首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na/Ca exchange in the intact cardiac cell   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

2.
Petr Paucek  Martin Jab?rek 《BBA》2004,1659(1):83-91
The Na+/Ca2+ antiporter was purified from beef heart mitochondria and reconstituted into liposomes containing fluorescent probes selective for Na+ or Ca2+. Na+/Ca2+ exchange was strongly inhibited at alkaline pH, a property that is relevant to rapid Ca2+ oscillations in mitochondria. The effect of pH was mediated entirely via an effect on the Km for Ca2+. When present on the same side as Ca2+, K+ activated exchange by lowering the Km for Ca2+ from 2  to 0.9 μM. The Km for Na+ was 8 mM. In the absence of Ca2+, the exchanger catalyzed high rates of Na+/Li+ and Na+/K+ exchange. Diltiazem and tetraphenylphosphonium cation inhibited both Na+/Ca2+ and Na+/K+ exchange with IC50 values of 10 and 0.6 μM, respectively. The Vmax for Na+/Ca2+ exchange was increased about fourfold by bovine serum albumin, an effect that may reflect unmasking of an autoregulatory domain in the carrier protein.  相似文献   

3.
4.
5.
The cardiac sarcolemmal Na-Ca exchanger (NCX) is allosterically regulated by [Ca](i) such that when [Ca](i) is low, NCX current (I(NCX)) deactivates. In this study, we used membrane potential (E(m)) and I(NCX) to control Ca entry into and Ca efflux from intact cardiac myocytes to investigate whether this allosteric regulation (Ca activation) occurs with [Ca](i) in the physiological range. In the absence of Ca activation, the electrochemical effect of increasing [Ca](i) would be to increase inward I(NCX) (Ca efflux) and to decrease outward I(NCX). On the other hand, Ca activation would increase I(NCX) in both directions. Thus, we attributed [Ca](i)-dependent increases in outward I(NCX) to allosteric regulation. Ca activation of I(NCX) was observed in ferret myocytes but not in wild-type mouse myocytes, suggesting that Ca regulation of NCX may be species dependent. We also studied transgenic mouse myocytes overexpressing either normal canine NCX or this same canine NCX lacking Ca regulation (Delta680-685). Animals with the normal canine NCX transgene showed Ca activation, whereas animals with the mutant transgene did not, confirming the role of this region in the process. In native ferret cells and in mice with expressed canine NCX, allosteric regulation by Ca occurs under physiological conditions (K(mCaAct) = 125 +/- 16 nM SEM approximately resting [Ca](i)). This, along with the observation that no delay was observed between measured [Ca](i) and activation of I(NCX) under our conditions, suggests that beat to beat changes in NCX function can occur in vivo. These changes in the I(NCX) activation state may influence SR Ca load and resting [Ca](i), helping to fine tune Ca influx and efflux from cells under both normal and pathophysiological conditions. Our failure to observe Ca activation in mouse myocytes may be due to either the extent of Ca regulation or to a difference in K(mCaAct) from other species. Model predictions for Ca activation, on which our estimates of K(mCaAct) are based, confirm that Ca activation strongly influences outward I(NCX), explaining why it increases rather than declines with increasing [Ca](i).  相似文献   

