首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In mammals, polypeptides secreted by cells of the testis are believed to influence spermatogenesis and to affect the behavior of the resident somatic cell populations. The 43,000-MW, secreted, calcium-binding glycoprotein SPARC (Secreted Protein, Acidic and Rich in Cysteine) is synthesized by a number of embryonic, fetal, and adult somatic cells and is associated with areas of cellular differentiation, proliferation, and morphological reorganization. Here, we report on the expression of SPARC in the testes of adult mice. By immunohistochemistry, SPARC was observed in the cytoplasm of Leydig cells and of Sertoli cells bearing late-stage, elongate spermatids. Testicular mRNA, translated in vitro, yielded a polypeptide of approximately 42,000 MW that bound anti-SPARC antibodies. Northern blot analysis revealed 2.3 kilobase (kb) SPARC mRNA in the testis, a size comparable to that of SPARC mRNA in nongonadal cells. Western blot assays of proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed an immunoreactive polypeptide of 43,000 MW in purified mouse Sertoli cells and their culture supernatants. Similar assays of testis interstitial fluid revealed 43,000 MW and 30,000 MW immunoreactive polypeptides. By indirect immunofluorescence, purified mouse Leydig cells cultured 24-48 h expressed SPARC in cytoplasmic granules. Cultured Leydig cells incorporated [35S]methionine into a secreted polypeptide of 43,000 MW that was recognized by anti-SPARC antibodies. In metal binding assays, purified SPARC bound Ca2+, Fe2+ and Cu2+. The function of SPARC in testes may be to sequester or transport certain metallic cations. Our recent discovery that SPARC induces changes in shape of certain nongonadal cell types also suggests that this glycoprotein may influence the functions of both Leydig and Sertoli cells by affecting their morphology.  相似文献   

3.
The hyperpermeability of the microvasculature supplying solid tumors is largely attributable to a heterodimeric Mr 34,000-43,000 tumor-secreted protein, vascular permeability factor. Upon reduction, the vascular permeability factor secreted by line 10 tumor cells is resolved by SDS-PAGE into 3 discrete bands of Mr 24,000, 19,500, and 15,000. We demonstrate here that line 10 vascular permeability factor is an N-linked glycoprotein. Nonglycosylated vascular permeability factor migrates on reduced SDS-PAGE as two bands of Mr 20,000 and 15,000. Pulse-chase studies demonstrated that all three chains of native vascular permeability factor were secreted rapidly following synthesis and at equal rates, with a cellular half-retention time of approximately 37 min. When glycosylation was prevented by tunicamycin, individual bands of nonglycosylated vascular permeability factor were also secreted at equivalent rates, but much more slowly (approximately 60 min) than native glycoprotein. Both glycosylated and nonglycosylated forms of vascular permeability factor were equally potent at increasing dermal vessel permeability.  相似文献   

4.
A protein with an apparent Mr of 43,000 was purified from Sertoli cell-enriched culture medium by sequential anion-exchange, gel permeation, C4 reversed-phase, and diphenyl reversed-phase HPLC. N-Terminal sequence analysis of this protein revealed a sequence of NH2-XPQTEAAEEMVAEETVV for the first 17 amino acids. Comparison of this sequence with existing protein data base maintained at the Protein Identification Resource revealed that it shares extensive identity with a previously described protein secreted by mouse embryo parietal endoderm, SPARC, which is equivalent to a protein secreted by a basement-membrane-producing tumor, BM-40; and a bone protein, osteonectin. This protein also possesses similar in vitro biological activity of SPARC in which it binds Ca2+. The possible physiological significance of this protein was discussed.  相似文献   

