首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tail-anchored proteins are distinct from other membrane proteins as they are thought to insert into the endoplasmic reticulum (ER) membrane independently of Sec61p translocation pores. These pores not only mediate import but are also assumed to catalyze export of proteins in a process called ER-associated protein degradation (ERAD). In order to examine the Sec61p dependence of the export of tail-anchored proteins, we analyzed the degradation pathway of a tail-anchored ER membrane protein, the ubiquitin-conjugating enzyme 6 (Ubc6p). In contrast to other ubiquitin conjugating enzymes (Ubcs), Ubc6p is naturally short-lived. Its proteolysis is mediated specifically by the unique Ubc6p tail region. Degradation further requires the activity of Cue1p-assembled Ubc7p, and its own catalytic site cysteine. However, it occurs independently of the other ERAD components Ubc1p, Hrd1p/Der3p, Hrd3p and Der1p. In contrast to other natural ERAD substrates, proteasomal mutants accumulate a membrane-bound degradation intermediate of Ubc6p. Most interestingly, mutations in SEC61 do not reduce the turnover of full-length Ubc6p nor cause a detectable accumulation of degradation intermediates. These data are in accordance with a model in which tail-anchored proteins can be extracted from membranes independently of Sec61p.  相似文献   

3.
MTR10, previously shown to be involved in mRNA export, was found in a synthetic lethal relationship with nucleoporin NUP85. Green fluorescent protein (GFP)-tagged Mtr10p localizes preferentially inside the nucleus, but a nuclear pore and cytoplasmic distribution is also evident. Purified Mtr10p forms a complex with Npl3p, an RNA-binding protein that shuttles in and out of the nucleus. In mtr10 mutants, nuclear uptake of Npl3p is strongly impaired at the restrictive temperature, while import of a classic nuclear localization signal (NLS)-containing protein is not. Accordingly, the NLS within Npl3p is extended and consists of the RGG box plus a short and non-repetitive C-terminal tail. Mtr10p interacts in vitro with Gsp1p-GTP, but with low affinity. Interestingly, Npl3p dissociates from Mtr10p only by incubation with Ran-GTP plus RNA. This suggests that Npl3p follows a distinct nuclear import pathway and that intranuclear release from its specific import receptor Mtr10p requires the cooperative action of both Ran-GTP and newly synthesized mRNA.  相似文献   

4.
Many nuclear proteins are imported into the cell nucleus by the “classical” nuclear localization signal (NLS)-mediated import pathway. In this pathway, a sequence rich in basic residues in the protein interacts with a heterodimeric complex termed importin and this, along with the GTPase Ran, mediates nuclear import of the NLS-bearing protein. The heterogeneous nuclear ribonucleoprotein (hnRNP) A1 protein contains a novel nuclear localization sequence, termed M9, that does not contain any clusters of basic residues. Very recently, we showed that M9 directs import into the nucleus by a novel protein import pathway distinct from the classical NLS pathway. A 90-kilodalton protein termed transportin was identified as a protein that specifically interacts with wild-type M9 but not transport-defective M9 mutants. Transportin and an ATP-regenerating system were found to be necessary and sufficient for import of M9-containing proteins in anin vitroimport assay. In this report, we provide additional evidence that transportin can interact directly with M9-containing proteins and also show that it can mediate import of full-length hnRNP A1. In addition, Ran, or a Ran-binding protein, is identified as a second protein component of this novel nuclear import pathway. Transportin relatives fromSaccharomyces cerevisiaewhich likely serve as additional nuclear transport receptors are described.  相似文献   

5.
Pex5p is a mobile receptor for peroxisomal targeting signal type I-containing proteins that cycles between the cytoplasm and the peroxisome. Here we show that Pex5p is a stable protein that is monoubiquitinated in wild type cells. By making use of mutants defective in vacuolar or proteasomal degradation we demonstrate that monoubiquitinated Pex5p is not a breakdown intermediate of either system. Monoubiquitinated Pex5p is localized to peroxisomes, and ubiquitination requires the presence of functional docking and RING finger complexes, which suggests that it is a late event in peroxisomal matrix protein import. In pex1, pex4, pex6, pex15, and pex22 mutants, all of which are blocked in the terminal steps of peroxisomal matrix protein import, polyubiquitinated forms of Pex5p accumulate, ubiquitination being dependent on the ubiquitin-conjugating enzyme Ubc4p. However, Ubc4p is not required for Pex5p ubiquitination in wild type cells, and cells lacking Ubc4p are not affected in peroxisome biogenesis. These results indicate that Pex5p monoubiquitination in wild type cells serves to regulate rather than to degrade Pex5p, which is supported by the observed stability of Pex5p. We propose that Pex5p monoubiquitination in wild type cells is required for the recycling of Pex5p from the peroxisome, whereas Ubc4p-mediated polyubiquitination of Pex5p in mutants blocked in the terminal steps of peroxisomal matrix protein import may function as a disposal mechanism for Pex5p when it gets stuck in the import pathway.  相似文献   