6.
Coupled Na+ exit/Ca2+ entry (Na/Ca exchange operating in the Ca2+ influx mode) was studied in giant barnacle muscle cells by measuring 22Na+ efflux and 45Ca2+ influx in internally perfused, ATP-fueled cells in which the Na+ pump was poisoned by 0.1 mM ouabain. Internal free Ca2+, [Ca2+]i, was controlled with a Ca-EGTA buffering system containing 8 mM EGTA and varying amounts of Ca2+. Ca2+ sequestration in internal stores was inhibited with caffeine and a mitochondrial uncoupler (FCCP). To maximize conditions for Ca2+ influx mode Na/Ca exchange, and to eliminate tracer Na/Na exchange, all of the external Na+ in the standard Na+ sea water (NaSW) was replaced by Tris or Li+ (Tris-SW or LiSW, respectively). In both Na-free solutions an external Ca2+ (Cao)-dependent Na+ efflux was observed when [Ca2+]i was increased above 10(-8) M; this efflux was half-maximally activated by [Ca2+]i = 0.3 microM (LiSW) to 0.7 microM (Tris-SW). The Cao-dependent Na+ efflux was half-maximally activated by [Ca2+]o = 2.0 mM in LiSW and 7.2 mM in Tris-SW; at saturating [Ca2+]o, [Ca2+]i, and [Na+]i the maximal (calculated) Cao-dependent Na+ efflux was approximately 75 pmol#cm2.s. This efflux was inhibited by external Na+ and La3+ with IC50's of approximately 125 and 0.4 mM, respectively. A Nai-dependent Ca2+ influx was also observed in Tris-SW. This Ca2+ influx also required [Ca2+]i greater than 10(-8) M. Internal Ca2+ activated a Nai-independent Ca2+ influx from LiSW (tracer Ca/Ca exchange), but in Tris-SW virtually all of the Cai-activated Ca2+ influx was Nai-dependent (Na/Ca exchange). Half-maximal activation was observed with [Na+]i = 30 mM. The fact that internal Ca2+ activates both a Cao-dependent Na+ efflux and a Nai-dependent Ca2+ influx in Tris-SW implies that these two fluxes are coupled; the activating (intracellular) Ca2+ does not appear to be transported by the exchanger. The maximal (calculated) Nai-dependent Ca2+ influx was -25 pmol/cm2.s. At various [Na+]i between 6 and 106 mM, the ratio of the Cao-dependent Na+ efflux to the Nai-dependent Ca2+ influx was 2.8-3.2:1 (mean = 3.1:1); this directly demonstrates that the stoichiometry (coupling ratio) of the Na/Ca exchange is 3:1. These observations on the coupling ratio and kinetics of the Na/Ca exchanger imply that in resting cells the exchanger turns over at a low rate because of the low [Ca2+]i; much of the Ca2+ extrusion at rest (approximately 1 pmol/cm2.s) is thus mediated by an ATP-driven Ca2+ pump.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The aging induces free radicals leading to DNA damage (8-oxo-2'-deoxyguanosine, 8-oxo2dG). DNA injury causes increased expression of p53 gene and p53 protein. Levels of 8-oxo2dG (HPLC), p53 mRNA (PCR) and p53 protein (Western blot) were estimated in gray matter (GM), white matter (WM), cerebellum (C) and medulla oblongata (MO) of control, 12- and 24-month-old rats. The level of 8-oxo2dG increased with age in C ( P  < 0.05 in 12-month-old and P  < 0.01 in 24-month-old rats) and MO. In 12-month-old animals the level of 8-oxo2dG in GM and WM was higher than in controls. In 12-month-old animals p53 gene expression decreased while amounts of p53 protein increased, depending on the oxidative DNA damage. In 24-month-old rats, expression of p53 increased in all structures ( P  ≤ 0.05) while p53 protein showed decreased levels in most of structures of central nervous system (WM, C, MO). Aging leads to increased 8-oxo2dG and augmented p53 gene expression, accompanied by a lowered expression of p53 protein.  相似文献   

8.
9.
10.
We have studied the interaction of physiological ligands other than Nai and Cai with the Ca pump and Na/Ca exchange in internally dialyzed squid axons. The results show the following. (a) Internal Mg2+ is an inhibitor of the Nao-dependent Ca efflux. At physiological Mg2+i (4 mM), the inhibition amounts to approximately 50%. The inhibition is partial and noncompetitive with Cai, and is not affected by Nai or ATP. The ATP-dependent uncoupled efflux is unaffected by Mgi up to 20 mM. Both components of the Ca efflux require Mg2+i for their activation by ATP. (b) At constant membrane potential, Ki is an important cofactor for the uncoupled Ca efflux. (c) Orthophosphate (Pi) activates the Nao-dependent Ca efflux without affecting the uncoupled component. Activation by Pi occurs only in the presence of Mg-ATP or hydrolyzable ATP analogues. Pi under physiological conditions has no effect on the uncoupled component; nevertheless, at alkaline pH, it inhibits the Ca pump, probably by product inhibition. (d) ADP is a potent inhibitor of the uncoupled Ca efflux. The Nao-dependent component is inhibited by ADP only at much higher ADP concentrations. These results indicate that (a) depending on the concentration of Ca2+i, Na+i Mg2+i, and Pi, the Na/Ca carrier can operate under a low- or high-rate regime; (b) the interactions of Mg2+i, Pi, Na+i, and ATP with the carrier are not interdependent; (c) the effect of Pi on the carrier-mediated Ca efflux resembles the stimulation of the Nao-dependent Ca efflux by internal vanadate; (d) the ligand effects on the uncoupled Ca efflux are of the type seen in the Ca pump in red cells and the sarcoplasmic reticulum.  相似文献   