5.
Biosynthetic experiments with cultured bovine retinal endothelial cells have identified a glycoprotein of Mr 47,000 (Gp47) as a major component secreted into the medium. Gp47 is a non-collagenous glycoprotein with a pI of 4.6-5.5, which does not bind to either gelatin-Sepharose or heparin-Sepharose but is retained by concanavalin A-Sepharose. The Mr of this species decreases to approx. 42,000 in the presence of tunicamycin, indicating that it contains asparagine-linked oligosaccharides. A second protein of Mr 47,000 (P47) is present in the cell layer/matrix of these cultured cells. The electrophoretic mobility of P47 remains unaltered when synthesized in the presence of tunicamycin. Peptide-mapping experiments using N-chlorosuccinimide and Staphylococcus aureus V8 proteinase demonstrate that Gp47 and P47 are distinct proteins, and are not related to colligin, a membrane-bound collagen-receptor protein of similar size, or to SPARC, a major secreted product of parietal endodermal cells and sparse cultures of aortic endothelial cells.  相似文献   

6.
Angiogenesis in vitro, the formation of capillary-like structures by cultured endothelial cells, is associated with changes in the expression of several extracellular matrix proteins. The expression of SPARC, a secreted collagen-binding glycoprotein, has been shown to increase significantly during this process. We now show that addition of purified SPARC protein, or an N-terminal synthetic peptide (SPARC4-23), to strains of bovine aortic endothelial cells undergoing angiogenesis in vitro resulted in a dose-dependent decrease in the synthesis of fibronectin and thrombospondin-1 and an increase in the synthesis of type 1-plasminogen activator inhibitor. SPARC decreased fibronectin mRNA by 75% over 48 h, an effect that was inhibited by anti-SPARC immunoglobulins. Levels of thrombospondin-1 mRNA were diminished by 80%. Over a similar time course, both mRNA and protein levels of type 1-plasminogen activator inhibitor (PAI-1) were enhanced by SPARC and the SPARC4-23 peptide. The effects were dose-dependent with concentrations of SPARC between 1 and 30 micrograms/ml. In contrast, no changes were observed in the levels of either type I collagen mRNA or secreted gelatinases. Half-maximal induction of PAI-1 mRNA or inhibition of fibronectin and thrombospondin mRNAs occurred with 2-5 micrograms/ml SPARC and approximately 0.05 mM SPARC4-23. Strains of endothelial cells that did not form cords and tubes in vitro had reduced or undetectable responses to SPARC under identical conditions. These results demonstrate that SPARC modulates the synthesis of a subset of secreted proteins and identify an N-terminal acidic sequence as a region of the protein that provides an active site. SPARC might therefore function, in part, to achieve an optimal ratio among different components of the extracellular matrix. This activity would be consistent with known effects of SPARC on cellular morphology and proliferation that might contribute to the regulation of angiogenesis in vivo.  相似文献   

7.
A novel, serum albumin-binding glycoprotein of molecular weight (mw) 43,000 (43K protein) was initially purified from the culture medium of bovine aortic endothelial (BAE) cells (Sage, H., Johnson, C., and Bornstein, P., J. Biol. Chem. 259:3993-4007, 1984). Its secretion by normal mesenchymal cells and by transformed cells of both ectodermal and endodermal origin suggested a general role in cellular function. To examine the effect of sublethal injury in vitro on the biosynthesis of 43K protein, BAE cells were exposed to endotoxin. At concentrations which produced minimal cell detachment and lysis, the cells secreted 70-100% more protein compared to control cultures, and the relative increase in 43K protein over total protein was approximately three-fold. A second type of cellular injury, manifested by rapid cellular proliferation and migration in response to sparse plating density (a condition that we have termed 'culture shock'), was also accompanied by a significant increase in the secretion of 43K protein. Pulse-chase studies revealed that the initial product secreted within 1.5 h was of Mr 38,000, and that between 6 and 21 h this molecule was converted to the final form of Mr 43,000. The 43K protein was not associated with RNA or glycosaminoglycan, but appeared to be linked to complex oligosaccharides containing peripheral sialosyl residues. Treatment with tunicamycin produced lower mw forms that displayed reduced affinity for albumin. By immunologic criteria, peptide mapping, and amino acid analysis, the 43K protein was shown to be structurally distinct from several proteins of Mr 40,000-50,000 associated with endothelium or with serum, including tissue factor, a plasminogen anti-activator, and several apolipoproteins. In addition, the 43K protein was not present in the extracellular matrices of endothelial, fibroblastic, or smooth muscle cells, nor was it found in plasma, serum, platelet releasate, or alveolar lavage fluids. These studies identify a unique Mr 43,000 glycoprotein that is associated with cellular stress or injury in vitro. As a secreted but nonmatrix macromolecule, this protein may be part of a 'survival kit' used by the endothelium to cope with cellular injury.  相似文献   

