首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early effects of gibberellic acid (GA3) (1–4 h treatment) on the ion ratios in a dwarf maize mutant (Zea mays L. d 1) showing normal growth after hormone treatment, have been investigated by electron microprobe analysis. GA3 exerts a different effect on the ion ratios in plastids, cytoplasm and vacuoles in short term experiments. The Cl content of chloroplasts and cytoplasm increases without a lag phase after GA3 treatment. The K content of plastids increases after a lag phase of 2 h, whereas in the cytoplasm an increase can be observed immediately after GA3 addition. The hormone has only little influence on the Ca content of the cell compartments investigated. Control experiments with water and the physiologically inactive GA3 methylester confirm the specifity of the short-term actions of GA3 on the ion ratios. The primary action of GA3 at the membrane level is discussed.  相似文献   

2.
The GA-signal transduction pathways downstream to the Gα protein in rice seedling root were investigated using in-gel kinase assay and in vitro protein phosphorylation techniques with a Gα protein defective mutant, d1. A 50-kDa protein kinase was detected downstream to Gα protein in the membrane fraction of rice seedling roots using an in-gel kinase assay with histone III-S as a substrate. The activity of a 50-kDa protein kinase increased in the wild-type rice by gibberellin (GA3) treatment, but did not change in the d1 mutant. This protein kinase activity was inhibited by the Ca2+ chelator ethyleneglycol-bis-(beta-aminoethylether)-N,N,N 1,N 1-tetraacetic acid (EGTA), protein kinase inhibitors, staurosporine and H7, and calmodulin antagonist, trifluoperazine, suggesting that the 50-kDa protein kinase is a putative plant Ca2+-dependent protein kinase (CDPK). The activity of the 50-kDa putative CDPK reached its highest level at 3 h after GA3 treatment and then gradually declined with time. In order to identify the endogenous substrate for 50-kDa putative CDPK, two-dimensional polyacrylamide gel electrophoresis followed by in vitro protein phosphorylation was carried out. The phosphorylation activity of an endogenous protein PP30, identified as an unknown protein having molecular weight 30 kDa and isoelectric point 5.8 was increased in the wild-type rice by GA3 treatment, compared with the d1 mutant. The addition of GA3 treated membrane fraction, which predominantly represent a 50-kDa putative CDPK further increased the phosphorylation of PP30. Almost similar to GA3 treatment, phosphorylation activity of PP30 was also increased by the treatment with cholera toxin in the wild-type rice but not in d1 mutant. These results suggest that the 50-kDa putative CDPK and an unknown protein, PP30 promoted by GA3 treatment are G-protein mediated in rice seedling roots.  相似文献   

3.
The effect of GA3 on coleoptile-and first leaf elongation of tall (rht1) and semi-dwarf (Rht1) nearly-isogenic genotypes, within each of 25 random F9 wheat families, was determined on seedlings grown in a growth room at 18 °C. Conspicuous and very significant inter-family variation in the response of the first leaf to GA3 application was found in both the rht1 and Rht1 genotypes. The magnitudes of the response of the different families within genotypes to GA3 were not related to the leaf length of their untreated seedlings. It is suggested that, under given environmental conditions, background genotypic effects, inducing inter-family variation in responsiveness to GA3, regulate the elongation growth up to the limits set by the Rht alleles.  相似文献   