11.
Formamide-induced detubulation of rat ventricular myocytes was used to investigate the functional distribution of the Na/Ca exchanger (NCX) and Na/K-ATPase between the t-tubules and external sarcolemma. Detubulation resulted in a 32% decrease in cell capacitance, whereas cell volume was unchanged. Thus, the surface-to-volume ratio was used to assess the success of detubulation. NCX current (I(NCX)) and Na/K pump current (I(pump)) were recorded using whole-cell patch clamp, as Cd-sensitive and K-activated currents, respectively. Both inward and outward I(NCX) density was significantly reduced by approximately 40% in detubulated cells. I(NCX) density at 0 mV decreased from 0.19 +/- 0.03 to 0.10 +/- 0.03 pA/pF upon detubulation. I(pump) density was also lower in detubulated myocytes over the range of voltages (-50 to +100 mV) and internal [Na] ([Na](i)) investigated (7-22 mM). At [Na](i) = 10 mM and -20 mV, I(pump) density was reduced by 39% in detubulated myocytes (0.28 +/- 0.02 vs. 0.17 +/- 0.03 pA/pF), but the apparent K(m) for [Na](i) was unchanged (16.9 +/- 0.4 vs. 17.0 +/- 0.3 mM). These results indicate that although thet-tubules represent only approximately 32% of the total sarcolemma, they contribute approximately 60% to the total I(NCX) and I(pump). Thus, the functional density of NCX and Na/K pump in the t-tubules is 3-3.5-fold higher than in the external sarcolemma.  相似文献   

12.
A possible Na/Ca exchange in the follicle cells of Xenopus oocyte   总被引:1,自引:0,他引:1  
In manually dissected Xenopus oocytes, we found that the replacement of external sodium by Tris, choline, or lithium induced a large membrane depolarization and, in voltage clamp, a large inward current. This current appears to be due to activation of a calcium-dependent chloride conductance since it is reversed near ECl, increased by the removal of external chloride, and can be abolished by an injection of BAPTA or by the removal of external Ca2+. Using the Ca-dependent Cl current as a monitor of Ca concentration at the inner surface of the oocyte membrane, we are led to propose that the removal of external Na+ induces an increase in internal Ca2+ via the activation of a Na/Ca exchanger operating in the reverse mode. This interpretation is supported by the finding that the chloride current is diminished in either 3',4'-dichlorobenzamyl (DCB) or high external [Mg2+]o, both of which are known to block the Na/Ca exchanger, whereas it is increased when Li+, rather than Tris or choline, is used as the substitute for Na. The effect of zero [Na+]o was not obtained in oocytes from which follicular cells were removed by enzymatic treatment. This observation led us to test the possibility that the Na/Ca exchanger was present in the follicle cells and not in the oocyte membrane, assuming that entering Ca2+ could pass into the oocyte through gap junctions. Octanol, which blocks gap junctions, or a high [Ca2+]o both considerably reduced the inward current. While octanol probably blocked the gap junctions directly, we propose that the block by high [Ca2+] was due to an excessive rise of [Ca2+]i in the follicular cells. These results, taken together, indirectly suggest the presence of a Na/Ca exchanger in the follicular cells. These results, taken together, indirectly suggest the presence of a Na/Ca exchanger in the follicle cells of Xenopus oocyte which could contribute to the regulation of the internal Ca concentration of the oocyte before fertilization.  相似文献   

13.
Electrical and mechanical responses of frog atrial trabeculae were studied simultaneously using the double-sucrose gap method. Action potentials and twitch tension could be successively generated in fibers in which the slow inward calcium channel current was not observed. As a rule, this could be obtained in the course of a long experiment (3 to 4 hours). Peak tension was shown to increase monotonically with membrane potential in these preparations. In preparations with the slow inward current the total peak tension could be separated into two components. The first component (tonic) monotonically increased with the membrane potential and was probably related to Na/Ca exchange (Horackova 1984). The potential dependency of the second (phasic) component correlated with that of the slow inward calcium current. Only the tonic but not the phasic component could be observed in preparations without the presence of the slow inward calcium current. The tonic component prevailed when both the slow inward current and phasic tension were greatly reduced by nifedipine. Long experiments, long depolarizing clamp pulses, a metabolic inhibitor 2,4-dinitrophenol, inhibitors of Na/K pump ouabain and AR-L57, toxins promoting intracellular sodium accumulation (aconitine, scorpion toxin) were all shown to increase the tonic tension, but not the slow inward current; they induced a transition from biphasic tension-voltage curve into a monotonically increasing one. We concluded that these procedures and agents greatly stimulate Ca influx via Na/Ca exchange. These results show that Na/Ca exchange can function as a reserve system of Ca2+ used for contraction, thus supporting the heart function, especially under unfavourable metabolic conditions.  相似文献   

