首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leucine rich repeat(LRR)domain,characterized by a repetitive sequence pattern rich in leucine residues,is a universal protein-protein interaction motif present in all life forms.LRR repeats interrupted by sequences of 30 70 residues(termed island domain,ID)have been found in some plant LRR receptor-like kinases(RLKs)and animal Toll-like receptors(TLR7-9).Recent studies provide insight into how a single ID is structurally integrated into an LRR protein.However,structural information on an LRR protein with two IDs is lacking.The receptor-like protein kinase 2(RPK2)is an LRR-RLK and has important roles in controlling plant growth and development by perception and transduction of hormone signal.Here we present the crystal structure of the extracellular LRR domain of RPK2(RPK2-LRR)containing two IDs from Arabidopsis.The structure reveals that both of the IDs are helical and located at the central region of the single RPK2-LRR solenoid.One of them binds to the inner surface of the solenoid,whereas the other one mainly interacts with the lateral side.Unexpectedly,a long loop immediately following the N-terminal capping domain of RPK2-LRR is presented toward and sandwiched between the two IDs,further stabilizing their embedding to the LRR solenoid.A potential ligand binding site formed by the two IDs and the solenoid is located at the C-terminal side of RPK2-LRR.The structural information of RPK2-LRR broadens our understanding toward the large family of LRR proteins and provides insight into RPK2-mediated signaling.  相似文献   

2.
Plant-pathogen interactions involve highly complex series of reactions in disease development. Plants are endowed with both, resistance and defence genes. The activation of defence genes after contact with avirulence gene products of pathogens depends on signals transduced by leucine-rich repeats (LRRs) contained in resistance genes. Additionally, LRRs play roles for various actions following ligand recognition. Polygalacturonase inhibiting proteins (PGIPs), the only plant LRR protein with known ligands, are pectinase inhibitors, bound by ionic interactions to the extracellular matrix (ECM) of plant cells. They have a high affinity for fungal endopolygalacturonases (endoPGs). PGIP genes are organised in families encoding proteins with similar physical characteristics but different specificities. They are induced by infection and stress related signals. The molecular basis of PG-PGIP interaction serves as a model to understand the evolution of plant LRR proteins in recognising non-self-molecules. Extensins form a different class of structural proteins with repetitive sequences. They are also regulated by wounding and pathogen infection. Linkage of extensins with LRR motifs is highly significant in defending host tissues against pathogen invasion. Overexpression of PGIPs or expression of several PGIPs in a plant tissue, and perhaps manipulation of extensin expression could be possible strategies for disease management.  相似文献   

3.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease. Much research effort has been directed towards the catalytic core region of LRRK2 composed of GTPase (ROC, Ras of complex proteins) and kinase domains and a connecting COR (C-terminus of ROC) domain. In contrast, the precise functions of the protein-protein interaction domains, such as the leucine-rich repeat (LRR) domain, are not known. In the present study, we modeled the LRRK2 LRR domain (LRR(LRRK2)) using a template assembly approach, revealing the presence of 14 LRRs. Next, we focused on the expression and purification of LRR(LRRK2) in Escherichia coli. Buffer optimization revealed that the protein requires the presence of a zwitterionic detergent, namely Empigen BB, during solubilization and the subsequent purification and characterization steps. This indicates that the detergent captures the hydrophobic surface patches of LRR(LRRK2) thereby suppressing its aggregation. Circular dichroism (CD) spectroscopy measured 18% α-helices and 21% β-sheets, consistent with predictions from the homology model. Size exclusion chromatography (SEC) and dynamic light scattering measurements showed the presence of a single species, with a Stokes radius corresponding to the model dimensions of a protein monomer. Furthermore, no obvious LRR(LRRK2) multimerization was detected via cross-linking studies. Finally, the LRR(LRRK2) clinical mutations did not influence LRR(LRRK2) secondary, tertiary or quaternary structure as determined via SEC and CD spectroscopy. We therefore conclude that these mutations are likely to affect putative LRR(LRRK2) inter- and intramolecular interactions.  相似文献   

