首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
J Yochem  I Greenwald 《Cell》1989,58(3):553-563
Genomic DNA closely related in sequence to lin-12, a gene that specifies certain cell fates during C. elegans development, was isolated from a C. elegans library by low stringency hybridization. DNA sequencing of genomic and cDNA clones predicts the new sequence to encode an integral membrane protein that shares three repeated amino acid sequence motifs with the lin-12 product and the Drosophila Notch product: an epidermal growth factor-like motif, the "lin-12/Notch Repeat," and a motif present in two yeast gene products that have cell cycle dependent functions. Austin and Kimble (see accompanying paper) present evidence that this sequence corresponds to glp-1, a gene implicated in cell-cell interactions distinct from those involving lin-12. Possible implications of the predicted structure of the glp-1 product with respect to these cell-cell interactions are discussed.  相似文献   

3.
Notch signaling regulates various cellular processes such as growth, proliferation and differentiation, and plays a key role in tissue patterning during animal development. In humans, defects in Notch signaling have been implicated in cancer, stroke, neurodegeneration, as well as learning and memory deficits. The genome of the nematode Caenorhabditis elegans encodes two members of the Notch transmembrane receptor family, LIN-12 and GLP-1, which have both unique and shared developmental functions. LIN-12 affects diverse cell fate specification events at certain embryonic and larval stages, including the ABplp lineage (a neuronal precursor), intestinal primordium, gonadal anchor cell and secondary vulval precursor cells. In addition to developmental functions, it also operates in the adult nervous system to control locomotion, memory and chemosensory response. Although lin-12 expression was subjected to intense analysis, it was almost not demonstrable in neurons; occasional lin-12 expression was detected only in the two RIG interneurons of young larvae. Here we identify two cis-regulatory regions from lin-12, both of them are specified by the presence of a conserved EXD/HOX composite binding site. One of these regions is located in the first intron and required for driving transgene expression in vulval precursor cell lineages and specific gonadal cells. The other region is located in the second intron and can confer neuronal expression for lin-12 throughout life. The latter regulatory element is highly conserved in the paralogous glp-1 genomic environment, suggesting redundant developmental and physiological roles for the two Notch paralogs in the C. elegans nervous system.  相似文献   

4.
Hartweck LM  Scott CL  Olszewski NE 《Genetics》2002,161(3):1279-1291
The Arabidopsis SECRET AGENT (SEC) and SPINDLY (SPY) proteins are similar to animal O-linked N-acetylglucosamine transferases (OGTs). OGTs catalyze the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to Ser/Thr residues of proteins. In animals, O-GlcNAcylation has been shown to affect protein activity, stability, and/or localization. SEC protein expressed in Escherichia coli had autocatalytic OGT activity. To determine the function of SEC in plants, two tDNA insertional mutants were identified and analyzed. Although sec mutant plants did not exhibit obvious phenotypes, sec and spy mutations had a synthetic lethal interaction. This lethality was incompletely penetrant in gametes and completely penetrant postfertilization. The rate of both female and male sec spy gamete transmission was higher in plants heterozygous for both mutations than in plants heterozygous for sec and homozygous for spy. Double-mutant embryos aborted at various stages of development and no double-mutant seedlings were obtained. These results indicate that OGT activity is required during gametogenesis and embryogenesis with lethality occurring when parentally derived SEC, SPY, and/or O-GlcNAcylated proteins become limiting.  相似文献   

