluent ECs. Dynamic MV, myosin filaments, and their associated actin filaments form an interconnected, prestressed network. Interestingly, this network regulates lateral mobility of apical membrane probes such as integrins or epidermal growth factor receptors, suggesting that coordinated actomyosin dynamics contributes to apical cell membrane organization.  相似文献   

13.
Phospholipids are key components of biological membranes and their lipolysis with phospholipase A2 (PLA2) enzymes occurs in different cellular pH environments. Since no studies are available on the effect of pH on PLA2-modified phospholipid membranes, we performed 50-ns atomistic molecular dynamics simulations at three different pH conditions (pH 9.0, 7.5, and 5.5) using a fully PLA2-hydrolyzed phosphatidylcholine (PC) bilayer which consists solely of lysophosphatidylcholine and free fatty acid molecules. We found that a decrease in pH results in lateral squeezing of the membrane, i.e. in decreased surface area per headgroup. Thus, at the decreased pH, the lipid hydrocarbon chains had larger SCD order parameter values, and also enhanced membrane thickness, as seen in the electron density profiles across the membrane. From the lateral pressure profiles, we found that the values of spontaneous curvature of the two opposing monolayers became negative when the pH was decreased. At low pH, protonation of the free fatty acid headgroups reduces their mutual repulsion and accounts for the pH dependence of all the above-mentioned properties. The altered structural characteristics may significantly affect the overall surface properties of biomembranes in cellular vesicles, lipid droplets, and plasma lipoproteins, play an important role in membrane fission and fusion, and modify interactions between membrane lipids and the proteins embedded within them.  相似文献   

14.
Ceramide-enriched membrane domains   总被引:1,自引:0,他引:1  
Cellular activation involves the re-organization of receptor molecules and the intracellular signalosom in the cell membrane. Recent studies indicate that specialized domains of the cell membrane, termed rafts, are central for the spatial organization of receptors and signaling molecules. Rafts are converted into larger membrane platforms by activity of the acid sphingomyelinase, which hydrolyses raft-sphingomyelin to ceramide. Ceramide molecules spontaneously associate to form ceramide-enriched microdomains, which fuse to large ceramide-enriched membrane platforms. The acid sphingomyelinase is activated by multiple stimuli including CD95, CD40, DR5/TRAIL, CD20, FcgammaRII, CD5, LFA-1, CD28, TNF, the Interleukin-1 receptor, the PAF-receptor, CD14, infection with P. aeruginosa, S. aureus, N. gonorrhoeae, Sindbis-Virus, Rhinovirus, treatment with gamma-irradiation, UV-light, doxorubicin, cisplatin, disruption of integrin-signaling and under some conditions of developmental death. Ceramide-enriched membrane platforms serve the clustering of receptors, the recruitment of intracellular signaling molecules and the exclusion of inhibitory signaling factors and, thus, facilitate signal transduction initiated by the specific stimulus.  相似文献   

15.
Drosophila photoreceptors are sensory neurons whose primary function is the transduction of photons into an electrical signal for forward transmission to the brain. Photoreceptors are polarized cells whose apical domain is organized into finger like projections of plasma membrane, microvilli that contain the molecular machinery required for sensory transduction. The development of this apical domain requires intense polarized membrane transport during development and it is maintained by post developmental membrane turnover. Sensory transduction in these cells involves a high rate of G-protein coupled phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] hydrolysis ending with the activation of ion channels that are members of the TRP superfamily. Defects in this lipid-signaling cascade often result in retinal degeneration, which is a consequence of the loss of apical membrane homeostasis. In this review we discuss the various membrane transport challenges of photoreceptors and their regulation by ongoing lipid signaling cascades in these cells. This article is part of a Special Issue entitled Lipids and Vesicular Transport.  相似文献   

16.
1. Insolubility of membrane constituents in nonionic detergents such as Triton X-100 has been a widely used biochemical criterion to indicate their localization in membrane domains. However, concerns on the possibility of membrane perturbation in the presence of detergents have led to the development of detergent-free approaches. 2. We have explored the organization of the serotonin1A receptor, an important G-protein coupled receptor, from bovine hippocampus and CHO cells using a detergent-free approach in order to address the points of agreement with our previous results using Triton X-100. 3. A significant fraction of the serotonin1A receptor has been found to be localized in a heavy density fraction obtained using a detergent-free approach to isolate membrane domains. In addition, we have characterized the membrane fractions isolated in terms of their lipid composition and membrane physical properties. 4. The results obtained on the membrane localization of the serotonin1A receptor from the present experiments using a detergent-free approach correlate well with our earlier findings obtained using a detergent-based method (Kalipatnapu, S., and Chattopadhyay, A., FEBS Lett. 576:455–460, 2004). These results provide important information on the membrane organization of the hippocampal serotonin1A receptor and are relevant in view of the concerns on the use of detergent in determination of membrane organization of constituent proteins and lipids.  相似文献   