4.
The endogenous gibberellins (GAs) from shoots of the GA-insensitive mutant,gai, ofArabidopsis thaliana were analyzed and compared with the GAs from the Landsberg erecta (Ler) line. Twenty GAs were identified in Ler plants by full-scan gas chromatography-mass spectrometry (GC-MS) and Kovats retention indices (KRI's). These GAs are members of the early-13-hydroxylation pathway (GA53, GA44, GA19, GA17, GA20, GA1, GA29, and GA8), the non-3,13-hydroxylation pathway (GA12, GA15, GA24, GA25, GA9, and GA51), and the early-3-hydroxylation pathway (GA37, GA27, GA36, GA13, GA4, and GA34). The same GAs, except GA53, GA44, GA37, and GA29 were detected in thegai mutant by the same methods. In addition, extracts fromgai plants contained GA41 and GA71. Both lines also contained several unknown GAs. In Ler plants these were mainly hydroxy-GA12 derivatives, whereas in thegai mutant hydroxy-GA24, hydroxy-GA25, and hydroxy-GA9 compounds were detected. Quantification of seven GAs by GC-selected ion monitoring (SIM), using internal standards, and comparisons of the ion intensities in the SIM chromatograms of the other thirteen GAs, demonstrated that thegai mutant had reduced levels of all C20-dicarboxylic acids (GA53, GA44, GA19, GA12, GA15, GA24, GA37, GA27, and GA36). In contrast,gai plants had increased levels of C20-tricarboxylic acid GAs (GA17, GA25, and GA41) and of all C19-GAs (GA20, GA1, GA8, GA9, GA51, GA4, GA34, and GA71) except GA29. The 3β-hydroxylated GAs, GA1 and GA4, and their respective 2β-hydroxylated derivatives, GA8 and GA34, were the most abundant GAs found in shoots of thegai mutant. Thus, thegai mutation inArabidopsis results in a phenotype that resembles GA-deficient mutants, is insensitive to both applied and endogenous GAs, and contains low levels of C20-dicarboxylic acid GAs and high levels of C19-GAs. This indicates that theGAI gene controls a step beyond the synthesis of an active GA. Thegai mutant is presumably a GA-receptor mutant or a mutant with a block in the transduction pathway between the receptor and stem elongation. We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA for [13C]GA8, and Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility (grant No. DRR00480), for advice with mass spectrometry. This work was supported by a fellowship from the Spanish Ministry of Agriculture (I.N.I.A.) to M.T., by the U.S. Department of Energy under Contract DE-ACO2-76ERO-1338, and by U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

5.
D. Neumann  A. G. S. Jánossy 《Planta》1977,134(2):151-153
The effect of gibberellic acid (GA3) on ion ratios in a dwarf maize mutant (Zea mays L. d1) exhibiting normal growth after hormone treatment has been investigated by electron microprobe analysis. Gibberellic-acid treatment increased the ion content in chloroplasts and vacuoles whereas no change of the ion content was found in the cytoplasm. The relation of these observations to the action of the hormone is discussed.Abbreviation GA3 Gibberellic acid  相似文献   

6.
Fei H  Zhang R  Pharis RP  Sawhney VK 《Planta》2004,219(4):649-660
Earlier, we reported that mutation in the Male Sterile33 (MS33) locus in Arabidopsis thaliana causes inhibition of stamen filament growth and a defect in the maturation of pollen grains [Fei and Sawhney (1999) Physiol Plant 105:165–170; Fei and Sawhney (2001) Can J Bot 79:118–129]. Here we report that the ms33 mutant has other pleiotropic effects, including aberrant growth of all floral organs and a delay in seed germination and in flowering time. These defects could be partially or completely restored by low temperature or by exogenous gibberellin A4 (GA4), which in all cases was more effective than GA3 Analysis of endogenous GAs showed that in wild type (WT) mature flowers GA4 was the major GA, and that relative to WT the ms33 flowers had low levels of the growth active GAs, GA1 and GA4, and very reduced levels of GA9, GA24 and GA15, precursors of GA4. This suggests that mutation in the MS33 gene may suppress the GA biosynthetic pathway that leads to GA4 via GA9 and the early 13-H C20 GAs. WT flowers also possessed a much higher level of indole-3-acetic acid (IAA), and a lower level of abscisic acid (ABA), relative to ms33 flowers. Low temperature induced partial restoration of male fertility in the ms33 flowers and this was associated with partial increase in GA4. In contrast, in WT flowers GA1 and GA4 were very much reduced by low temperature. Low temperature also had little effect on IAA or ABA levels of ms33 flowers, but did reduce (>2-fold) IAA levels in WT flowers. The double mutants, ms33 aba1-1 (an ABA-deficient mutant), and ms33 spy-3 (a GA signal transduction mutant) had flower phenotypes similar to ms33. Together, the data suggest that the developmental defects in the ms33 mutant are unrelated to ABA levels, but may be causally associated with reduced levels of IAA, GA1 and GA4, compared to WT flowers.Abbreviations ABA Abscisic acid - GA Gibberellin - GC-MS-SIM Gas chromatography-mass spectrometry-selected ion monitoring - IAA Indole-3-acetic acid - ms33 Male sterile33 mutant - PP333 Paclobutrazol - WT Wild type  相似文献   

