共查询到20条相似文献,搜索用时 0 毫秒
1.
Pulsed Fourier transform proton magnetic resonance was used to study alpha-ketoglutaramic, and several other alpha-keto acids in aqueous solutions as a function of pH. Most alpha-keto acids were found to exist in equilibrium with the hydrate (gem-doil). The equilibrium position favors the nonhydrated alphs-keto acid at neutral pH, but at low pH values (below the pKa of the alpha-carboxylic acid group) the hydrate predominates. We found evidence that alpha-ketoglutaric acid exists in a third equilibrium form which is assigned to the lactol. alpha-Ketoglutaramic acid (the alpha-keto acid analog of glutamine) which is known to exist predominantly in a cyclic form at pH 7.0 was shown to exist as a cyclic structure over a wide pH range. However, the cyclic form is an equilibrium mixture of 2-pyrrolidone-5-hydroxy-5-carboxylic and 1-pyrrolin-2-one-5-carboxylic acids. 相似文献
2.
3.
4.
Bradykinin (BK) is a peptide hormone with sequence Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9 and has been implicated in a multitude of pathophysiological processes such as the ability to lower systemic blood pressure and stimulate pain. BK analogues having bulky, β-branched D -aliphatic residues at position 7 combined with bulky L -aliphatic residues at position 8 have now been observed to be strong antagonists. Conformational studies based on two-dimensional nmr experiments in methanol/water (80/20 v/v) were carried out on several such active antagonists in a polar solvent. Included in this study were the very active antagonists, [D -Arg0, Hyp3, Thi5, D -Cpg7, Cpg8]-BK [Cpg: α-cyclo-pentyl-glycine; Hyp: trans-4-hydroxy-L -proline; Thi: β-(2-thienyl)-L -alanine] ( I ), [D -Arg0, Hyp3, D -Cpg7, Cpg8] -BK ( II ), as well as its variant with D -Cpg7 replaced by Cpg7, namely [D -Arg0, Hyp3, Cpg7, Cpg8]-BK ( III ). A turn-like structure, which coexists with the extended conformation, was observed between residues 2 and 5 for the most active antagonists I and II , in direct correlation with the peptide activities. No turn-like structure was found for residues 6–9. In peptide III , a turn-like structure was not identified. The existence of a turn at the C-terminal end of bradykinin and its analogues has been predicted by empirical calculations and supported by nmr measurements. But the present nmr study on the most active antagonists ( I , II ) does not support this hypothesis. Instead, the data suggest that a turn-like structure between residues 2 and 5 could be important for antagonist activity. Finally, one weak inhibitor [D -Cpg7]-BK ( IV ) showed no defined secondary structure. © 1993 John Wiley & Sons, Inc. 相似文献
5.
High-resolution 270-MHz proton nuclear magnetic resonance (NMR) spectra of the native two-zinc insulin hexamer at pH 9 have been obtained, and assignments of key resonances have been made. Spectra of zinc-free insulin titrated with Zn2+ are unchanged after the addition of 1 equiv of zinc per insulin hexamer, indicating that the conformation of the hexamer is fixed at this point and that the second zinc ion does not significantly change the conformation. Titration of the two-zinc insulin hexamer with anions high on the Hofmeister series such as SCN- causes marked changes in the NMR spectra which are interpreted as the result of major conformational changes to a new hexameric form of insulin having a twofold axis perpendicular to the threefold axis. Analysis of difference spectra indicates that this new hexamer (which should be capable of binding six zinc ions) binds 2 equiv of SCN- at two sites which are assumed to be identical and independent (K1 = 10(3), K2 = 2.5 X 10(2) M-1). 相似文献
6.
The conformations of derivatives of 3(S)-hydroxy-4(s)-amino-6-methylheptanoic acid (statine) and its analogs have been studied by n.m.r. in chloroform and in dimethyl sulfoxide, and by molecular mechanics calculations. The data obtained from these studies indicate that: 1) the coupling constant between NH and C4H is large, suggesting that the dihedral angle (theta) is near 165 degrees or 0 degree; 2) the coupling constant between C4H-C3H is small, indicating a vicinal bond angle of approximately 90 degrees; 3) the hydrogen deuterium exchange rate of statine amide protons is slow; however, the rate is dependent upon the electron withdrawing substituents adjacent to the amide NH's; 4) intramolecular hydrogen bonds involving the NH of the statine amide group do not stabilize conformations of single amino acid derivatives. Based on the n.m.r. results, four possible conformations of Boc-statine-OMe in solution are possible. MM1 calculations indicate one conformation is especially likely. 相似文献
7.
8.