17.
The action of purified phospholipases on monomolecular films of various interfacial pressures is compared with the action on erythrocyte membranes. The phospholipases which cannot hydrolyse phospholipids of the intact erythrocyte membrane, phospholipase C from Bacillus cereus, phospholipase A2 from pig pancreas and Crotalus adamanteus and phospholipase D from cabbage, can hydrolyse phospholipid monolayers at pressure below 31 dynes/cm only.The phospholipases which can hydrolyse phospholipids of the intact erythrocyte membrane, phospholipase C from Clostridium welchii phospholipase A2 from Naja naja and bee venom and sphingomyelinase from Staphylococcus aureus, can hydrolyse phospholipid monolayers at pressure above 31 dynes/cm. It is concluded that the lipid packing in the outer monolayer of the erythrocyte membrane is comparable with a lateral surface pressure between 31 and 34.8 dynes/cm.  相似文献   

18.
Sphingomyelinases (SMases) hydrolyze the membrane constituent sphingomyelin (SM) to phosphocholine and ceramide (Cer). Growing evidence supports that SMase-induced SM-->Cer conversion leads to the formation of lateral Cer-enriched domains which drive structural reorganization in lipid membranes. We previously provided visual evidence in real-time for the formation of Cer-enriched domains in SM monolayers through the action of the neutral Bacillus cereus SMase. In this work, we disclose a succession of discrete morphologic transitions and lateral organization of Cer-enriched domains that underlay the SMase-generated surface topography. We further reveal how these structural parameters couple to the generation of two-dimensional electrostatic fields, based upon the specific orientation of the lipid dipole moments in the Cer-enriched domains. Advanced image processing routines in combination with time-resolved epifluorescence microscopy on Langmuir monolayers revealed: 1), spontaneous nucleation and circular growth of Cer-enriched domains after injection of SMase into the subphase of the SM monolayer; 2), domain-intrinsic discrete transitions from circular to periodically undulating shapes followed by a second transition toward increasingly branched morphologies; 3), lateral superstructure organization into predominantly hexagonal domain lattices; 4), formation of super-superstructures by the hexagonal lattices; and 5), rotationally and laterally coupled domain movement before domain border contact. All patterns proved to be specific for the SMase-driven system since they could not be observed with Cer-enriched domains generated by defined mixtures of SM/Cer in enzyme-free monolayers at the same surface pressure (pi = 10 mN/m). Following the theories of lateral shape transitions, dipolar electrostatic interactions of lipid domains, and direct determinations of the monolayer dipole potential, our data show that SMase induces a domain-specific packing and orientation of the molecular dipole moments perpendicular to the air/water interface. In consequence, protein-driven generation of specific out-of-equilibrium states, an accepted concept for maintenance of transmembrane lipid asymmetry, must also be considered on the lateral level. Lateral enzyme-specific out-of-equilibrium organization of lipid domains represents a new level of signal transduction from local (nm) to long-range (microm) scales. The cross-talk between lateral domain structures and dipolar electrostatic fields adds new perspectives to the mechanisms of SMase-mediated signal transduction in biological membranes.  相似文献   

19.
20.
We have earlier shown that microglia, the immune cells of the CNS, release microparticles from cell plasma membrane after ATP stimulation. These vesicles contain and release IL-1β, a crucial cytokine in CNS inflammatory events. In this study, we show that microparticles are also released by astrocytes and we get insights into the mechanism of their shedding. We show that, on activation of the ATP receptor P2X7, microparticle shedding is associated with rapid activation of acid sphingomyelinase, which moves to plasma membrane outer leaflet. ATP-induced shedding and IL-1β release are markedly reduced by the inhibition of acid sphingomyelinase, and completely blocked in glial cultures from acid sphingomyelinase knockout mice. We also show that p38 MAPK cascade is relevant for the whole process, as specific kinase inhibitors strongly reduce acid sphingomyelinase activation, microparticle shedding and IL-1β release. Our results represent the first demonstration that activation of acid sphingomyelinase is necessary and sufficient for microparticle release from glial cells and define key molecular effectors of microparticle formation and IL-1β release, thus, opening new strategies for the treatment of neuroinflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号