7.
The gib1 mutant of tomato (Lycopersicon esculentum Mill.) is deficient in endogenous gibberellins and exhibits phenotypes including extreme dwarfism, reduced germination, and abnormal flower development, which are reversed by the application of gibberellic acid (GA3). Previous work has demonstrated that, in stamens of the gib1 mutant, pollen mother-cell development arrests at the premeiotic G1 stage (Jacobsen and Olszewski 1991, Plant Physiol. 97, 409–414). Following GA3 treatment of developmentally arrested flowers, pollen mother-cell development resumes and is synchronous. The present study examines gibberellin-induced changes in the translatable mRNA populations of developmentally arrested stamens and of vegetative shoots of the gib1 mutant. Following rescue of developmentally arrested stamens by treatment with GA3, we consistently detected increases and decreases in the abundance of 14 and 20 in-vitro translation products, respectively. Some of these changes were first detected 8 h post treatment and therefore represent the first changes observed in stamens whose development has been rescued by GA3 treatment. In vegetative gib1 shoots, the abundance of 13 in-vitro translation products decreased within 6–24 h after GA3 treatment. However, no in-vitro translation products that increased in abundance after GA3 treatment were detected.  相似文献   

8.
Carol Moll  Russell L. Jones 《Planta》1981,152(5):442-449
The short-term kinetics of growth of the excised lettuce (Lactuca sativa L.) hypocotyl were characterized with respect to the effects of gibberellic acid (GA3), indole-3-acetic acid (IAA), KCl and pH. A Hall-device-based, miniaturized, linear displacement transducer was developed to measure the growth of 2-mm hypocotyl sections with 1-m resolution. Following treatment with GA3, a lag time of less than 10 min was typically followed by an increase in growth rate with two acceleration phases, reaching a final elevated rate within about 1 h. The kinetics of the response to GA1, a mixture of GA4 and GA7, and GA9 were similar to the response to GA3. There was no response to IAA treatment either in the presence or absence of GA3. KCl alone had no effect on the growth rate, but caused an increase in rate when added after GA3, with a lag time of usually less than 1 h. Responses to pH changes had lag times of a few minutes in all cases. A shift from H2O to pH 6 buffer inhibited growth, while a shift from H2O to pH 4 buffer resulted in a transient increase to a rate comparable to that induced by GA3. A shift from pH 6 to pH 5 caused an increase in growth rate, followed by a gradual decline to an H2O control rate after more than an hour. The responses to GA3 at pH 4 and pH 5 were similar to that found for addition of GA3 to water controls.Abbreviations GA gibberellin - GA3 gibberellic acid - GA1, GA4+7, GA9 gibberellins A1, A4+7, A9 - IAA indole-3-acetic acid  相似文献   

9.
Gibberellin A4 (GA4) was identified for the first time in the garden pea (Pisum sativum) L.), by gas chromatography-mass spectrometry. However, in wild-type shoots the level of GA4 was only about 6% of the level of GA1, and it is therefore unlikely that GA4 plays a major role per se in the control of pea stem elongation. In shoots of the le mutant, GA4 was not detected, while the level of GA9 was approximately twice that found in the wild-type. The le mutation also markedly reduced the elongation response to applied GA9. It appears, therefore, that in Pisum the le mutation blocks the 3-hydroxylation of GA9 to GA4, in addition to the 3-hydroxylation of GA20 to GA1. In contrast, the le mutation did not reduce the response to applied GA5, suggesting the step GA5 to GA3 is not catalysed by the enzyme controlled by the Le gene. The step GA5 to GA3 was confirmed in peas by metabolite analysis after treatment with deuterated GA5.  相似文献   