5.
In the rice blast fungus Magnaporthe grisea, the Pmk1 mitogen-activated protein (MAP) kinase is essential for appressorium formation and infectious growth. PMK1 is homologous to yeast Fus3 and Kss1 MAP kinases that are known to be regulated by the Ste20 PAK kinase for activating the pheromone response and filamentation pathways. In this study, we isolated and characterized two PAK genes, CHM1 and MST20, in M. grisea. Mutants disrupted in MST20 were reduced in aerial hyphae growth and conidiation, but normal in growth rate, appressorium formation, penetration, and plant infection. In chm1 deletion mutants, growth, conidiation, and appressorium formation were reduced significantly. Even though appressoria formed by chm1 mutants were defective in penetration, chm1 mutants were able to grow invasively on rice leaves and colonize through wounds. The chm1 mutants were altered in conidiogenesis and produced conidia with abnormal morphology. Hyphae of chm1 mutants had normal septation, but the length of hyphal compartments was reduced. On nutritionally poor oatmeal agar, chm1 mutants were unstable and produced sectors that differed from original chm1 mutants in growth rate, conidiation, or colony morphology. However, none of the monoconidial cultures derived from these spontaneous sectors were normal in appressorial penetration and fungal pathogenesis. These data suggest that MST20 is dispensable for plant infection in M. grisea, but CHM1 plays a critical role in appressorium formation and penetration. Both mst20 and chm1 deletion mutants were phenotypically different from the pmk1 mutant that is defective in appressorium formation and infectious hyphae growth. It is likely that MST20 and CHM1 individually play no critical role in activating the PMK1 MAP kinase pathway during appressorium formation and infectious hyphae growth. However, CHM1 appears to be essential for appressorial penetration and CHM1 and MST20 may have redundant functions in M. grisea.  相似文献   

6.
7.
Mouse Cdx and Hox genes presumably evolved from genes on a common ancestor cluster involved in anteroposterior patterning. Drosophila caudal (cad) is involved in specifying the posterior end of the early embryo, and is essential for patterning tissues derived from the most caudal segment, the analia. Two of the three mouse Cdx paralogues, Cdx 1 and Cdx2, are expressed early in a Hox-like manner in the three germ layers. In the nascent paraxial mesoderm, both genes are expressed in cells contributing first to the most rostral, and then to progressively more caudal parts of the vertebral column. Later, expression regresses from the anterior sclerotomes, and is only maintained for Cdx1 in the dorsal part of the somites, and for both genes in the tail bud. Cdx1 null mutants show anterior homeosis of upper cervical and thoracic vertebrae. Cdx2-null embryos die before gastrulation, and Cdx2 heterozygotes display anterior transformations of lower cervical and thoracic vertebrae. We have analysed the genetic interactions between Cdx1 and Cdx2 in compound mutants. Combining mutant alleles for both genes gives rise to anterior homeotic transformations along a more extensive length of the vertebral column than do single mutations. The most severely affected Cdx1 null/Cdx2 heterozygous mice display a posterior shift of their cranio-cervical, cervico-thoracic, thoraco-lumbar, lumbo-sacral and sacro-caudal transitions. The effects of the mutations in Cdx1 and Cdx2 were co-operative in severity, and a more extensive posterior shift of the expression of three Hox genes was observed in double mutants. The alteration in Hox expression boundaries occurred early. We conclude that both Cdx genes cooperate at early stages in instructing the vertebral progenitors all along the axis, at least in part by setting the rostral expression boundaries of Hox genes. In addition, Cdx mutants transiently exhibit alterations in the extent of Hox expression domains in the spinal cord, reminding of the strong effects of overexpressing Cdx genes on Hox gene expression in the neurectoderm. Phenotypical alterations in the peripheral nervous system were observed at mid-gestation stages. Strikingly, the altered phenotype at caudal levels included a posterior truncation of the tail, mildly affecting Cdx2 heterozygotes, but more severely affecting Cdx1/Cdx2 double heterozygotes and Cdx1 null/Cdx2 heterozygotes. Mutations in Cdx1 and Cdx2 therefore also interfere with axis elongation in a cooperative way. The function of Cdx genes in morphogenetic processes during gastrulation and tail bud extension, and their relationship with the Hox genes are discussed in the light of available data in Amphioxus, C. elegans, Drosophila and mice.  相似文献   