4.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease. Much research effort has been directed towards the catalytic core region of LRRK2 composed of GTPase (ROC, Ras of complex proteins) and kinase domains and a connecting COR (C-terminus of ROC) domain. In contrast, the precise functions of the protein-protein interaction domains, such as the leucine-rich repeat (LRR) domain, are not known. In the present study, we modeled the LRRK2 LRR domain (LRRLRRK2) using a template assembly approach, revealing the presence of 14 LRRs. Next, we focused on the expression and purification of LRRLRRK2 in Escherichia coli. Buffer optimization revealed that the protein requires the presence of a zwitterionic detergent, namely Empigen BB, during solubilization and the subsequent purification and characterization steps. This indicates that the detergent captures the hydrophobic surface patches of LRRLRRK2 thereby suppressing its aggregation. Circular dichroism (CD) spectroscopy measured 18% α-helices and 21% β-sheets, consistent with predictions from the homology model. Size exclusion chromatography (SEC) and dynamic light scattering measurements showed the presence of a single species, with a Stokes radius corresponding to the model dimensions of a protein monomer. Furthermore, no obvious LRRLRRK2 multimerization was detected via cross-linking studies. Finally, the LRRLRRK2 clinical mutations did not influence LRRLRRK2 secondary, tertiary or quaternary structure as determined via SEC and CD spectroscopy. We therefore conclude that these mutations are likely to affect putative LRRLRRK2 inter- and intramolecular interactions.  相似文献   

5.
LRDD, a novel leucine rich repeat and death domain containing protein   总被引:3,自引:0,他引:3  
Death domains (DD) and leucine rich repeats (LRR) are two different types of protein interaction motifs. Death domains are found predominantly in proteins involved in signaling and are involved in homo- and heteromultimerization. Leucine rich repeats are found in proteins with diverse cellular functions, like cell adhesion and cellular signaling, and mediate reversible protein-protein interactions. In this paper we report the cloning of a new human gene called LRDD (leucine repeat death domain containing protein). LRDD encodes a protein of 83 kDa with six LRRs at the N-terminus and a DD at the C-terminus. LRDD appears to be processed into two fragments of about 33 and 55 kDa, containing LRRs and DD respectively. Interestingly, LRDD is shown to interact with two other death domain containing proteins, FADD and MADD, presumably through death domain interactions. LRDD may represent a new type of adapter protein that could be involved in signaling or other cellular functions.  相似文献   

6.
Caldwell JC  Fineberg SK  Eberl DF 《Fly》2007,1(3):146-152
The ocelli are three simple photoreceptors on the vertex of the fruit fly head. We sought to identify the gene encoded by the classical ocellar mutant, reduced ocelli (rdo). Deficiency and inversion breakpoint mapping and P-element induced male recombination analyses were performed and Pray For Elves (PFE; CG15151; Fbgn0032661) emerged as a promising candidate for the rdo phenotype. The PFE locus maps to polytene region 36E on chromosome 2L between elfless (Fbgn0032660) and Arrestin 1 (Fbgn0000120). FlyBase annotation predicts that PFE encodes a serine/threonine kinase, yet protein prediction programs revealed no kinase domain. These analyses suggest that PFE simply encodes a leucine rich repeat molecule of unknown function, but presumably functions in nervous system protein-protein interaction. Two classical spontaneous alleles of rdo, rdo(1) and rdo(2), were characterized and the underlying mutations result from a small deletion spanning exon 1/intron 1 and a B104/roo insertion into the 3'UTR of PFE, respectively. Transposase-mediated excisions of several P-elements inserted into the PFE locus revert the rdo phenotype and a full-length PFE cDNA is sufficient to rescue rdo. A Gal4 enhancer trap reveals a broad adult neural expression pattern for PFE. Our identification and initial characterization of the rdo locus will contribute to the understanding of neurogenesis and neural development in the simple photoreceptors of the Drosophila visual system.  相似文献   

7.
Nucleotide binding-leucine rich repeat (NB-LRR) proteins function as intracellular receptors for the detection of pathogens in both plants and animals. Despite their central role in innate immunity, the molecular mechanisms that govern NB-LRR activation are poorly understood. The Arabidopsis NB-LRR protein RPS5 detects the presence of the Pseudomonas syringae effector protein AvrPphB by monitoring the status of the Arabidopsis protein kinase PBS1. AvrPphB is a cysteine protease that targets PBS1 for cleavage at a single site within the activation loop of PBS1. Using a transient expression system in the plant Nicotiana benthamiana and stable transgenic Arabidopsis plants we found that both PBS1 cleavage products are required to activate RPS5 and can do so in the absence of AvrPphB. We also found, however, that the requirement for cleavage of PBS1 could be bypassed simply by inserting five amino acids at the PBS1 cleavage site, which is located at the apex of the activation loop of PBS1. Activation of RPS5 did not require PBS1 kinase function, and thus RPS5 appears to sense a subtle conformational change in PBS1, rather than cleavage. This finding suggests that NB-LRR proteins may function as fine-tuned sensors of alterations in the structures of effector targets.  相似文献   