8.
Isolated rat hepatocytes secreted a major phosphorylated glycoprotein (PP63) with apparent Mr = 63,000 and isoelectric point ranging from 4.8 to 5.3. Specific antibodies were raised in a rabbit using material obtained from plasma as an antigen. The biosynthesis of PP63 was studied in vitro in a cell-free system and in intact hepatocytes incubated with or without tunicamycin. The mRNA translation product had a Mr = 43,000 and was of the same size as the major unglycosylated precursor found in intact cells. This precursor was rapidly processed into two major intracellular forms of Mr = 53,000 and 56,000. These species were insensitive to neuraminidase but susceptible to endoglycosidase H, indicating that they contained oligosaccharide side chains of the high mannose-type. Terminal glycosylation gave rise to the mature Mr = 63,000 protein that contained sialic acid and fucose. This species represented the exportable form of the protein and was the only one to be phosphorylated. The charge heterogeneity observed for the mature protein already existed in all the precursors, indicating that it could not be ascribed to sialylation or to phosphorylation. However, these covalent modifications were mainly responsible for the acidic character of PP63. PP63 secretion was altered by tunicamycin. Pulse-chase experiments showed that the phosphorylated glycoprotein was secreted according to kinetics similar to that described for other liver glycoprotein, with slower kinetics than albumin. Permanent phosphorylation did not appear mandatory for excretion since the dephosphorylated PP63 was excreted with an efficacy comparable to that of the phosphorylated protein. Phosphorylation of PP63 was shown to occur on a single tryptic peptide, at a serine residue.  相似文献   

9.
The matricellular glycoprotein, secreted protein acidic and rich in cysteine (SPARC), has complex biological activities and is important for lens epithelial cell function and regulation of cataract formation. To understand how SPARC influences lens epithelial cell activity and homeostasis, we have studied the subcellular distribution of SPARC in murine lens epithelial cells in vitro. We demonstrate that endogenous SPARC is located in the cytoplasm of either quiescent or dividing lens epithelial cells in culture. However, cytoplasmic SPARC was translocated into the nuclei of immortalized lens epithelial cells upon a significant reduction of intracellular SPARC in these cells. Recombinant human (rh) SPARC added to the culture media was quickly and efficiently internalized into the cytosol of SPARC-null lens epithelial cells. Moreover, cytoplasmic rhSPARC was also translocated into the nucleus after exogenous rhSPARC was removed from the culture media. The translocation of SPARC into the nucleus was therefore triggered by the reduction of SPARC protein normally available to the cells. A mouse SPARC-EGFP chimeric fusion protein (70 kDa) was expressed in lens epithelial cells and 293-EBNA cells, and was observed both in the cytoplasm and culture medium, but not in the nucleus. SPARC does not appear to have a strong nuclear localization sequence. Alternatively, SPARC might pass through the nuclear pore complex by passive diffusion. SPARC therefore functions not only as an extracellular protein but also potentially as an intracellular protein to influence cellular activities and homeostasis.  相似文献   

10.
Migration of endothelial cells is requisite to wound repair and angiogenesis. Since the glycoprotein SPARC (secreted protein, acidic and rich in cysteine) is associated with remodeling, cellular migration, and angiogenesis in vitro, we questioned whether SPARC might influence the motility of endothelial cells. In this study we show that, in the absence of serum, exogenous SPARC inhibits the migration of bovine aortic endothelial cells induced by bFGF. Similar results were obtained from two different assays, in which cell migration was measured in a Boyden chamber and in monolayer culture after an experimental wound. Without bFGF, the migration of endothelial cells was unaffected by SPARC. The inhibitory effect of SPARC on cell motility was dose-dependent, required the presence of Ca2+, was mimicked by synthetic peptides from the N- and C-terminal Ca(2+)-binding domains of the protein, and was not seen in the presence of serum. Modulation of the activities of secreted and cell-associated proteases, including plasminogen activators and metalloproteinases, appeared not to be responsible for the effects that we observed on the motility of endothelial cells. Moreover, a molecular interaction between SPARC and bFGF was not detected, and SPARC did not interfere with the binding of bFGF to high-affinity receptors on endothelial cells. Finally, in culture medium that contained serum, SPARC inhibited the incorporation of [3H]-thymidine into newly synthesized DNA, both in the absence and presence of bFGF. However, DNA synthesis was not affected by SPARC when the cells were plated on gelatin or fibronectin in serum-free medium. We propose that the combined action of a serum factor and SPARC regulates both endothelial cell proliferation and migration and coordinates these events during morphogenetic processes such as wound repair and angiogenesis.  相似文献   