8.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 belongs, with A1, B1 and B2, to the basic protein subset of the hnRNP complex in mammalian cells. All these proteins share a modular structure consisting of two conserved RNA binding domains linked to less conserved Gly-rich domains (2xRBD-Gly). In the framework of our studies on the genetic basis of hnRNP proteins structure and diversity we have isolated and sequenced the A2 gene and compared it to the previously described A1 gene. The A2 gene, which exists in a single copy on Ch. 7 band p15, is split in 12 exons including an alternatively spliced 36 nt mini exon specific for the human hnRNP protein B1. In this work we show that the intron/exon organisation of the A2 gene is identical to that of the A1 gene over the entire length, indicating a common origin by gene duplication. Moreover the comparison of corresponding exons evidences significant conservation also in the apparently divergent Gly-rich domains that could define previously unenvisaged structural and/or functional motifs. The A2 gene promoter is also analysed in comparison to that of the A1 gene.  相似文献   

9.
Hypoxia inducible factor 1 (HIF-1), a key regulator for adaptation to hypoxia, is composed of HIF-1alpha and HIF-1beta. In this study, we present evidence that overexpression of mitochondria-located thioredoxin 2 (Trx2) attenuated hypoxia-evoked HIF-1alpha accumulation, whereas cytosolic thioredoxin 1 (Trx1) enhanced HIF-1alpha protein amount. Transactivation of HIF-1 is decreased by overexpression of Trx2 but stimulated by Trx1. Inhibition of proteasomal degradation of HIF-1alpha in Trx2-overexpressing cells did not fully restore HIF-1alpha protein levels, while HIF-1alpha accumulation was enhanced in Trx1-overexpressing cells. Reporter assays showed that cap-dependent translation is increased by Trx1 and decreased by Trx2, whereas HIF-1alpha mRNA levels remained unaltered. These data suggest that thioredoxins affect the synthesis of HIF-1alpha. Trx1 facilitated synthesis of HIF-1alpha by activating Akt, p70S6K, and eIF-4E, known to control cap-dependent translation. In contrast, Trx2 attenuated activities of Akt, p70S6K, and eIF-4E and provoked an increase in mitochondrial reactive oxygen species production. MitoQ, a mitochondria specific antioxidant, reversed HIF-1alpha accumulation as well as Akt activation under hypoxia in Trx2 cells, supporting the notion of translation control mechanisms in affecting HIF-1alpha protein accumulation.  相似文献   

10.
Ent‐kaurenoic acid oxidase (KAO), a class of cytochrome P450 monooxygenases of the subfamily CYP88A, catalyzes the conversion of ent‐kaurenoic acid (KA) to gibberellin (GA) GA12, the precursor of all GAs, thereby playing an important role in determining GA concentration in plants. Past work has demonstrated the importance of KAO activity for growth in various plant species. In Arabidopsis, this enzyme is encoded by two genes designated KAO1 and KAO2. In this study, we used various approaches to determine the physiological roles of KAO1 and KAO2 throughout plant development. Analysis of gene expression pattern reveals that both genes are mainly expressed in germinating seeds and young developing organs, thus suggesting functional redundancy. Consistent with this, kao1 and kao2 single mutants are indistinguishable from wild‐type plants. By contrast, the kao1 kao2 double mutant exhibits typical non‐germinating GA‐dwarf phenotypes, similar to those observed in the severely GA‐deficient ga1‐3 mutant. Phenotypic characterization and quantitative analysis of endogenous GA contents of single and double kao mutants further confirm an overlapping role of KAO1 and KAO2 throughout Arabidopsis development.  相似文献   