8.
9.
A northwestern screen of a CHO-K1 cell line cDNA library with radiolabelled HIV-1 TAR RNA identified a novel TAR RNA interacting protein, TRIP. The human trip cDNA was also cloned and its expression is induced by phorbol esters. The N-terminus of TRIP shows high homology to the coiled coil domain of FLAP, a protein which binds the leucine-rich repeat (LRR) of Flightless I (FLI) and the interaction of TRIP with the FLI LRR has been confirmed in vitro . TRIP does not bind single stranded DNA or RNA significantly and binds double stranded DNA weakly. In contrast, TRIP binds double stranded RNA with high affinity and two molecules of TRIP bind the TAR stem. The RNA binding domain has been identified and encompasses a lysine-rich motif. A TRIP-GFP fusion is localised in the cytoplasm and excluded from the nucleus. FLI has a C-terminal gelsolin-like domain which binds actin and therefore the association of TRIP with the FLI LRR may provide a link between the actin cytoskeleton and RNA in mammalian cells.  相似文献   

10.
Helicobacter pylori cysteine-rich proteins (Hcps) are disulfide-containing repeat proteins. The repeating unit is a 36-residue, disulfide-bridged, helix-loop-helix motif. We use the protein HcpB, which has four repeats and four disulfide bridges arrayed in tandem, as a model to determine the thermodynamic stability of a disulfide-rich repeat protein and to study the formation and the contribution to stability of the disulfide bonds. When the disulfide bonds are intact, the chemical unfolding of HcpB at pH 5 is cooperative and can be described by a two-state reaction. Thermal unfolding is reversible between pH 2 and 5 and irreversible at higher pH 5. Differential scanning calorimetry shows noncooperative structural changes preceding the main thermal unfolding transition. Unfolding of the oxidized protein is not an all-or-none two-state process, and the disulfide bonds prevent complete unfolding of the polypeptide chain. The reduced protein is significantly less stable and does not unfold in a cooperative way. During oxidative refolding of the fully reduced protein, all the possible disulfide intermediates with a correct disulfide bond are formed. Formation of "wrong" (non-native) disulfide bonds could not be demonstrated, indicating that the reduced protein already has some partial repeating structure. There is a major folding intermediate with disulfides in the second, third, and fourth repeat and reduced cysteines in the first repeat. Disulfide formation in the first repeat limits the overall rate of oxidative refolding and contributes about half of the thermodynamic stability to native HcpB, estimated as 27 kJ mol(-1) at 25 degrees C and pH 7. The high contribution to stability of the first repeat may be explained by the repeat acting as a cap to protect the hydrophobic interior of the molecule.  相似文献   

11.
12.
Capping interactions associated with specific sequences at or near the ends of alpha-helices are important determinants of the stability of protein secondary and tertiary structure. We investigate here the role of the helix-capping motif Ser-X-X-Glu, a sequence that occurs frequently at the N termini of alpha helices in proteins, on the conformation and stability of the GCN4 leucine zipper. The 1.8 A resolution crystal structure of the capped molecule reveals distinct conformations, packing geometries and hydrogen-bonding networks at the amino terminus of the two helices in the leucine zipper dimer. The free energy of helix stabilization associated with the hydrogen-bonding and hydrophobic interactions in this capping structure is -1.2 kcal/mol, evaluated from thermal unfolding experiments. A single cap thus contributes appreciably to stabilizing the terminated helix and thereby the native state. These results suggest that helix capping plays a further role in protein folding, providing a sensitive connector linking alpha-helix formation to the developing tertiary structure of a protein.  相似文献   

13.
Small leucine rich repeat proteoglycans (SLRPs) are a group of active components of the extracellular matrix in all tissues. SLRPs bind to collagens and regulate collagen fibril growth and fibril organization. SLRPs also interact with various cytokines and extracellular compounds, which lead to various biological functions such cell adhesion and signaling, proliferation, and differentiation. Mutations in SLRP genes are associated with human diseases. Now crystal structures of five SLRPs are available. We describe some features of amino acid sequence and structures of SLRPs. We also review ligand interactions and then discuss the interaction surfaces. Furthermore, we map mutations associated with human diseases and discuss possible effects on structures by the mutations.  相似文献   