10.
A near isogenic line (NIL) of Brassica oleracea var. botrytis with resistant and susceptible lines C712 and C731, was used in this study. More than 100 differentially expressed cDNA fragments were obtained from black rot resistant cauliflower plants obtained using cDNA-amplified fragment length polymorphism (AFLP) after infection with the pathogen. Thirteen of these fragments were cloned and subjected to reverse Northern blot analysis using both infected and control cDNA pools. Two positive clones, M2 and M6, were isolated. Northern dot blot and Northern blot analyses showed that M2 was constitutively expressed, whereas M6 contained a gene that was differentially expressed during pathogen infection. Moreover, M6 cDNA fragment was also highly expressed 16–24 h after H2O2 treatment. Southern blots showed that M6 is a single copy gene in the cauliflower genome, and encodes a protein with 84 % homology to gene on Arabidopsis chromosome 1. The deduced M6 protein has 91 % positive homology with the Arabidopsis 2A6 protein, which regulates ethylene synthesis; 76 % homology with a 1-aminocyclopropane-1-carboxylate oxidase (ACO), the last enzyme in ethylene synthesis; and 70 % homology with an ethylene induced DNA binding factor. These results suggest that M6 gene fragment is a new H2O2 downstream defense related gene fragment and can be induced by Xanthomonas campestris pv. campestris and H2O2.  相似文献   

11.
The correlation between gibberellin (GA) metabolism and growth rate was investigated using two Sorghum bicolor inbred lines, Hegari and AT×623, and their heterotic F1 hybrid. Previous studies have demonstrated that this hybrid is taller and has substantially greater shoot dry weights and leaf areas than either parental inbred. [3H]GA20 was applied to the leaf whorl of seedlings and after 24 hours, plants were harvested and separated into roots, shoot cylinders containing the apical meristems, and leaf blades. Chromatographic analyses of metabolites indicated the conversions of [3H]GA20 to [3H]GA1,8 and 29. The conversion of [2H]GA20 to [2H]GA1 was demonstrated by gas chromatography-selected ion monitoring (GC-SIM). Putative glucosyl conjugates of all of the [3H]GAs were also produced and GA8 was identified by GC-SIM following enzymic cleavage of the putative [3H]GA8 glucosyl conjugate fraction. Comparing the genotypes, [3H]GA20 metabolism was more rapid in the shoot cylinders of the hybrid than in the shoot cylinders from inbreds. In the hybrid samples, there was a three-fold increase in the putative conjugate(s) of [3H]GA1 which was the principal metabolite, and increased production of [3H]GA8 and the putative conjugates of [3H]GA29 and [3H]GA8. Conversely, levels of the remaining precursor, [3H]GA20, and its putative conjugate(s) were reduced in the hybrid. The rate of GA20 metabolism was thus positively correlated with growth rate across these sorghum genotypes. This correlation supports a promotive role of GA in the regulation of shoot growth and in the expression of heterosis (hybrid vigor) in sorghum.  相似文献   

12.
The following seven gibberellins (GAs) have been identified by gas chromatography-mass spectrometry in shoots and leaves of the long-day plant Agrostemma githago: GA53, GA44, GA19, GA17, GA20, GA1, and 3-epi-GA1. The levels of these compounds were measured, using selected ion monitoring, during photoperiodic induction. The levels of GA44, GA19, GA17, and GA20 all increased to a peak at eight long days (LD), followed by a decline, while the levels of GA1 and 3-epi-GA1 did not reach a peak until 12 LD. The level of GA53 remained steady over the first 10–12 LD. Later in the LD treatment the levels of GA53, GA44, GA19, and GA17 increased again. The rate of metabolism of all GAs except GA53 was higher after 12–16 LD than under short days. These data thus provide indirect evidence for an effect of photoperiodic induction on GA turnover in A. githago.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - GC-MS gas chromatography-mass spectrometry - HPLC high performance liquid chromatography - LD long day(s) - MeTMS trimethylsilylether of the methyl ester - SD short day(s) - SIM selected ion monitoring  相似文献   

13.
The Arabidopsis ga1 mutant has very low levels of endogenous, active gibberellins and thus has an extreme dwarf phenotype; application of GA3 induces stem elongation and flower development. To test the hypothesis that GA action in this system involves changes in gene expression, we have cloned mRNAs whose abundance changes following GA application. A subtraction cloning scheme for the isolation of differentially regulated cDNAs was established, involving hybridization of single-stranded cDNA to biotinylated mRNA. cDNA populations enriched up to 150-fold in GA-regulated sequences were produced and cDNA libraries generated. Screening of these libraries has isolated two clones that identify mRNAs of ca. 1100 and 750 bases whose abundance is markedly increased 24 h after GA application. One of these clones encodes the vegetative form of the Arabidopsis tonoplast intrinsic protein (-TIP), a water channel protein, the expression of which has recently been shown to be correlated with regions of cell expansion. The second clone is expressed only in the inflorescence and encodes a proline- and glycine-rich protein that may be a cell wall component.  相似文献   