11.
12.
13.
14.
15.
IL-23 is a recently discovered heterodimeric cytokine that shares biological properties with proinflammatory cytokines. The biologically active heterodimer consists of p19 and the p40 subunit of IL-12. IL-23 has been shown to possess biological activities on T cells that are similar as well distinct from those of IL-12. We have constructed single-chain IL-23 and IL-12 fusion proteins (IL-23-Ig and IL-12-Ig) and have compared the two recombinant proteins for effects on murine dendritic cells (DC). Here we show that the IL-23-Ig can bind a significant proportion of splenic DC of both the CD8alpha(-) and CD8alpha(+) subtypes. Furthermore, IL-23and IL-12-Ig exert biological activities on DC that are only in part overlapping. While both proteins induce IL-12 production from DC, only IL-23-Ig can act directly on CD8alpha(+) DC to promote immunogenic presentation of an otherwise tolerogenic tumor peptide. In addition, the in vitro effects of IL-23-Ig did not appear to require IL-12Rbeta2 or to be mediated by the production of IL-12. These data may establish IL-23 as a novel cytokine with major effects on APC.  相似文献   

16.
Caspases are essential components of the apoptotic machinery in both vertebrates and invertebrates. Here, we report the isolation of a mutant allele of the Drosophila effector caspase drICE as a strong suppressor of hid- (head involution defective-) induced apoptosis. This mutant was used to determine the apoptotic role of drICE. Our data are consistent with an important function of drICE for developmental and irradiation-induced cell death. Epistatic analysis suggests that drICE acts genetically downstream of Drosophila inhibitor of apoptosis protein 1 (Diap1). However, although cell death is significantly reduced in drICE mutants in all assays, it is not completely blocked. A double-mutant analysis between drICE and death caspase-1 (dcp-1), another effector caspase, reveals that some cells (type I) strictly require drICE for apoptosis, whereas other cells (type II) require either drICE or dcp-1. Thus, these data demonstrate a barely appreciated complexity in the apoptotic pathway, and are consistent with current models about effector caspase regulation in both vertebrates and invertebrates.  相似文献   

17.
We have characterized two related cDNAs (RCI2A and RCI2B) corresponding to genes from Arabidopsis thaliana, the expression of which is transiently induced by low, nonfreezing temperatures. RCI2A and RCI2B encode small (54 amino acids), highly hydrophobic proteins that bear two potential transmembrane domains. They show similarity to proteins encoded by genes from barley (Hordeum vulgare L.) and wheatgrass (Lophophyrum elongatum) that are regulated by different stress conditions. Their high level of sequence homology (78%) and their genomic location in a single restriction fragment suggest that both genes originated as a result of a tandem duplication. However, their regulatory sequences have diverged enough to confer on them different expression patterns. Like most of the cold-inducible plant genes characterized, the expression of RCI2A and RCI2B is also promoted by abscisic acid (ABA) and dehydration but is not a general response to stress conditions, since it is not induced by salt stress or by anaerobiosis. Furthermore, low temperatures are able to induce RCI2A and RCI2B expression in ABA-deficient and -insensitive genetic backgrounds, indicating that both ABA-dependent and -independent pathways regulate the low-temperature responsiveness of these two genes.  相似文献   

18.
19.
20.
Disassembly of actin filaments by actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1) is a conserved mechanism to promote reorganization of the actin cytoskeleton. We previously reported that unc-78, an AIP1 gene in the nematode Caenorhabditis elegans, is required for organized assembly of sarcomeric actin filaments in the body wall muscle. unc-78 functions in larval and adult muscle, and an unc-78-null mutant is homozygous viable and shows only weak phenotypes in embryos. Here we report that a second AIP1 gene, aipl-1 (AIP1-like gene-1), has overlapping function with unc-78, and that depletion of the two AIP1 isoforms causes embryonic lethality. A single aipl-1-null mutation did not cause a detectable phenotype. However, depletion of both unc-78 and aipl-1 arrested development at late embryonic stages due to severe disorganization of sarcomeric actin filaments in body wall muscle. In vitro, both AIPL-1 and UNC-78 preferentially cooperated with UNC-60B, a muscle-specific ADF/cofilin isoform, in actin filament disassembly but not with UNC-60A, a nonmuscle ADF/cofilin. AIPL-1 is expressed in embryonic muscle, and forced expression of AIPL-1 in adult muscle compensated for the function of UNC-78. Thus our results suggest that enhancement of actin filament disassembly by ADF/cofilin and AIP1 proteins is critical for embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号