6.
Intracellular quality control systems monitor protein conformational states. Irreversibly misfolded proteins are cleared through specialized degradation pathways. Their importance is underscored by numerous pathologies caused by aberrant proteins. In the cytosol, where most proteins are synthesized, quality control remains poorly understood. Stress-inducible chaperones and the 26S proteasome are known mediators but how their activities are linked is unclear. To better understand these mechanisms, a panel of model misfolded substrates was analyzed in detail. Surprisingly, their degradation occurs not in the cytosol but in the nucleus. Degradation is dependent on the E3 ubiquitin ligase San1p, known previously to direct the turnover of damaged nuclear proteins. A second E3 enzyme, Ubr1p, augments this activity but is insufficient by itself. San1p and Ubr1p are not required for nuclear import of substrates. Instead, the Hsp70 chaperone system is needed for efficient import and degradation. These data reveal a new function of the nucleus as a compartment central to the quality control of cytosolic proteins.  相似文献   

7.
Human p32 was first isolated associated with the splicing factor ASF/SF-2. The p32 protein is translated as pre-protein from which a mitochondrial import signal is cleaved off to create the mature p32. The majority of p32 is consequently found in the mitochondria. In this study we investigated extramitochondrial p32. An increased nuclear localisation of endogenous p32 was demonstrated as a response to leptomycin B or actinomycin D treatment of cells. Mature p32 gene and deletion mutants were cloned into enhanced green fluorescence protein reporter plasmids. On transfection, EGFP-p32 protein was mainly localised to the cytoplasm and to a lesser extent to the nucleus of transfected COS cells. Upon treatment with actinomycin D or leptomycin B, the EGFP-p32 protein accumulated in the nucleus. Deletion analysis indicated which regions of EGFP-p32 are involved in nuclear export and nuclear import.  相似文献   

8.
U Stochaj  R Rassadi  J Chiu 《FASEB journal》2000,14(14):2130-2132
Stress modifies all aspects of cellular physiology, including the targeting of macromolecules to the nucleus. To determine how distinct types of stress affect classical nuclear protein import, we followed the distribution of NLS-GFP, a reporter protein containing a classical nuclear localization sequence (NLS) fused to green fluorescent protein GFP. Nuclear accumulation of NLS-GFP requires import to be constitutively active; inhibition of import redistributes NLS-GFP throughout the nucleus and cytoplasm. In the yeast Saccharomyces cerevisiae, starvation, heat shock, ethanol and hydrogen peroxide rapidly inhibited classical nuclear import, whereas osmotic stress had no effect. To define the mechanisms underlying the inhibition of classical nuclear import, we located soluble components of the nuclear transport apparatus. Failure to accumulate NLS-GFP in the nucleus always correlated with a redistribution of the small GTPase Gsp1p. Whereas predominantly nuclear under normal conditions, Gsp1p equilibrated between nucleus and cytoplasm in cells exposed to starvation, heat, ethanol or hydrogen peroxide. Furthermore, analysis of yeast strains carrying mutations in different nuclear transport factors demonstrated a role for NTF2, PRP20 and MOG1 in establishing a Gsp1p gradient, as conditional lethal alleles of NTF2 and PRP20 or a deletion of MOG1 prevented Gsp1p nuclear accumulation. On the basis of these results, we now propose that certain types of stress release Gsp1p from its nuclear anchors, thereby promoting a collapse of the nucleocytoplasmic Gsp1p gradient and inhibiting classical nuclear protein import.  相似文献   

