首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the organization of microtubule system of interphase cells in roots of Medicago sativa L. during acclimation to salt and osmotic stress at different concentrations of NaCl, Na2SO4, and mannitol. We identified morphological changes of tubulin cytoskeleton in different root tissues during the acclimation to salt and osmotic stress: (1) decreased density of the cortical microtubule network, (2) random orientation of cortical microtubule bundles, (4) thickening of the bundles, (3) nonuniform density of the bundles, (4) fragmentation of the bundles, and (5) formation of microtubule converging centers. Network thinning and thickening of the bundles were observed both under osmotic and salt stress. Random orientation of cortical microtubules was visualized under osmotic stress but not during salt stress. Fragmentation of microtubule bundles took place under salt stress with a high concentration of mannitol. Formation of microtubule converging centers was common under prolonged action of sodium sulfate, less evident under sodium chloride, and not found after mannitol treatment. Our data show that, in alfalfa root cells, cortical microtubules rearrange not only in response to different ions, but also to osmotic pressure. Thus, the signaling pathways and molecular mechanisms inducing reorganization of the microtubule system may be triggered by sodium cations, as well as by sulfate and chloride anions at concentrations that do not cause irreversible cell damage.  相似文献   

2.
Proline accumulation in coleoptiles of wheat seedlings or in excised coleoptile segments incubated under shaking for a 24 h period was studied. There was no increase of proline content of coleoptiles after incubation of the seedlings in 5 mM citric acid (a relatively strong and slowly penetrating organic acid) in a pH range from 4.5 to 7.0 and only a slight increase of proline content after incubation in phosphate buffer at pH 7.0 to 7.5 duo to the higher osmotic concentration of phosphate buffer in this pH range. Quite different results were obtained with seedlings incubated in 10 mM acetic acid, a weak and easily penetrating organic acid. With increasing proton concentrations, proline accumulation increased. Application of 400 mM mannitol or higher concentrations of IAA (more than 10−5M) additionally increased proline accumulation in the presence of 10 mM acetic acid in the pH range from 6.0 to 7.5 in which acetic acid alone was loss effective. It is suggested that a decrease of cytosolic pH causes stress—induced proline accumulation.  相似文献   

3.
A new method combining enzymatic maceration with osmotic shock was developed for isolation of living embryo sac and its protoplasts in Nicotiana tabacum L. The principle of this method was that the ovules submitted to enzymatic treatment and osmotic shock could release embryo sacs along with some internal ovular cells through either the funicle cut end or the micropyle. Factors affecting embryo sac isolation were investigated, including concentration of mannitol as a shock osmoticum and in enzymesolution ,duration of enzymatic maceration,and duration of osmotic shock. As a result a procedure was established: Ovules at mature embryo sac stage were macerated for 2. S h in 1 %–1.5% cellulase R-10 and 0. 5% macerozyme R-10 (or 1% Pectinase,Serva) dissolved in 13% mannitol solution using microshaker,followed by osmotic shock for 15–30 min with enzyme free 8% mannitol solution and gentle agitation using a pipette. Using a capillary,50–70 embryo sacs could be collected manually in one hour. The embryo sacs thus isolated could be kept viable from which protoplasts of egg cell and other componcnt cells could be further isolated. An additional interesting phenomenon was that osmotic shock often caused in situ fusion the protoplasts of egg cell and synergids. The rate of fusion ranging 9%—71.9% could be controlled by modification of the procedure. This phenomenon merits further attention both from basic and practical point of view. The present method gives the advantages of faciliting isolation and promoting good harvest of viable embryo sacs/female protoplasts within a relative short time.  相似文献   