14.
Earlier we showed that the Na+/Ca2+ exchanger inhibitor, KB-R7943, potently blocks the odor-evoked activity of lobster olfactory receptor neurons. Here we extend that finding to recombinant mosquito olfactory receptors stably expressed in HEK cells. Using whole-cell and outside-out patch clamping and calcium imaging, we demonstrate that KB-R7943 blocks both the odorant-gated current and the odorant-evoked calcium signal from two different OR complexes from the malaria vector mosquito, Anopheles gambiae, AgOr48 + AgOrco and AgOr65 + AgOrco. Both heteromeric and homomeric (Orco alone) OR complexes were susceptible to KB-R7943 blockade when activated by VUAA1, an agonist that targets the Orco channel subunit, suggesting the Orco subunit may be the target of the drug’s action. KB-R7943 represents a valuable tool to further investigate the functional properties of arthropod olfactory receptors and raises the interesting specter that activation of these ionotropic receptors is directly or indirectly linked to a Na+/Ca2+ exchanger, thereby providing a template for drug design potentially allowing improved control of insect pests and disease vectors.  相似文献   

15.
16.
Summary A Na/Ca exchange system has been described in the plasma membrane of several tissues and seems to regulate the concentration of calcium in cytosol. Replacement of extracellular Na by sucrose increases calcium uptake into and decreases calcium efflux from the cell, leading to an increase in cytosolic calcium. The effect of an increase in cytosolic calcium mediated by the Na/Ca exchange system on H+ and Na transport in the turtle and toad bladder was investigated by replacing serosal Na isosmotically by sucrose or choline. Replacement of serosal by sucrose was associated with a significant inhibition of H+ secretion or Na transport which was reversible by addition of NaCl. Replacement of mucosal Na by sucrose failed to alter H+ secretion. Removal of serosal Na was associated with a significant increase in45Ca uptake which could be blocked by pretreatment with lanthanum chloride. Pretreatment with lanthanum chloride blunted the inhibitory effect of replacement of serosal Na by sucrose on H+ and Na transport, thus suggesting that the increase in calcium uptake and the inhibition of transport are causally related. Under anaerobic conditions the rate of H+ or Na transport are linked to the rate of lactate production. The inhibition of Na or H+ transport by removal of serosal Na was accompanied by a proportional decrease in lactate production, thus suggesting that an increase in cytosolic calcium does not inhibit transport by uncoupling glycolysis from transport. Replacement of serosal Na by sucrose did not alter the force of the H+ or Na pump but led to an increase in resistance of the active pathway of H+ and Na transport. The inhibition of Na transport by replacement of serosal Na with sucrose could be reversed by addition of amphotericin B, an agent which increases luminal permeability to Na, thus suggesting that decreased Na entry across the apical membrane is the mechanism responsible for the inhibition of Na transport. The results of the present studies strongly suggest that an increase in cytosolic calcium through the serosal Na/Ca exchange system inhibits H+ and Na transport in the turtle and toad bladder probably by increasing the resistance of the luminal membrane.  相似文献   

17.
We have combined the patch-clamp technique with microfluorimetry of the cytoplasmic Ca2+ concentration ([Ca2+]i) to characterize Na/Ca exchange in mouse beta-cells and to determine its importance for [Ca2+]i buffering and shaping of glucose-induced electrical activity. The exchanger contributes to Ca2+ removal at [Ca2+]i above 1 microM, where it accounts for >35% of the total removal rate. At lower [Ca2+]i, thapsigargin-sensitive Ca2+-ATPases constitute a major (70% at 0.8 microM [Ca2+]i) mechanism for Ca2+ removal. The beta-cell Na/Ca exchanger is electrogenic and has a stoichiometry of three Na+ for one Ca2+. The current arising from its operation reverses at approximately -20 mV (current inward at more negative voltages), has a conductance of 53 pS/pF (14 microM [Ca2+]i), and is abolished by removal of external Na+ or by intracellularly applied XIP (exchange inhibitory peptide). Inhibition of the exchanger results in shortening (50%) of the bursts of action potentials of glucose-stimulated beta-cells in intact islets and a slight (5 mV) hyperpolarization. Mathematical simulations suggest that the stimulatory action of glucose on beta-cell electrical activity may be accounted for in part by glucose-induced reduction of the cytoplasmic Na+ concentration with resultant activation of the exchanger.  相似文献   