14.
In Arabidopsis, Arabidillo-1 and Arabidillo-2 have great sequence homology to Dictyostelium and metazoan β–catenin/Armadillo, which are important to animal and Dictyostelium development. Arabidillo-1 and Arabidillo-2 promote lateral root formation redundantly in Arabidopsis. Here, we showed that gibberellins (GA3) has a greater inhibitory effect on lateral root growth from the null mutant arabidillo-1 than from the wild type, suggesting that the mechanism for Arabidillo-1-regulated modulation of lateral root proliferation is associated with GA3-metabolic or signaling pathways. Our yeast two-hybrid analysis demonstrated that Arabidillo-1 interacts with ASK2 and ASK11, and that ASK2 can bind with the F-box domain of Arabidillo-1. Therefore, Arabidillo-1 is involved in the ubiquitin/26S proteasome-mediated proteolytic pathway. Based on these results, we conclude that Arabidillo-1 can degrade some positive regulator of the GA3 signaling pathway through selective protein degradation of ubiquitin/26S. Moreover, that process is believed to be the mechanism for Arabidillo-1 promotion of lateral root development in Arabidopsis.  相似文献   

15.
Gibberellins and phytochrome regulation of stem elongation in pea   总被引:6,自引:0,他引:6  
In garden pea (Pisum sativum L.) neither etiolation nor the phytochrome B (phyB)-response mutation lv substantially alters the level of the major active endogenous gibberellin, GA1 in the apical portion of young seedlings. The phyB-controlled responses to continuous red light and end-of-day far-red light are retained even in a GA-overproducing mutant (sln). Comparison of the effects of the lv mutation and GA1 application on seedling development shows important differences in rate of node development, cell extension and division, and leaf development. These results suggest that in pea the control of stem elongation by light in general and phyB in particular is not mediated by changes in GA1 content. Instead, the increased elongation of dark-grown and lv plants appears to result from increased responsiveness of the plant to its endogenous levels of GA1. Three GA1-deficient mutants, na, ls and le have been used to investigate these changes in responsiveness, and study of these and the double mutants na lv, ls lv and le lv has demonstrated that the relative magnitude of the change in responsiveness is dependent on GA1 level. The difference in pleiotropic effects of GA1 application and the lv mutation suggest that light and GA1 interact late in their respective transduction pathways. A model for the relationship between light, GA1 level and elongation in pea is presented and discussed.Abbreviations B blue light - cv cultivar - EOD-FR end-of-day far-red light - FR far-red light - GAn Gibberellin An - GC-SIM gas chromatography-selected ion monitoring - HIR high irradiance response - W white light We thank Prof. L.N. Mander for provision of deuterated internal standards, Peter Bobbi, Noel Davies, Omar Hasan, and Katherine McPherson for technical assistance, Stephen Swain for discussion and provision of GA-level data, and the Australian Research Council for financial assistance. J.L.W. is in receipt of an Australian Postgraduate Research scholarship.  相似文献   

16.
A dwarf mutant, M117, was isolated following sodium-azide mutagenesis of barley (Hordeum vulgare L. Himalaya). Treatment of the mutant with gibberellic acid (GA3) restored growth to levels of the tall parent, -Amylase production was examined in germinated grains of the dwarf mutant and in Himalaya plants treated with gibberellin (GA) biosynthesis inhibitors. The mutant showed reduced -amylase activity relative to the parent when grains were germinated on water, but activities were equivalent to the parent following germination on GA3 solution. Germination of normal or mutant grains in the presence of GA biosynthesis inhibitors led to reduced -amylase activity levels, but normal levels were restored if GA3 was included in the inhibitor solution. These data are consistent with a model in which -amylase production in the germinated grain is regulated by the supply of active GAs. Treatment of M117 with GA3 increased the length, fresh weight, dry weight, volume, cell number, and protein content of the first leaf. Proteins being synthesized in the first leaf were labelled with [35S]methionine and fractionated by two-dimensional electrophoresis. No reproducible qualitative or quantitative differences in protein profiles were detected in response to GA3 treatment. In contrast, first leaves from seedlings exposed to dehydration stress had profiles clearly distinguishable from those of control seedlings. Stem sections from dwarf plants maintained on 10 M GA3 in the presence of sucrose elongated significantly more than controls without GA3, but two-dimensional analysis of the [35S]methionine-labelled radioactive polypeptides again revealed no GA3-induced differences. It was concluded that enhanced elongation rates of leaves or stem segments were not associated with major changes in gene expression.Abbreviations 2D two-dimensional - GA gibberellin - GA3 gibberellic acid - PB paclobutrazol We would like to thank Dr Barbara Read (Agricultural Research Institute, Wagga Wagga, Australia) for assistance with growth of barley plants, and Tony Carter, Alison McInnes, and Mark Cmiel for skilled technical assistance.  相似文献   