4.
Fluxes of mannitol across plasmalemma and tonoplast of excised carrot storage root tissue were measured using compartmental analysis of 14C tracer exchange. Mannitol metabolism and the contribution of [14C]-labelled metabolites to efflux was shown to be small. Similar but less extensive measurements were made on red beet ( Beta vulgaris L.), barley ( Hordeum vulgare L.) and maize ( Zea mays L.) roots. Calculated values of the reflection coefficient for mannitol were close to one, but, despite this, the inflow of mannitol was sufficient to dissipate the mannitol concentration gradient between inside and outside the cells within the time it takes them to adjust vacuolar concentrations. Thus mannitol is not suitable as an osmoticum in osmotic adjustment experiments in these root tissues. Mannitol flows appear to be passive. Permeability to mannitol (about 10−10 m s−1 is greater at the plasmalemma than at the tonoplast in carrot, and this would tend to cause the cytoplasm to swell. The implications for the control of cytoplasmic volume are discussed.  相似文献   

5.
The changes in turgor pressure that accompany the mobilisation of sucrose and accumulation of salts by excised disks of storage-root tissue of red beet (Beta vulgaris L.) have been investigated. Disks were washed in solutions containing mannitol until all of their sucrose had disappeared and then were transferred to solutions containing 5 mol·m-3 KCl+5 mol·m-3 NaCl in addition to the mannitol. Changes in solute contents, osmotic pressure and turgor pressure (measured with a pressure probe) were followed. As sucrose disappeared from the tissue, reducing sugars were accumulated. For disks in 200 mol·m-3 mannitol, the final reducing-sugar concentration equalled the initial sucrose concentration so there was no change in osmotic pressure or turgor pressure. At lower mannitol concentrations, there was a decrease in tissue osmotic pressure which was caused by a turgor-driven leakage of solutes. At concentrations of mannitol greater than 200 mol·m-3, osmotic pressure and turgor pressure increased because reducing-sugar accumulation exceeded the initial sucrose concentration. When salts were provided they were absorbed by the tissue and reducing-sugar concentrations fell. This indicated that salts were replacing sugars in the vacuole and releasing them for metabolism. The changes in salf and sugar concentrations were not equal because there was an increase in osmotic pressure and turgor pressure. The amount of salt absorbed was not affected by the external mannitol concentration, indicating that turgor pressure did not affect this process. The implications of the results for the control of turgor pressure during the mobilisation of vacuolar sucrose are discussed.To whom correspondence should be addressed.  相似文献   

6.
Efforts were made to estimate the water potential difference that is required, between rapidly growing oat coleoptile cylinders and dilute medium, to support the rate of water uptake involved in elongation, (a) by the traditional method of determining the concentration of mannitol in which the tissue neither gains nor loses water, and (b) by measuring the rates of osmotic exchanges induced by treating the tissue with different hypotonic mannitol concentrations. Both methods indicated large water potential differences (3 to 10 atm), in some cases approaching the osmotic pressure of the cells. However, indication was obtained that the rates of osmotic exchanges induced by mannitol solutions, and presumably also the equilibrium response sought in (a), are governed by the rate of diffusional exchange of mannitol with the free space rather than by the permeability of the tissue to water. Osmotic swelling of the tissue measured by immersing it in water after its turgor pressure had been reduced by evaporation, was at least two to four times more rapid than when mannitol was involved. The permeability to water estimated by the evaporation-immersion method indicated that rapidly elongating cylinders have water potentials between -0.8 and -2.5 atm, or between 10 and 25 per cent of their osmotic pressure.  相似文献   

7.
Induction of vascular relaxation by hydroperoxides   总被引:4,自引:0,他引:4  
Hydrogen peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, and 3-chloroperoxybenzoic acid (CPB) and 15-HPETE relaxed, in a concentration dependent manner rat aortic rings contracted with PGF2 alpha (1 X 10(-5)). Relaxation is not inhibited by either indomethacin (2 X 10(-5) M), a cyclo-oxygenase inhibitor or eicosatetraynoic acid (1 X 10(-5) M), a dual cyclo-oxygenase and lipoxygenase inhibitor. Rings with intact endothelium relaxed to a greater degree on exposure to CPB and 15-HPETE. Methylene blue, a soluble guanylate cyclase inhibitor (1 X 10(-5) M) blocked the relaxation elicited by the five peroxides, whereas both superoxide dismutase (scavenger of superoxide anion) and mannitol (scavenger of hydroxyl radical) have no effect. We conclude that relaxation of vascular smooth muscle is a general property of peroxides and that the endothelium may in some instances facilitate this effect.  相似文献   