G M Smith 《Biochemistry》1979,18(8):1628-1634
Rhodospirillum rubrum cytochrome c2 was studied by proton nuclear magnetic resonance at 220 MHz. Assignments were made to the resonances of heme c by double-resonance techniques and by temperature-dependence studies. The aromatic resonances of Trp-62 and Tyr-70 of ferrocytochrome c2 were identified by spin-decoupling experiments. The resonances of the Met-91 methyl group of the ferri- and ferrocytochromes were assigned by saturation-transfer experiments. The assignments are compared to those made for cytochromes c. A pH titration showed that the methionine methyl resonance of ferricytochrome c2 shifted with a pK of 6.25 and disappeared above pH 9. No histidine CH resonances that titrated normally over the neutral pH range were observed in the spectrum of either oxidation state of the protein. The possible origins of the ionizations at pH 6.25 and 9 are discussed. 相似文献
9.
Conformational change of adrenodoxin induced by reduction of iron-sulfur cluster. Proton nuclear magnetic resonance study. 总被引:1,自引:0,他引:1
Bovine adrenodoxin in the reduced form has been measured by one- and two-dimensional 1H NMR spectroscopy. By comparing the spectrum of reduced adrenodoxin with that of the oxidized protein, resonances have been assigned for the aromatic residues. The spin-lattice relaxation time for the resonances due to histidine residues was found to depend on the reduction state of adrenodoxin. The distance from the paramagnetic center is calculated by using the Solomone-Bloembergen equation. The resonances from Tyr-82 and Ala-81 show large chemical shift changes upon reduction of adrenodoxin. The conformational change of adrenodoxin manifested by chemical shift difference between reduced and oxidized forms is found in the sequence around Tyr-82 and Ala-81. Modification with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at Glu-74, Asp-79, and Asp-86 inhibited the interaction with both adrenodoxin reductase and cytochrome P-450scc (Lambeth, D. J., Geren, L. M., and Millett, F. (1984) J. Biol. Chem. 259, 10025-10029; Geren, L. M., O'Brien, P., Stonehuerner, J., and Millett, F. (1984) J. Biol. Chem. 259, 2155-2160). Thus, the sequence of these amino acids was assigned to the interaction site with the redox partners. The present 1H NMR investigation of adrenodoxin demonstrates that a conformational change upon reduction of the iron-sulfur cluster occurs in the sequence of negatively charged amino acids that is a putative site for interaction with redox partners. This could offer the structural basis of the electron transfer mechanism in which adrenodoxin functions as a mobile electron carrier. 相似文献
10.
11.
Proton NMR spectra at 270 MHz have been measured for horseradish peroxidase and turnip peroxidase isoenzymes (P1, P2, P3 and P7) in both their high spin ferric native states and as the low spin ferric cyanide complexes. Resonances of amino acids near the heme have been identified and used to investigate variations in the structure of the heme crevice amongst the enzymes. Ligand proton resonances have been resolved in spectra of the cyanide complexes of the peroxidases and these provide information on the heme electronic structure. The electronic structure of the heme and the tertiary structure of the heme crevice are essentially the same in the acidic turnip isoenzymes, P1, P2 and, to a lesser extent, P3 but differ in the basic turnip enzyme, P7. The heme electronic structure and nature of the iron ligands in peroxidases are discussed. Further evidence is presented for histidine as the proximal ligand. A heme-linked ionizable group with a pK of 6.5 has been detected by NMR in the cyanide complex of horseradish peroxidase. 相似文献
12.
Comparison has been made of the proton magnetic resonance (PMR) spectra of translating ribosomes in the pre-translocation and post-translocation states as well as of the complexes of translating ribosomes with elongation factors Tu (EF-Tu) or G (EF-G) in the presence of the uncleavable analogue of GTP--guanylyl-imidodiphosphate (GMP-PNP). It is shown that proteins L7/L12 within the translating ribosomes possess a high intramolecular mobility both in the pre-translocation and in the post-translocation states. The interaction of EF-G with translating ribosomes results in a decrease of the mobility of the L7/L12 proteins. The interaction of EF-Tu with translating ribosomes leads to slight changes in the PMR spectra different from the changes caused by EF-G. 相似文献
13.
14.
15.