17.
18.
Spray  Clive  Phinney  Bernard O.  Gaskin  Paul  Gilmour  Sarah J.  MacMillan  Jake 《Planta》1984,160(5):464-468
[13C, 3H]Gibberellin A20 (GA20) has been fed to seedlings of normal (tall) and dwarf-5 and dwarf-1 mutants of maize (Zea mays L.). The metabolites from these feeds were identified by combined gas chromatography-mass spectrometry. [13C, 3H]Gibberellin A20 was metabolized to [13C, 3H]GA29-catabolite and [13C, 3H]GA1 by the normal, and to [13C, 3H]GA29 and [13C, 3H]GA1 by the dwarf-5 mutant. In the dwarf-1 mutant, [13C, 3H]GA20 was metabolized to [13C, 3H]GA29 and [13C, 3H]GA29-catabolite; no evidence was found for the metabolism of [13C, 3H]GA20 to [13C, 3H]GA1. [13C, 3H]Gibberellin A8 was not found in any of the feeds. In all feeds no dilution of 13C in recovered [13C, 3H]GA20 was observed. Also in the dwarf-5 mutant, the [13C]label in the metabolites was apparently undiluted by endogenous [13C]GAs. However, dilution of the [13C]label in metabolites from [13C, 3H]GA20 was observed in normal and dwarf-1 seedlings. The results from the feeding studies provide evidence that the dwarf-1 mutation of maize blocks the conversion of GA20 to GA1.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - RP reverse phase  相似文献   

19.
F-box protein family is characterized by an F-box motif that has been shown to be critical for the controlled degradation of regulatory proteins. In plant, F-box protein plays an important role in signal pathways and involved in various signal transduction systems. A full-length cDNA encoding a putative F-box protein, designated as BnSLY1, was isolated from Brassica napus. The full-length cDNA of BnSLY1 was 809 bp containing a 438 bp open reading frame encoding a precursor protein of 138 amino acid residues. Comparative and bioinformatic analyses revealed that BnSLY1 showed high degree of homology with F-box proteins from other plant species and contained F-box, GGF and LSL conserved motifs. The expression of BnSLY1 under exogenous gibberellins acid-3 (GA3), abscisic acid (ABA) and GA biosynthetic inhibitor paclobutrazol (PAC) was analyzed using real-time PCR. The results showed that the expression of BnSLY1 was down-regulated after GA3 treatment and prominently induced by ABA in the low concentrations. Moreover, BnSLY1 was also induction in the high concentrations of PAC. These results suggest that the expression of BnSLY1 was regulated by the exogenous GA3, ABA and PAC and may be related to endogenous level of GA in B. napus.  相似文献   

20.
Plant growth-promoting endophytic fungi with gibberellin-producing ability were isolated from the roots of Carex kobomugi Ohwi, a common sand-dune plant, and bioassayed for plant growth-promotion. A new strain, Arthrinium phaeospermum KACC43901, promoted growth of waito-c rice and Atriplex gemelinii. Analysis of its culture filtrate showed the presence of bioactive GA1 (0.5 ng/ml), GA3 (8.8 ng/ml), GA4 (4.7 ng/ml) and GA7 (2.2 ng/ml) along with physiologically inactive GA5 (0.4 ng/ml), GA9 (0.6 ng/ml), GA12 (0.4 ng/ml), GA15 (0.4 ng/ml), GA19 (0.9 ng/ml) and GA24 (1.8 ng/ml). The fungal isolate was identified through sequence homology and phylogenetic analysis of 18S rDNA (internal transcribed region). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号