8.
Concentrated Aqueous Protein Systems, Proton Relaxation Times, Slow Chemical Exchange In this paper we present proton spin-lattice (T1) and spin-spin (T2) relaxation times measured vs. concentration, temperature, pulse interval (tauCPMG) as well as 1H NMR spectral measurements in a wide range of concentrations of bovine serum albumin (BSA) solutions. The anomalous relaxation behaviour of the water protons, similar to that observed in mammalian lenses, was found in the two most concentrated solutions (44% and 46%). The functional dependence of the spin-spin relaxation time vs. tauCPMG pulse interval and the values of the motional activation parameters obtained from the temperature dependencies of spin-lattice relaxation times suggest that the water molecule mobility is reduced in these systems. The slow exchange process on the T2 time scale is proposed to explain the obtained data. The proton spectral measurements support the hypothesis of a slow exchange mechanism in the highest concentrated solutions. From the analysis of the shape of the proton spectra the mean exchange times between bound and bulk water proton groups (tauex) have been estimated for the range of the highest concentrations (30%-46%). The obtained values are of the order of milliseconds assuring that the slow exchange condition is fulfilled in the most concentrated samples.  相似文献   

9.
Using potato (Solanum tuberosum L.) tuber discs incubated in a range of mannitol concentrations it has been demonstrated that both sucrose uptake and the conversion of sucrose to starch are sensitive to the osmotic environment of the storage cells. Starch synthesis was optimised at 300 mM but declined sharply at both lower and higher osmotic concentrations. The decline in starch synthesis on either side of optimum was not proportional to the change in mannitol concentration, indicating different inhibitory mechanisms under low and high osmotica. The fraction of the total sucrose converted to starch i.e. the partitioning between sucrose and starch, was also influenced by osmotic environment. The amount of soluble material taken up by the storage cells, but not converted to starch, was maintained under mannitol concentrations (300–400 mM) which inhibited starch synthesis, indicating that sucrose uptake continued during declining starch synthesis. At mannitol concentrations above 400 mM, sucrose uptake was greatly enhanced but no significant change in starch synthesis occurred.  相似文献   

10.
We explored the use of the reversible cross-linking reagent dimethyl 3,3-dithiobispropionimidate (DTBP) in combination with CO treatment as an approach to stabilizing erythrocyte structure and function. Erythrocytes were cross-linked with different concentrations of DTBP for different times. DTBP increased erythrocyte osmotic stability, blocked lysolecithin-induced echinocytosis, and decreased erythrocyte deformability in a concentration- and time-dependent manner. Reversal of the cross-linking with the reducing agent dithioerythritol (DTE) restored osmotic fragility and response to lysolecithin as well as deformability. Complete reversal, however, is a function of the DTBP concentration and the time of cross-linking. The effects of cross-linking with 5 mM DTBP for 1 h were completely reversible after treatment with 10 mM DTE for 20 min. Longer incubation times or higher concentrations of DTBP resulted in partial reversal by DTE of the effects produced by DTBP. Cross-linking and reversal only slightly reduced the ATP content. The hemoglobin contained in the cross-linked and reversed cells could still undergo reversible oxygenation and deoxygenation. Erythrocytes were pretreated with CO, cross-linked with 5 mM DTBP for 1 or 3 h, loaded with a solution containing 500 mM glucose for 24 h, and freeze-dried in a medium containing 15% (w/v) albumin. Rehydration followed in distilled water. Complete recovery, measured as the percentage of free hemoglobin, was achieved for cells cross-linked with 5 mM DTBP for 3 h and freeze-dried to a final water content of 10-15%. Non-cross-linked cells lysed 100% on rehydration in distilled water. No methemoglobin (MetHb) formation as a result of freeze-drying was detected in CO-treated cells. In non-CO-treated cells 20% of the Hb was converted to MetHb.  相似文献   