11.
Interactions among growth factors, cells, and extracellular matrix regulate proliferation during normal development and in pathologies such as atherosclerosis. SPARC (secreted protein, acidic, and rich in cysteine) is a matrix-associated glycoprotein that modulates the adhesion and proliferation of vascular cells. In this study, we demonstrate that SPARC inhibits human arterial smooth muscle cell proliferation stimulated by platelet-derived growth factor or by adhesion to monomeric type I collagen. Binding studies with SPARC and SPARC peptides indicate specific and saturable interaction with smooth muscle cells that involves the C-terminal Ca2+-binding region of the protein. We also report that SPARC arrests monomeric collagen-supported smooth muscle cell proliferation in the late G1-phase of the cell cycle in the absence of an effect on cell shape or on levels of cyclin-dependent kinase inhibitors. Cyclin-dependent kinase-2 activity, p107 and cyclin A levels, and retinoblastoma protein phosphorylation are markedly reduced in response to the addition of exogenous SPARC and/or peptides derived from specific domains of SPARC. Thus, SPARC, previously characterized as an inhibitor of platelet-derived growth factor binding to its receptor, also antagonizes smooth muscle cell proliferation mediated by monomeric collagen at the level of cyclin-dependent kinase-2 activity.  相似文献   

12.
《The Journal of cell biology》1993,121(6):1433-1444
SPARC (osteonectin/BM40) is a secreted protein that modifies the interaction of cells with extracellular matrix (ECM). When we added SPARC to cultured rabbit synovial fibroblasts and analyzed the secreted proteins, we observed an increase in the expression of three metalloproteinases--collagenase, stromelysin, and the 92-kD gelatinase-- that together can degrade both interstitial and basement membrane matrices. We further characterized the regulation of one of these metalloproteinases, collagenase, and showed that both collagenase mRNA and protein are upregulated in fibroblasts treated with SPARC. Experiments with synthetic SPARC peptides indicated that a region in the neutral alpha-helical domain III of the SPARC molecule, which previously had no described function, was involved in the regulation of collagenase expression by SPARC. A sequence in the carboxyl-terminal Ca(2+)-binding domain IV exhibited similar activity, but to a lesser extent. SPARC induced collagenase expression in cells plated on collagen types I, II, III, and V, and vitronectin, but not on collagen type IV. SPARC also increased collagenase expression in fibroblasts plated on ECM produced by smooth muscle cells, but not in fibroblasts plated on a basement membrane-like ECM from Engelbreth-Holm-Swarm sarcoma. Collagenase was induced within 4 h in cells treated with phorbol diesters or plated on fibronectin fragments, but was induced after 8 h in cells treated with SPARC. A number of proteins were transiently secreted by SPARC-treated cells within 6 h of treatment. Conditioned medium that was harvested from cultures 7 h after the addition of SPARC, and depleted of residual SPARC, induced collagenase expression in untreated fibroblasts; thus, part of the regulation of collagenase expression by SPARC appears to be indirect and proceeds through a secreted intermediate. Because the interactions of cells with ECM play an important role in regulation of cell behavior and tissue morphogenesis, these results suggest that molecules like SPARC are important in modulating tissue remodeling and cell-ECM interactions.  相似文献   