9.
Serine hydroxymethyltransferase 1 (SHMT1) expression limits rates of de novo dTMP synthesis in the nucleus. Here we report that SHMT1 is ubiquitinated at the small ubiquitin-like modifier (SUMO) consensus motif and that ubiquitination at that site is required for SHMT1 degradation. SHMT1 protein levels are cell cycle-regulated, and Ub-SHMT1 levels are lowest at S phase when SHMT1 undergoes SUMO modification and nuclear transport. Mutation of the SUMO consensus motif increases SHMT1 stability. SHMT1 interacts with components of the proteasome in both the nucleus and cytoplasm, indicating that degradation occurs in both compartments. Ubc13-mediated ubiquitination is required for SHMT1 nuclear export and increases stability of SHMT1 within the nucleus, whereas Ubc9-mediated modification with Sumo2/3 is involved in nuclear degradation. These data demonstrate that SUMO and ubiquitin modification of SHMT1 occurs on the same lysine residue and determine the localization and accumulation of SHMT1 in the nucleus.  相似文献   

10.
Inorganic pyrophosphate (PPi) is an abundant by-product of cellular metabolism. PPi-producing reactions take place in the nucleus concurrently with reactions that use PPi as a substrate. Saccharomyces cerevisiae possesses two soluble pyrophosphatases (sPPases): Ipp1p, an essential and allegedly cytosolic protein, and Ipp2p, a mitochondrial isoenzyme. However, no sPPase has yet been unambiguously described in the nucleus. In vivo studies with fluorescent fusions together with activity and immunodetection analyses demonstrated that Ipp1p is a nucleocytoplasmic protein. Mutagenesis analysis showed that this sPPase possesses a nuclear localization signal which participates in its nuclear targeting. Enforced nucleocytoplasmic targeting by fusion to heterologous nuclear import and export signals caused changes in polypeptide abundance and activity levels, indicating that Ipp1p is less stable in the nucleus that in the cytoplasm. Low nuclear levels of this sPPase are physiologically relevant and may be related to its catalytic activity, since cells expressing a functional nuclear-targeted chimaera showed impaired growth and reduced chronological lifespan, while a nuclear-targeted catalytically inactive protein was not degraded and accumulated in the nucleus. Moreover, nuclear proteasome inhibition stabilized Ipp1p whereas nuclear targeting promoted its ubiquitination and interaction with Ubp3p, a component of the ubiquitin-proteasome system. Overall, our results indicate that Ipp1p is nucleocytoplasmic, that its stability depends on its subcellular localization and that sPPase catalytic competence drives its nuclear degradation through the ubiquitin-proteasome system. This suggests a new scenario for PPi homeostasis where both nucleocytoplasmic transport and nuclear proteasome degradation of the sPPase should contribute to control nuclear levels of this ubiquitous metabolite.  相似文献   

11.
Nucleo-cytoplasmic transport of proteins is mostly mediated by specific interaction between transport receptors of the importin beta family and signal sequences present in their cargo. While several signal sequences, in particular the classical nuclear localization signal (NLS) recognized by the heterodimeric importin alpha/beta complex are well known, the signals recognized by other importin beta-like transport receptors remain to be characterized in detail. Here we present the systematic analysis of the nuclear import of Saccharomyces cerevisiae Asr1p, a nonessential alcohol-responsive Ring/PHD finger protein that shuttles between nucleus and cytoplasm but accumulates in the nucleus upon alcohol stress. Nuclear import of Asr1p is constitutive and mediated by its C-terminal domain. A short sequence comprising residues 243-280 is sufficient and necessary for active targeting to the nucleus. Moreover, the nuclear import signal is conserved from yeast to mammals. In vitro, the nuclear localization signal of Asr1p directly interacts with the importins Kap114p, Kap95p, Pse1p, Kap123p, or Kap104p, interactions that are sensitive to the presence of RanGTP. In vivo, these importins cooperate in nuclear import. Interestingly, the same importins mediate nuclear transport of histone H2A. Based on mutational analysis and sequence comparison with a region mediating nuclear import of histone H2A, we identified a novel type of NLS with the consensus sequence R/KxxL(x)(n)V/YxxV/IxK/RxxxK/R that is recognized by five yeast importins and connects them into a highly efficient network for nuclear import of proteins.  相似文献   