11.
The radiation isodose survival curve of attached Chinese hamster (V79) cells, subjected to a wide concentration range of salt or sucrose solutions, is characterized by two maxima separated by a minimum. Cells are radioprotected at the maxima (high and low hypertonic salt concentrations) while they are radiosensitized at the minimum (intermediate hypertonic salt concentrations). Both cations and anions can alter the cellular radiosensitivity above and beyond the (osmotic) effect observed for cells treated with sucrose solutions. However, the basic curve shape, except in the case of sulphate salts, remains the same. When these experiments are repeated with single cells in suspension, the isodose survival curve is quite different in that high salt concentrations (greater than 0.9 M) do not protect cells in suspension unlike the case with attached cells. The curve shape is also altered in that the second maximum is absent with many salt solutions. If multicellular spheroids are used for these experiments, the data resemble those for single cell suspensions rather than for attached cells. The radiation survival data for cells in suspension in salt solutions correlate with water proton spin-lattice relaxation time (T1) and, in hypo- and iso-tonic solutions, with cell volume.  相似文献   

12.
S M Feltch  J E Stuehr 《Biochemistry》1979,18(10):2000-2004
Temperature-jump relaxation studies in deoxy-ribonuclease I were carried out at 10 degrees C and [I] = 0.1 M. The single observed relaxation time, which varied from 10(-4) to 10(-5) s, was characterized as a function of enzyme concentration, pH, and indicator concentration. The concentration and pH dependences of the relaxation time are in quantitative agreement with a mechanism involving an isomerization of the enzyme coupled to a rapid proton ionization process. The best fit forward and reverse isomerization rate constants are 6.5 X 10(3) and 7.2 X 10(4) s-1, respectively; the apparent pK is 5.7. The addition of urea brought about reductions in both the amplitude of the relaxation effect and the enzyme activity.  相似文献   

13.
Experiments with youngHordeum sativum andHelianthus annus plants showed that in the excretion of mannitol in the guttation liquid observed byGroenewegen andMills (1960) after uptake by the root system of plants, the osmotic concentration of mannitol in the nutrient medium and the temperature are significant. The beginning of mannitol excretion during guttation is accelerated considerably by the increase of the osmotic concentration of mannitol in the nutrient medium and the rising temperature. The osmotic concentration of mannitol is also important for the duration of mannitol excretion in the guttation liquid after transfer of the plants into a nutrient medium without mannitol. In the presence of mannitol in the nutrient medium water uptake by the root system and growth are inhibited and the tissues of the organs above ground and of the root system are dehydrated. The inhibitory effect of mannitol on the water uptake by the root system is immediate.  相似文献   

14.
The nuclear spin-spin and spin-lattice relaxation times of the C epsilon 1-proton of His-35 and the C delta 2-proton of His-46 of reduced Pseudomonas aeruginosa azurin have been determined at 298 and 320 K and at pH 4.5 and 9.0 at various concentrations of total azurin and in the presence of varying amounts of oxidized azurin. The relaxation times appear strongly influenced by the electron self-exchange reaction between oxidized and reduced protein. The T1 data of the His-35 proton have been analyzed according to the "fast-exchange limit," while the "slow-exchange limit" appears to obtain for the T2 data of the His-46 proton. Analysis of the proton relaxation data yields values of the electron self-exchange rate constants of (9.6 +/- 0.7) X 10(5) M-1 S-1 (pH 4.5) and (7.0 +/- 1.3) X 10(5) M-1 S-1 (pH 9.0) at 298 K. The dipolar correlation time amounts to 1-2.5 ns in the temperature range of 298-320 K. A Fermi-contact interaction of about 100 mG for the C delta 2-proton of His-46 is compatible with the experimental observations. The pH-induced conformational changes lead to variations on the order of about 1 A in the distance from the copper to the His-35 protons. The data implicate the "hydrophobic patch" around His-117 as the site of electron transfer in the self-exchange reaction of the azurin.  相似文献   