The concentration dependence of the 500 MHz 1H-NMR spectra of taurocholate, taurochenodeoxycholate, taurodeoxycholate, and the monosulfate esters of taurochenodeoxycholate has been examined at 0.154 M NaCl in D2O. The resonances of the C18, C19, and C21 methyl groups and the C23 methylene group are differentially broadened with respect to the C25 and C26 methylene and C7 (or C12) methine groups with increasing bile salt concentration for each of the bile salts studied. These data confirm hydrophobic association and indicate that the side chain contributes to the hydrophobic surface of the bile salt. The chemical shift difference of the anisochronous C23 methylene protons is different in monomer and aggregate form. The C25 methylene protons are isochronous in monomeric form but anisochronous in aggregate form. The concentration dependence of the observed chemical shifts has been analyzed to estimate the critical concentration associated with the onset of these changes. The conformer population about the C22-C23 bond changes before the anisochronicity of the C25 methylene protons develops. This indicates that the C23 methylene group is affected by the initial stages of self-association, whereas specific motional constraints about the N-C25 bond in the taurine moiety are only induced in large primary micelles. The difference in the chemical shift of the C25 methylene protons depends on the structure of the bile salt. The relative magnitude of the shift differences is not altered by the presence of phosphatidylcholine. The data suggest that in primary micelles or mixed micelles the taurine moiety conforms to segregate the hydrophilic groups of the bile salt and effects greater van der Waals' contact between the hydrophobic surfaces. 相似文献
16.
17.
18.
Resonances of the histidine region of human carbonic anhydrase B have been studied by proton magnetic resonance spectroscopy in the presence of seven sulfonamide inhibitors. Results of difference spectroscopy and observation of the C-2 resonance of an additional titratable histidine in some of these spectra suggest a conformational change in the enzyme, while the large number of unaltered resonances indicates involvement of only a few residues. Inhibition of carbonic anhydrase by sulfonamides appears to involve: stabilization of an appropriately oriented initial complex by hydrophobic binding of the aromatic ring of the inhibitor to residues of the cavity forming the active site; ionization of the sulfonamido group, facilitated by its proximity to zinc; protonation and displacement of the high pH ligand to the metal controlling catalytic activity, thought here to be a histidine residue; and formation by the sulfonamido group of an ionic bond to zinc and a hydrogen bond to the hydroxyl group of serine or threonine. Diversity of spectra produced with various sulfonamides suggests that substituents on the ring and heteroatoms within the ring interact with additional groups at the active site. Increase in inhibitory potency appears to involve optimizing the number as well as the strength of these interactions. An upper limit for the dissociation rate of these complexes of 10 sec-1 was obtained. 相似文献
19.
Binding of an iodide ion to horseradish peroxidase was studied by following the hyperfine-shifted proton nuclear magnetic resonance signals of the enzyme. For the enzyme in an iodide-free solution, the spectra of hyperfine-shifted methyl region were only slightly affected by varying pH. In the presence of iodide (200 mM), however, both chemical shifts and line widths of the heme peripheral 1- and 8-methyl proton signals were markedly affected by the pH change from 7 to 4 and broadened at pH 4. From the change in peak heights of these signals at various concentrations of iodide, the dissociation constant of the iodide to the enzyme was calculated to be about 100 mM at pH 4.0. The peak derived from the proximal histidyl imidazole N epsilon-H proton was not perturbed by the addition of 200 mM iodide at pH 4.0 and 7.1. The rate of oxidation of iodide with hydrogen peroxide catalyzed by the enzyme was increased with decreasing pH, indicating the participation of an ionizable group with the pKa value of 4.0. Optical difference spectrum studies showed that iodide exerts no effect both at pH 4.0 and 7.4 on the binding affinity of resorcinol which is associated with the enzyme in the vicinity of the heme peripheral 8-CH3 group. These results suggest that an iodide ion binds to the enzyme at almost equal distance from the heme peripheral 1- and 8-methyl groups at the distal side of the heme and that the interaction becomes stronger in acidic medium with protonation of the ionizable group with the pKa value of 4.0. 相似文献
20.
The proton magnetic resonance spectrum of thyrotropin releasing factor (TRF) in solution in deuterium oxide and deuterated dimethylsulfoxide (DMSO–d6) has been analyzed. Two forms differing in cis–trans isomerism about the His-Pro peptide bond are observed. From the temperature dependence of chemical shift of the amide protons, it is concluded that TRF in DMSO–d6 does not contain intramolecular hydrogen bonds. Measurement of NH? CαH coupling constant provides an estimate of the histidine dihedral angle ?. Structural information about the histidine side-chain is deduced from CαH? CβH coupling constants and from the nonequivalence of the two prolyl δ-protons. In DMSO–d6, there is evidence for a tautomeric equilibrium corresponding to an exchange of imidazole proton between the two nitrogen atoms N-δ and N-ε. In water, the N-εH tautomer is found to be the predominant tautomeric form of the imidazole ring. These results in combination with energy calculation, vibrational analysis, and carbon nmr studies allow the determination of the conformationof TRF. 相似文献