12.
mRNA deadenylation is a key process in the regulation of translation and mRNA turnover. In Saccharomyces cerevisiae, deadenylation is primarily carried out by the Ccr4p and Caf1p/Pop2p subunits of the Ccr4-Not complex, which is conserved in eukaryotes including humans. Here we have identified an unconventional human Ccr4-Caf1 complex containing hCcr4d and hCaf1z, distant human homologs of yeast Ccr4p and Caf1p/Pop2p, respectively. The hCcr4d-hCaf1z complex differs from conventional Ccr4-Not deadenylase complexes, because (i) hCaf1z and hCcr4d concentrate in nuclear Cajal bodies and shuttle between the nucleus and cytoplasm and (ii) the hCaf1z subunit, in addition to rapid deadenylation, subjects substrate RNAs to slow exonucleolytic degradation from the 3' end in vitro. Exogenously expressed hCaf1z shows both of those activities on reporter mRNAs in human HeLa cells and stimulates general mRNA decay when restricted to the cytoplasm by deletion of its nuclear localization signal. These observations suggest that the hCcr4d-hCaf1z complex may function either in the nucleus or in the cytoplasm after its nuclear export, to degrade polyadenylated RNAs, such as mRNAs, pre-mRNAs, or those RNAs that are polyadenylated prior to their degradation in the nucleus.  相似文献   

13.
PTS2 protein import into mammalian peroxisomes   总被引:3,自引:1,他引:2  
Peroxisome targeting signal (PTS)2 directs proteins from their site of synthesis in the cytosol to the lumen of the peroxisome. Unlike PTS1 which is present in the great majority of peroxisomal matrix proteins and whose import mechanics have been dissected in considerable detail, PTS2 is a relatively rare topogenic signal whose import mechanisms are far less well understood. However, as is the case for PTS1 proteins, an inability to import PTS2 proteins leads to human disease. In this report, we describe the biochemical characterization of mammalian PTS2 protein import using a semi-permeabilized cell system. We show that a PTS2-containing reporter molecule is taken up by peroxisomes in a reaction that is time-, temperature-, ATP-, and cytosol-dependent. Furthermore, the import process is specific, saturable, and requires action of the chaperone Hsc70, the cochaperone Hsp40, and the peroxins Pex5p and Pex14p. We also demonstrate peroxisomal translocation of PTS2 reporter/antibody complexes confirming the import competence of higher order structures. Importantly, cultured fibroblasts from patients with the rhizomelic form of chondrodysplasia punctata (RCDP) which are deficient for the PTS2 receptor protein, Pex7p, are unable to import the PTS2 reporter in this assay. The ability to monitor PTS2 import in vitro will permit, for the first time, a detailed comparison of the biochemical properties of PTS1 and PTS2 protein import.  相似文献   

14.
Nuclear import and export signals in control of Nrf2   总被引:10,自引:0,他引:10  
Nrf2 binds to the antioxidant response element and regulates expression and antioxidant induction of a battery of chemopreventive genes. In this study, we have identified nuclear import and export signals of Nrf2 and show that the nuclear import and export of Nrf2 is regulated by antioxidants. We demonstrate that Nrf2 contains a bipartite nuclear localization signal (NLS) and a leucine-rich nuclear export signal, which regulate Nrf2 shuttling in and out of the nucleus. Immunofluorescence and immunoblot analysis revealed that Nrf2 accumulates in the nucleus within 15 min of antioxidant treatment and is exported out of nucleus by 8 h after treatment. Nrf2 mutant lacking the NLS failed to enter the nucleus and displayed diminished expression and induction of the downstream NAD(P)H:quinone oxidoreductase 1 gene. The Nrf2 NLS sequence, when fused to green fluorescence protein, resulted in the nuclear accumulation of green fluorescence protein, indicating that this signal sequence was sufficient to direct nuclear localization of Nrf2. A nuclear export signal (NES) was characterized in the C terminus of Nrf2, the deletion of which caused Nrf2 to accumulate predominantly in the nucleus. The Nrf2 NES was sensitive to leptomycin B and could function as an independent export signal when fused to a heterologous protein. Further studies demonstrate that NES-mediated nuclear export of Nrf2 is required for degradation of Nrf2 in the cytosol. These results led to the conclusion that Nrf2 localization between cytosol and nucleus is controlled by both nuclear import and export of Nrf2, and the overall distribution of Nrf2 is probably the result from a balance between these two processes. Antioxidants change this balance in favor of nuclear accumulation of Nrf2, leading to activation of chemopreventive proteins. Once this is achieved, Nrf2 exits the nucleus for binding to INrf2 and degradation.  相似文献   