15.
镉胁迫对金银花生理生态特征的影响   总被引:33,自引:0,他引:33  
采用水培试验方法,研究了不同浓度镉(Cd)(0、5、10、25和50 mg·L-1) 胁迫条件下藤本植物金银花的生长和生理特性.结果表明: 与对照相比,Cd胁迫对金银花的生长未造成明显影响,在5~50 mg·L-1 Cd处理下,其生物量无明显差异(P>0.05),在低浓度Cd(5 mg·L-1)处理下生物量有所增加,叶、根生物量和总生物量分别增加了2.88%、2.33%和1.25%,说明金银花对Cd具有较强的抗性.在低浓度Cd胁迫下,植物各器官的含水量和可溶性蛋白含量均有所降低,而根系和叶片的丙二醛含量分别增加51.90%和23.07%,叶绿素和类胡萝卜素含量则增加15.87%和24.89%,超氧化物歧化酶活性也显著增强.随着Cd浓度的增高,金银花体内的叶绿素和类胡萝卜素含量,以及超氧化物歧化酶活性均有所降低.  相似文献   

16.
Plasmolytic studies utilizing a graded series of mannitol solutions (0.1–1.4 M in 0.1 M increments) were conducted on adventitious roots of Zea mays to determine solute concentrations of cell types at various locations in the root. Results indicated that mature sieve-tube members had the highest solute concentration as determined by their C50 (the estimated mannitol concentration plasmolyzing an average of 50% of a given cell type) of any cell type in the root. In tissue 12 cm from the tip, C50 values calculated for proto- and metaphloem sieve-tube members were 1.15 and 1.19 M, respectively, while in tissue 0.5 cm from the root tip, values for the same cell types were 0.68 and 0.46 M, respectively. The C50 values for sieve elements in tissue 5 cm from the tip were intermediate (1.08 and 1.11 M). Although the companion cells generally plasmolyzed at nearly the same concentrations of mannitol as the sieve elements, their C50 values were slightly lower than adjacent mature sieve elements. The lowest C50 (0.35 M) for any cell type examined was associated with meristematic cells in tissue 0.1 cm from the root tip. Taken collectively, the results indicate that positive concentration gradients exist between mature sieve tubes and meristematic cells of the root apex of maize.  相似文献   

17.
We report the magnetic field dependence of 1/T1 of solvent water protons and deuterons (nuclear magnetic relaxation dispersion, or NMRD, profiles) for solutions of steer lens beta L-crystallin. Such data allow the study of intermolecular protein interactions over a wide concentration range, here 1-34% vol/vol, by providing a measure of the rotational relaxation time of solute macromolecules. We conclude that, for approximately less than 5% protein, the solute particles are noncompact, with a rotationally averaged volume approximately three times that of a compact 60-kD sphere. (Earlier results for alpha-crystallin, approximately 1,000 kD, from optical and osmotic measurements (Vérétout and Tardieu, 1989. J. Mol. Biol. 205:713-728), show a similar, approximately twofold, effect). At intermediate concentrations, to approximately 20% protein, there is evidence for limited association or oligomerization, as found for the structurally related gamma II-crystallin (Koenig et al. 1990. Biophys. J. 57:461-469), to a limiting size about two-thirds that of alpha-crystallin. The difference in NMRD behavior of the three classes of crystallins is consonant with their differing osmotic properties (Vérétout and Tardieu. J. Mol. Biol. 1989, 205:713-728; Kenworthy, McIntosh, and Magid. Biophys. J. 1992. 61:A477; Tardieu et al. 1992. Eur. Biophys. J. 21:1-12). We indicate how the unusual structures and interactions of these three classes of proteins can be combined to optimize transparency and minimize colloid osmotic difficulties in eye lens.  相似文献   