13.
Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that inhibits cellular adhesion and proliferation. In this study, we report the detection of SPARC in the interphase nuclei of embryonic chicken cells in vivo. Differential partitioning of SPARC was also noted in the cytoplasm of these cells during discrete stages of M-phase: cells in metaphase and anaphase exhibited strong cytoplasmic immunoreactivity, whereas cells in telophase were devoid of labeling. Immunocytochemical analysis of embryonic chicken cells in vitro likewise showed the presence of SPARC in the nucleus. Furthermore, elution of soluble proteins and DNA from these cells indicated that SPARC might be a component of the nuclear matrix. We subsequently examined cultured bovine aortic endothelial cells, which initially appeared to express SPARC only in the cytoplasm. However, after elution of soluble proteins and chromatin, we also detected SPARC in the nuclear matrix of these cells. Embryonic chicken cells incubated with recombinant SPARC were seen to take up the protein and to translocate it to the nucleus progressively over a period of 17 h. These observations provide new information about SPARC, generally recognized as a secreted glycoprotein that mediates interactions between cells and components of the extracellular matrix. The evidence presented in this study indicates that SPARC might subserve analogous functions in the nuclear matrix.  相似文献   

14.
15.
Hevin is an extracellular matrix-associated, secreted glycoprotein belonging to the secreted protein acidic and rich in cysteine (SPARC) family of matricellular proteins. It contains three conserved structural domains that are implicated in the regulation of cell adhesion, migration, and proliferation. Hevin is expressed during embryogenesis and tissue remodeling and is especially prominent in brain and vasculature. Its down-regulation in a number of cancers and the possibility of its functional compensation by SPARC has led to recent interest in hevin as a tumor suppressor and regulator of angiogenesis.  相似文献   

16.
Secreted protein, acidic and rich in cysteines (SPARC) is a secreted protein associated with increased aggressiveness of different human cancer types. In order to identify downstream mediators of SPARC activity, we performed a 2-DE proteomic analysis of human melanoma cells following antisense-mediated downregulation of SPARC expression. We found 23/504 differential spots, 15 of which were identified by peptide fingerprinting analysis. Three of the differential proteins (N-cadherin (N-CAD), clusterin (CLU), and HSP27) were validated by immunoblotting, confirming decreased levels of N-CAD and CLU and increased amounts of HSP27 in conditioned media of cells with diminished SPARC expression. Furthermore, transient knock down of SPARC expression in melanoma cells following adenoviral-mediated transfer of antisense RNA confirmed these changes. We next developed two different RNAs against SPARC that were able to inhibit in vivo melanoma cell growth. Immunoblotting of the secreted fraction of RNAi-transfected melanoma cells confirmed that downregulation of SPARC expression promoted decreased levels of N-CAD and CLU and increased secretion of HSP27. Transient re-expression of SPARC in SPARC-downregulated cells reverted extracellular N-CAD, CLU, and HSP27 to levels similar to those in the control. These results constitute the first evidence that SPARC, N-CAD, CLU, and HSP27 converge in a unique molecular network in melanoma cells.  相似文献   

17.
J Engel  W Taylor  M Paulsson  H Sage  B Hogan 《Biochemistry》1987,26(22):6958-6965
SPARC, BM-40, and osteonectin are identical or very closely related extracellular proteins of apparent Mr 43,000 (Mr 33,000 predicted from sequence). They were originally isolated from parietal endoderm cells, basement membrane producing tumors, and bone, respectively, but are rather widely distributed in various tissues. In view of the calcium binding activity reported for osteonectin, we analyzed the SPARC sequence and found two putative calcium binding domains. One is an N-terminal acidic region with clusters of glutamic acid residues. This region, although neither gamma-carboxylated nor homologous, resembles the gamma-carboxyglutamic acid (Gla) domain of vitamin K dependent proteins of the blood clotting system in charge density, size of negatively charged clusters, and linkage to the rest of the molecule by a cysteine-rich domain. The other region is an EF-hand calcium binding domain located near the C-terminus. A disulfide bond between the E and F helix is predicted from modeling the EF-hand structure with the known coordinates of intestinal calcium binding protein. The disulfide bridge apparently serves to stabilize the isolated calcium loop in the extracellular protein. As observed for cytoplasmic EF-hand-containing proteins and for Gla domain containing proteins, a major conformational transition is induced in BM-40 upon binding of several Ca2+ ions. This is accompanied by a 35% increase in alpha-helicity. A pronounced sigmoidicity of the dependence of the circular dichroism signal at 220 nm on calcium concentration indicates that the process is cooperative. In view of its properties, abundance, and wide distribution, it is proposed that SPARC/BM-40/osteonectin has a rather general regulatory function in calcium-dependent processes of the extracellular matrix.  相似文献   