15.
16.
PEX genes encode proteins (peroxins) that are required for the biogenesis of peroxisomes. One of these peroxins, Pex5p, is the receptor for matrix proteins with a type 1 peroxisomal targeting signal (PTS1), which shuttles newly synthesized proteins from the cytosol into the peroxisome matrix. We observed that in various Saccharomyces cerevisiae pex mutants disturbed in the early stages of PTS1 import, the steady-state levels of Pex5p are enhanced relative to wild type controls. Furthermore, we identified ubiquitinated forms of Pex5p in deletion mutants of those PEX genes that have been implicated in recycling of Pex5p from the peroxisomal membrane into the cytosol. Pex5p ubiquitination required the presence of the ubiquitin-conjugating enzyme Ubc4p and the peroxins that are required during early stages of PTS1 protein import. Finally, we provide evidence that the proteasome is involved in the turnover of Pex5p in wild type yeast cells, a process that requires Ubc4p and occurs at the peroxisomal membrane. Our data suggest that during receptor recycling a portion of Pex5p becomes ubiquitinated and degraded by the proteasome. We propose that this process represents a conserved quality control mechanism in peroxisome biogenesis.  相似文献   

17.
Activity of Ho, the yeast mating switch endonuclease, is restricted to a narrow time window of the cell cycle. Ho is unstable and despite being a nuclear protein is exported to the cytoplasm for proteasomal degradation. We report here the molecular basis for the highly efficient nuclear import of Ho and the relation between its short half-life and passage through the nucleus. The Ho nuclear import machinery is functionally redundant, being based on two bipartite nuclear localization signals, recognized by four importins of the ribosomal import system. Ho degradation is regulated by the DNA damage response and Ho retained in the cytoplasm is stabilized, implying that Ho acquires its crucial degradation signals in the nucleus. Ho arose by domestication of a fungal VMA1 intein. A comparison of the primary sequences of Ho and fungal VMA1 inteins shows that the Ho nuclear localization signals are highly conserved in all Ho proteins, but are absent from VMA1 inteins. Thus adoption of a highly efficient import strategy occurred very early in the evolution of Ho. This may have been a crucial factor in establishment of homothallism in yeast, and a key event in the rise of the Saccharomyces sensu stricto.  相似文献   

18.
Like its retroviral relatives, the long terminal repeat retrotransposon Ty1 in the yeast Saccharomyces cerevisiae must traverse a permanently intact nuclear membrane for successful transposition and replication. For retrotransposition to occur, at least a subset of Ty1 proteins, including the Ty1 integrase, must enter the nucleus. Nuclear localization of integrase is dependent upon a C-terminal nuclear targeting sequence. However, the nuclear import machinery that recognizes this nuclear targeting signal has not been defined. We investigated the mechanism by which Ty1 integrase gains access to nuclear DNA as a model for how other retroelements, including retroviruses like HIV, may utilize cellular nuclear transport machinery to import their essential nuclear proteins. We show that Ty1 retrotransposition is significantly impaired in yeast mutants that alter the classical nuclear protein import pathway, including the Ran-GTPase, and the dimeric import receptor, importin-alpha/beta. Although Ty1 proteins are made and processed in these mutant cells, our studies reveal that an integrase reporter is not properly targeted to the nucleus in cells carrying mutations in the classical nuclear import machinery. Furthermore, we demonstrate that integrase coimmunoprecipitates with the importin-alpha transport receptor and directly binds to importin-alpha. Taken together, these data suggest Ty1 integrase can employ the classical nuclear protein transport machinery to enter the nucleus.  相似文献   

19.
《The Journal of cell biology》1996,133(6):1163-1176
Characterization of the interactions between soluble factors required for nuclear transport is key to understanding the process of nuclear trafficking. Using a synthetic lethal screen with the rna1-1 strain, we have identified a genetic interaction between Rna1p, a GTPase activating protein required for nuclear transport, and yeast importin- beta, a component of the nuclear localization signal receptor. By the use of fusion proteins, we demonstrate that Rna1p physically interacts with importin-beta. Mutants in importin-beta exhibit in vivo nuclear protein import defects, and importin-beta localizes to the nuclear envelope along with other proteins associated with the nuclear pore complex. In addition, we present evidence that importin-alpha, but not importin-beta, mislocalizes to the nucleus in cells where the GTPase Ran is likely to be in the GDP-bound state. We suggest a model of nuclear transport in which Ran-mediated hydrolysis of GTP is necessary for the import of importin-alpha and the nuclear localization signal- bearing substrate into the nucleus, while exchange of GDP for GTP on Ran is required for the export of both mRNA and importin-alpha from the nucleus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号