18.
周玲  王乃江  张丽楠 《西北植物学报》2012,32(11):2293-2298
在种子发芽箱中,以清水为对照,用5%、10%、15%、20%、25%、30%和35%共7个浓度聚乙二醇(PEG-6000)溶液浇灌栽培基质,观察文冠果种子的萌发和幼苗生长情况,以及幼苗叶片脯氨酸、丙二醛的含量和细胞膜相对透性的变化,探讨文冠果种子萌发对土壤水分的要求及其幼苗忍耐干旱的能力。结果显示:(1)在PEG浓度5%~35%范围内,文冠果种子发芽率、成苗率、幼苗根长和细胞膜透性均随着胁迫强度的增加呈明显的下降趋势;细胞膜透性随着胁迫强度的增加先升高后降低,但脯氨酸、丙二醛含量和幼苗根数量则呈现逐渐上升趋势。(2)5%的PEG浓度能够促进文冠果种子萌发,提高成苗率和根数量,降低幼苗死亡率;5%~10%的PEG能够明显促进苗高生长,但对根长影响不大;当PEG浓度高于15%后,种子萌发受到抑制,成苗率明显降低。(3)当PEG浓度高于25%时幼苗死亡率急剧上升,幼苗脯氨酸含量、丙二醛含量和细胞膜透性显著增加,细胞膜结构受到严重伤害。研究表明,低浓度PEG处理有利于文冠果种子萌发和幼苗生长,但过高浓度却对文冠果种子萌发和幼苗生长具有一定的抑制作用;文冠果种子萌发及其幼苗可忍受5%~25%的PEG渗透胁迫,即文冠果种子萌发和幼苗生长可忍受土壤水势为-7.94~-11.05MPa的干旱胁迫。  相似文献   

19.
徐丽丽  王菲  胡春辉  郭立忠  于浩 《菌物学报》2020,39(7):1356-1367
本研究以卵孢小奥德蘑液体培养菌丝作为实验材料,利用单因子变量法探索研究了菌丝培养时间、酶浓度、酶解时间、酶解温度、稳渗剂类型对卵孢小奥德蘑原生质体制备的影响,并对原生质体再生培养基进行选择和优化。通过荧光染色,利用激光共聚焦显微镜和流式细胞仪对原生质体的制备过程、得率和活力进行研究。结果表明,将卵孢小奥德蘑菌丝在液体培养基中培养5d收集菌丝体,以甘露醇作为渗透压稳定剂,在溶壁酶浓度2%、30℃条件下酶解5h,获得的原生质体得率最高,达2.0×10 7个/mL;通过流式细胞仪分析,约57.69%的原生质体细胞为活细胞;在RM培养基中再生效果最好,再生率为(0.103±0.025)%。研究结果可以为卵孢小奥德蘑育种与食用菌原生质体制备再生提供研究基础。  相似文献   

20.
Endogenous contents of indolyl-3-acetic acid (IAA) and abscisic acid (ABA) were quantified in excised roots of Catasetum fimbriatum (Orchidaceae) cultured in vitro on solidified Vacin and Went medium with 1, 2, 4, 6, 8 and 10 % sucrose, as well as 2 % sucrose plus mannitol. Maximum root growth was observed in media with 4 % sucrose and 2 % sucrose plus 2.2 % mannitol, suggesting that a moderate water or osmotic stress promotes orchid root growth. Contents of both ABA and IAA increased in parallel to increasing sucrose concentration and a correlation between root elongation and the ABA/IAA ratio was observed. Incubating isolated C. fimbriatum roots with radiolabeled tryptophan, we showed an accumulation of IAA and its conjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号