18.
Secreted protein acidic and rich in cystein (SPARC) is a secreted glycoprotein involved in several biological processes such as tissue remodeling, embryonic development, cell/extracellular matrix interactions, and cell migration. In particular, SPARC affects bone remodeling through the regulation of both differentiation/survival of osteoblasts and bone extracellular matrix synthesis/turnover. Here, we investigated SPARC subcellular localization in the human osteoblastic HOBIT cell line by immunocytochemistry and western blot analysis. We show that, under normal exponential cell growth conditions, SPARC localized both to cell nucleus and to cytoplasm, with no co-localization on actin stress fibers. However, in colchicine-treated HOBIT cells and human primary osteoblasts undergoing blebs formation, SPARC showed a different cellular distribution, with an additional marked compartmentalization inside the blebs, where it co-localized with globular actin and actin-binding proteins such as alpha-actinin, cortactin, and vinculin. Moreover, we demonstrate by an in vitro assay that the addition of SPARC to actin and alpha-actinin inhibited the formation of cross-linked actin filaments and disrupted newly formed filaments, most likely due to a direct interaction between SPARC and alpha-actinin, as indicated by immunoprecipitation assay. The specific silencing of SPARC RNA expression markedly decreased the ability of colchicine-treated HOBIT cells to undergo blebbing, suggesting a direct role for SPARC in cell morphology dynamics during cytoskeletal reorganization.  相似文献   

19.
SPARC, a Ca(2+)-binding glycoprotein that is expressed during tissue morphogenesis and functions as an inhibitor of cell spreading in vitro, was found to induce the secretion of an Mr = 45,000 protein in bovine aortic endothelial (BAE) cells. This protein was identified as type 1 plasminogen activator inhibitor (PAI-1) on Western blots with anti-PAI-1 antiserum. SPARC stimulated the secretion of PAI-1 protein into the medium of subconfluent BAE cells, but not confluent BAE cells, in a dose- and time-dependent manner. Secretion of PAI-1 into the culture medium was progressive and exhibited an increase of 3- to 7-fold over control values within 24 h after the addition of SPARC. Levels of PAI-1 mRNA were elevated 2-fold within 4 to 24 h after the addition of SPARC and did not increase with higher concentrations of SPARC. Since the induction of PAI-1 mRNA by SPARC was not blocked by cycloheximide, de novo protein synthesis was apparently not required for this stimulation. Control experiments showed that the induction of PAI-1 was not due to contamination of the SPARC preparations with endotoxin. These data demonstrate that SPARC induces the biosynthesis of PAI-1 in BAE cells and suggest a role for SPARC in the regulation of fibrinolysis and in the control of proteolytic events in remodeling tissues.  相似文献   

20.
Mitotically inactivated feeder cells such as mouse embryonic fibroblast (MEFs) cells have been widely applied for physical and physiological support in the pluripotency maintenance of human pluripotent stem cells (hPSCs). However, accurate supporting mechanism or factors of feeder cells are poorly understood. Here, we isolated differentially expressed genes between wild-type MEFs and mitotically inactivated MEFs (miMEFs) by employing annealing control primer-based GeneFishing polymerase chain reaction. We identified a secreted protein acidic cysteine-rich glycoprotein (SPARC) gene that is upregulated in miMEFs. Suppression of SPARC expression in miMEFs using small interference RNA (siRNA) displayed gradual detachment of miMEFs. Furthermore, we found a significant reduction of OCT4- and SSEA3-positive hPS cell population maintained on SPARC siRNA-miMEFs compared to on miMEFs by flow cytometrical analysis. These findings suggest that SPARC plays a critical role in the maintenance of miMEFs without loss of cell number and might be a key component for supporting the culture of hPSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号