18.
A combination of the voltage-clamp and the intracellular dialysis techniques has been used to study the membrane potential dependence of the Nao-dependent Ca efflux in squid giant axons. In order to improve axon survival, experiments were carried out using internal solutions prepared with large impermeant organic anions and cations, which did not affect the operation of the Na/Ca exchange mechanism. In axons dialyzed with solutions prepared without internal Na, the Nao-dependent Ca efflux had a small sensitivity to membrane potential changes. For a 25-mV membrane displacement in the hyperpolarizing direction, the basal Ca efflux increased by only 7.4% (n = 13). When the dialysis medium contained Na (from 20 to 55 mM), the efflux increased 32.3% (n = 25) for the same membrane potential change. The K1/2 for this effect is approximately 5 mM Na, and saturation appears to occur at a Na concentration above 20 mM. Adding ATP to the dialysis medium increased the magnitude of the Nao-dependent Ca efflux without changing its voltage sensitivity. Wide changes in the intracellular ionized Ca concentration (from 0.1 to 230 microM) did not modify the voltage sensitivity of the exchange system. Elimination of the reversal of Na/Ca exchange (Nai-dependent Ca influx) by removing Cao did not modify the voltage sensitivity of the Nao-dependent Ca efflux. When the axon membrane potential was submitted to prolonged changes, the corresponding changes in the Ca efflux were not sustained, but declined exponentially to intermediate values. This effect may indicate a slow inactivation process in the Na/Ca exchange mechanism. Voltage-clamp pulse experiments revealed: (a) the absence of a fast inactivation process in the Na/Ca exchange, and (b) that the activation of the carrier for hyperpolarizing pulses occurs as rapidly as 1 ms.  相似文献   

19.
S Y Wang  A Peskoff    G A Langer 《Biophysical journal》1996,70(5):2266-2274
A recently completed model of Ca concentration and movements in the cardiac cell diadic cleft space predicts that removal or neutralization of inner sarcolemmal (SL) leaflet anionic Ca-binding sites at the sarcolemmal border of this space will greatly diminish Na/Ca exchange-mediated Ca efflux. The present study tests this prediction using the local anesthetic dibucaine as a probe. It is shown, in isolated SL, that dibucaine competitively displaces Ca specifically from anionic phospholipid headgroups. Dibucaine also displaces Ca from the SL when applied to intact cells. It does not affect the content or release of Ca from sarcoplasmic reticulum (SR) in these cells. This eliminates a primary effect on SR Ca as a contributing factor to dibucaine's effect on Na/Ca exchange-mediated Ca efflux. Measurement of this efflux from whole cells shows a highly significant reduction of 58% (p < 0.001) by 0.5 mM dibucaine. The inhibiting effect of dibucaine on Na/Ca exchange-mediated Ca efflux can be significantly reversed by augmentation of Ca release from SR by caffeine at the time of activation of Na/Ca exchange. This supports the contention that the dibucaine-SL interaction is a competitive one vis-a-vis Ca. The results are supportive of the model in which inner SL leaflet Ca-binding sites account for the delay of Ca diffusion from the diadic cleft, thereby prolonging the time for which [Ca] remains elevated in the cleft. The prolonged increased [Ca] significantly enhances the ability of Na/Ca exchange to remove Ca from the cell during the excitation-contraction cycle.  相似文献   

20.
Na-Ca exchange current was measured at various concentrations of internal Na [( Na]i) and Ca [( Ca]i) using intracellular perfusion technique and whole-cell voltage clamp in single cardiac ventricular cells of guinea pig. Internal Ca has an activating effect on Nai-Cao exchange beginning at approximately 10 nM and saturating at approximately 50 nM with a half maximum [Ca]i (Km[Ca]i) of 22 nM (Hill coefficient, 3.7). Measurement of Nai-Cao exchange current at various concentration of [Na]i revealed an apparent Km[Na]i of 20.7 +/- 6.9 mM (n = 14) with imax of 3.5 +/- 1.2 microA/microF. For [Ca]i transported by the exchange, a Km[Ca]i of 0.60 +/- 0.24 microM (n = 8) with an imax of 3.0 +/- 0.54 microA/microF was obtained by measuring Nao-Cai exchange current. These values are apparently different from the values for the external binding site which have been reported previously. Whether Na and Ca compete for the external binding site, and if so, how it affects the binding constants was then investigated. Outward Nai-Cao exchange current became larger by reducing [Na]o. The double reciprocal plot of the current magnitude and [Ca]o at different [Na]o revealed a competitive interaction between Na and Ca. In the absence of competitor [Na]o, an apparent Km[Ca]o of 0.14 mM was obtained. When comparing internal and external Km values, the external value is markedly larger than the internal one and thus we conclude that binding sites of the Na-Ca exchange molecule are at least apparently asymmetrical between the inside and outside of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号