14.
15.
16.
Human Dickkopf‐1 (huDKK1), an inhibitor of the canonical Wnt‐signaling pathway that has been implicated in bone metabolism and other diseases, was expressed in engineered Chinese hamster ovary cells and purified. HuDKK1 is biologically active in a TCF/lef‐luciferase reporter gene assay and is able to bind LRP6 coreceptor. In SDS‐PAGE, huDKK1 exhibits molecular weights of 27–28 K and 30 K at ~ 1:9 ratio. By MALDI‐MS analysis, the observed molecular weights of 27.4K and 29.5K indicate that the low molecular weight form may contain O‐linked glycans while the high molecular weight form contains both N‐ and O‐linked glycans. LC‐MS/MS peptide mapping indicates that ~ 92% of huDKK1 is glycosylated at Asn225 with three N‐linked glycans composed of two biantennary forms with 1 and 2 sialic acid (23% and 60%, respectively), and one triantennary structure with 2 sialic acids (9%). HuDKK1 contains two O‐linked glycans, GalNAc (sialic acid)‐Gal‐sialic acid (65%) and GalNAc‐Gal[sialic acid] (30%), attached at Ser 30 as confirmed by β‐elimination and targeted LC‐MS/MS. The 10 intramolecular disulfide bonds at the N‐ and C‐terminal cysteine‐rich domains were elucidated by analyses including multiple proteolytic digestions, isolation and characterization of disulfide‐containing peptides, and secondary digestion and characterization of selected disulfide‐containing peptides. The five disulfide bonds within the huDKK1 N‐terminal domain are unique to the DKK family proteins; there are no exact matches in disulfide positioning when compared to other known disulfide clusters. The five disulfide bonds assigned in the C‐terminal domain show the expected homology with those found in colipase and other reported disulfide clusters.  相似文献   

17.
The major herpes simplex virus DNA-binding protein, ICP8, was purified from cells infected with the herpes simplex virus type 1 temperature-sensitive strain tsHA1. tsHA1 ICP8 bound single-stranded DNA in filter binding assays carried out at room temperature and exhibited nonrandom binding to single-stranded bacteriophage fd DNA circles as determined by electron microscopy. The filter binding assay results and the apparent nucleotide spacing of the DNA complexed with protein were identical, within experimental error, to those observed with wild-type ICP8. Thermal inactivation assays, however, showed that the DNA-binding activity of tsHA1 ICP8 was 50% inactivated at approximately 39 degrees C as compared with 45 degrees C for the wild-type protein. Both wild-type and tsHA1 ICP8 were capable of stimulating viral DNA polymerase activity at permissive temperatures. The stimulatory effect of both proteins was lost at 39 degrees C.  相似文献   

18.
19.
The protein encoded by the human gene HEC (highly expressed in cancer) contains 642 amino acids and a long series of leucine heptad repeats at its C-terminal region. HEC protein is expressed most abundantly in the S and M phases of rapidly dividing cells but not in terminal differentiated cells. It localizes to the nuclei of interphase cells, and a portion distributes to centromeres during M phase. Inactivation of HEC by microinjection of specific monoclonal antibodies into cells during interphase severely disturbs the subsequent mitoses. Disordered sister chromatid alignment and separation, as well as the formation of nonviable cells with multiple, fragmented micronuclei, are common features observed. These results suggest that the HEC protein may play an important role in chromosome segregation during M phase.  相似文献   

20.
Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from Streptococcus pneumoniae. Bacillus subtilis contains one such CpsB-like PTP, YwqE, in addition to two class II Cys-based PTPs, YwlE and YfkJ. The substrates for both YwlE and YfkJ are presently unknown, while YwqE was shown to dephosphorylate two phosphotyrosine-containing proteins implicated in UDP-glucuronate biosynthesis, YwqD and YwqF. In this study, we characterize YwqE, compare the activities of the three B. subtilis PTPs (YwqE, YwlE, and YfkJ), and demonstrate that the two B. subtilis class II PTPs do not dephosphorylate the physiological substrates of YwqE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号